Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = ketone bodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2944 KiB  
Review
A Comprehensive Review on the Tribological Evaluation of Polyether Ether Ketone Pristine and Composite Coatings
by Amal A. Seenath, M. M. A. Baig, Jitendra Kumar Katiyar and Abdul Samad Mohammed
Polymers 2024, 16(21), 2994; https://doi.org/10.3390/polym16212994 - 25 Oct 2024
Abstract
Polymer coatings have gained a lot of attention in the recent past because of their ability to be easily coated on complex shapes, their low cost, and their ability to reduce friction as compared to other materials. Polyether ether ketone (PEEK) is one [...] Read more.
Polymer coatings have gained a lot of attention in the recent past because of their ability to be easily coated on complex shapes, their low cost, and their ability to reduce friction as compared to other materials. Polyether ether ketone (PEEK) is one such high-performance polymer that has gained significant attention in recent years due to its exceptional mechanical properties, chemical resistance, and thermal stability making it a prominent candidate for applications in industries. However, PEEK in its pristine form exhibits poor wear resistance with a moderate coefficient of friction (0.30–0.38). Many attempts have been made by several researchers to improve its wear resistance and lower the COF by developing composite coatings. Hence, in this review, we aim to summarize and present in detail the tribological evaluation of pristine PEEK and PEEK composite coatings by discussing the various methods adopted by the researchers to improve the properties of PEEK, the different types of reinforcements and various dispersion techniques used to develop PEEK composite coatings. By consolidating and analyzing the existing body of knowledge, we also aim to offer valuable insights into the development of more durable, high-performance PEEK nanocomposite coatings for a broad range of tribological applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

10 pages, 817 KiB  
Article
Effects of a Carbohydrate Meal on Lipolysis
by Kerstin Kempf and Stephan Martin
Nutrients 2024, 16(20), 3531; https://doi.org/10.3390/nu16203531 - 18 Oct 2024
Viewed by 388
Abstract
Background: Due to the increasing prevalence of obesity and type 2 diabetes, effective dietary recommendations are needed. Previously, we developed the low-insulin method: by avoiding insulinogenic, i.e., insulin-release-triggering foods, insulin secretion becomes reduced, lipolysis is stimulated, and energy production is shifted to ketosis [...] Read more.
Background: Due to the increasing prevalence of obesity and type 2 diabetes, effective dietary recommendations are needed. Previously, we developed the low-insulin method: by avoiding insulinogenic, i.e., insulin-release-triggering foods, insulin secretion becomes reduced, lipolysis is stimulated, and energy production is shifted to ketosis with excess ketone bodies exhaled in the form of acetone. Now, we investigate how quickly stable ketosis (defined as fasting breath acetone concentration ≥ 7.0 ppm) is achieved, whether and for how long a carbohydrate meal inhibits ketosis, and whether the responses differ in healthy adults with different insulin levels. Methods: An oral glucose tolerance test was conducted, and body composition and fasting insulin were determined at the beginning and end of the 14-day study. Participants (n = 10) followed a ketogenic diet and performed continuous glucose monitoring. Ketosis levels were determined by measuring breath acetone concentrations. On day 8, two white bread rolls with jam (72 g carbohydrates) were consumed for breakfast. Results: After seven days, all participants achieved stable ketosis (defined as fasting breath acetone concentration ≥ 7.0 ppm), which dropped from 8.2 to 5.7 ppm (p = 0.0014) after the carbohydrate meal. It took five days to achieve stable ketosis again. The stratification of participants into tertiles according to their fasting insulin levels demonstrated that individuals with low fasting insulin levels achieved stable ketosis again after two days and those with medium insulin levels after five days, while those with high baseline values did not reach stable ketosis by the end of the study. Conclusions: By carbohydrate restriction, stable ketosis can be achieved within one week. However, a single carbohydrate meal inhibits ketosis for several days. This effect is pronounced in individuals with elevated fasting insulin levels. Full article
(This article belongs to the Special Issue Nutritional and Dietary Approaches to Diabetes)
Show Figures

Figure 1

12 pages, 1596 KiB  
Perspective
Lactobacillus Eats Amyloid Plaque and Post-Biotically Attenuates Senescence Due to Repeat Expansion Disorder and Alzheimer’s Disease
by Suresh C. Tyagi
Antioxidants 2024, 13(10), 1225; https://doi.org/10.3390/antiox13101225 - 12 Oct 2024
Viewed by 600
Abstract
Patients with Alzheimer’s disease and related dementia (ADRD) are faced with a formidable challenge of focal amyloid deposits and cerebral amyloid angiopathy (CAA). The treatment of amyloid deposits in ADRD by targeting only oxidative stress, inflammation and hyperlipidemia has not yielded significant positive [...] Read more.
Patients with Alzheimer’s disease and related dementia (ADRD) are faced with a formidable challenge of focal amyloid deposits and cerebral amyloid angiopathy (CAA). The treatment of amyloid deposits in ADRD by targeting only oxidative stress, inflammation and hyperlipidemia has not yielded significant positive clinical outcomes. The chronic high-fat diet (HFD), or gut dysbiosis, is one of the major contributors of ADRD in part by disrupted transport, epigenetic DNMT1 and the folate 1-carbon metabolism (FOCM) cycle, i.e., rhythmic methylation/de-methylation on DNA, an active part of epigenetic memory during genes turning off and on by the gene writer (DNMT1) and eraser (TET2/FTO) and the transsulfuration pathway by mitochondrial 3-mercaptopyruvate sulfur transferase (3MST)-producing H2S. The repeat CAG expansion and m6A disorder causes senescence and AD. We aim to target the paradigm-shift pathway of the gut–brain microbiome axis that selectively inhibits amyloid deposits and increases mitochondrial transsulfuration and H2S. We have observed an increase in DNMT1 and decreased FTO levels in the cortex of the brain of AD mice. Interestingly, we also observed that probiotic lactobacillus-producing post-biotic folate and lactone/ketone effectively prevented FOCM-associated gut dysbiosis and amyloid deposits. The s-adenosine-methionine (SAM) transporter (SLC25A) was increased by hyperhomocysteinemia (HHcy). Thus, we hypothesize that chronic gut dysbiosis induces SLC25A, the gene writer, and HHcy, and decreases the gene eraser, leading to a decrease in SLC7A and mitochondrial transsulfuration H2S production and bioenergetics. Lactobacillus engulfs lipids/cholesterol and a tri-directional post-biotic, folic acid (an antioxidant and inhibitor of beta amyloid deposits; reduces Hcy levels), and the lactate ketone body (fuel for mitochondria) producer increases SLC7A and H2S (an antioxidant, potent vasodilator and neurotransmitter gas) production and inhibits amyloid deposits. Therefore, it is important to discuss whether lactobacillus downregulates SLC25A and DNMT1 and upregulates TET2/FTO, inhibiting β-amyloid deposits by lowering homocysteine. It is also important to discuss whether lactobacillus upregulates SLC7A and inhibits β-amyloid deposits by increasing the mitochondrial transsulfuration of H2S production. Full article
(This article belongs to the Special Issue Oxidative Stress as a Therapeutic Target of Alzheimer’s Disease)
Show Figures

Figure 1

16 pages, 861 KiB  
Review
Multifaceted Impact of SGLT2 Inhibitors in Heart Failure Patients: Exploring Diverse Mechanisms of Action
by Christos Piperis, Anastasios Marathonitis, Artemis Anastasiou, Panagiotis Theofilis, Konstantinos Mourouzis, Alexios Giannakodimos, Elsi Tryfou, Evangelos Oikonomou, Gerasimos Siasos and Dimitris Tousoulis
Biomedicines 2024, 12(10), 2314; https://doi.org/10.3390/biomedicines12102314 - 11 Oct 2024
Viewed by 694
Abstract
Heart failure (HF) is a growing concern due to the aging population and increasing prevalence of comorbidities. Despite advances in treatment, HF remains a significant burden, necessitating novel therapeutic approaches. Sodium–glucose cotransporter 2 inhibitors (SGLT2is) have emerged as a promising treatment option, demonstrating [...] Read more.
Heart failure (HF) is a growing concern due to the aging population and increasing prevalence of comorbidities. Despite advances in treatment, HF remains a significant burden, necessitating novel therapeutic approaches. Sodium–glucose cotransporter 2 inhibitors (SGLT2is) have emerged as a promising treatment option, demonstrating benefits across the entire spectrum of HF, regardless of left ventricular ejection fraction (LVEF). This review explores the multifaceted mechanisms through which SGLT2is exert cardioprotective effects, including modulation of energy metabolism, reduction of oxidative stress, attenuation of inflammation, and promotion of autophagy. SGLT2is shift myocardial energy substrate utilization from carbohydrates to more efficient fatty acids and ketone bodies, enhancing mitochondrial function and reducing insulin resistance. These inhibitors also mitigate oxidative stress by improving mitochondrial biogenesis, reducing reactive oxygen species (ROS) production, and regulating calcium-signaling pathways. Inflammation, a key driver of HF progression, is alleviated through the suppression of proinflammatory cytokines and modulation of immune cell activity. Additionally, SGLT2is promote autophagy, facilitating the clearance of damaged cellular components and preserving myocardial structure and function. Beyond their glucose-lowering effects, SGLT2is provide significant benefits in patients with chronic kidney disease (CKD) and HF, reducing the progression of CKD and improving overall survival. The pleiotropic actions of SGLT2is highlight their potential as a cornerstone in HF management. Further research is needed to fully elucidate their mechanisms and optimize their use in clinical practice. Full article
(This article belongs to the Special Issue Cardiomyopathies and Heart Failure: Charting the Future)
Show Figures

Figure 1

18 pages, 1875 KiB  
Article
Wheat Peptides as Catalysts for Athletic Performance Improvement in Cross-Country Skiers: A Randomized Controlled Trial
by Mai Xiang, Qi Han, Yue Chen, Shenglin Duan, Xiaofeng Han, Xuemei Sui, Chaoxue Ren and Qirong Wang
Metabolites 2024, 14(10), 538; https://doi.org/10.3390/metabo14100538 - 7 Oct 2024
Viewed by 393
Abstract
Objectives: This study investigated the efficacy of wheat peptide supplementation compared to regular proteins in elite cross-country skiers, providing insights into the metabolic and performance effects of these supplements in order to guide athletes in selecting optimal energy sources for training and competition. [...] Read more.
Objectives: This study investigated the efficacy of wheat peptide supplementation compared to regular proteins in elite cross-country skiers, providing insights into the metabolic and performance effects of these supplements in order to guide athletes in selecting optimal energy sources for training and competition. Methods: Nineteen healthy male cross-country skiers were enrolled and assigned to either the peptide group (PEP, n = 9) or the protein group (PRO, n = 10). A four-week intervention study involving supplementation with wheat peptides/regular proteins was conducted, and pre- and post-intervention assessments were performed to evaluate exercise capacity and metabolic profiles. Results: The study found that the PEP group and the PRO group showed distinct within-group effects on exercise performance. The PEP group demonstrated improved aerobic capacity, including better performance in 10 km roller skating, an increased lactate threshold, and reduced resting blood lactate levels. The PRO group enhanced anaerobic capacity, such as improved sprint time, hexagon test performance, and lactate clearance. Metabolomic analysis revealed specific metabolic pathways affected in each group, with the PEP group showing impacts on the α-linolenic acid pathway and the PRO group on ketone body synthesis and degradation as well as vitamin B6 metabolism. Conclusions: Our findings indicate that wheat oligopeptides and regular proteins have comparable effects on exercise performance. However, the wheat peptides may offer greater advantages in enhancing aerobic capacity. No significant variations were observed in blood metabolite profiles between the two groups, but distinct metabolic pathways exhibited different responses. Full article
Show Figures

Figure 1

16 pages, 2225 KiB  
Article
Resistant Potato Starch Supplementation Reduces Serum Free Fatty Acid Levels and Influences Bile Acid Metabolism
by Jason R. Bush, Izuchukwu Iwuamadi, Jun Han, David J. Schibli, David R. Goodlett and Edward C. Deehan
Metabolites 2024, 14(10), 536; https://doi.org/10.3390/metabo14100536 - 5 Oct 2024
Viewed by 872
Abstract
Background: Resistant starches, such as high-amylose maize starch and resistant potato starch (RPS), have prebiotic effects that are linked to improved metabolism at >15 g/day, but the effects at lower doses have not been reported. Methods: We performed an exploratory post [...] Read more.
Background: Resistant starches, such as high-amylose maize starch and resistant potato starch (RPS), have prebiotic effects that are linked to improved metabolism at >15 g/day, but the effects at lower doses have not been reported. Methods: We performed an exploratory post hoc analysis of free fatty acids (FFAs), bile acids (BAs), and ketone bodies in serum previously collected from a randomized, double-blind, placebo-controlled clinical trial evaluating the effects of one- and four-week consumption of 3.5 g/day RPS versus a placebo using two-way ANOVA adjusted by pFDR. Associations between week 4 changes in FFAs, BAs, and ketone bodies were assessed by Pearson’s correlations. Results: RPS consumption reduced total FFAs relative to the placebo, including multiple unsaturated FFAs and octanedioic acid, with reductions in taurine- and glycine-conjugated secondary BAs also detected (q < 0.05). No changes in ketone bodies were observed (q > 0.05). Changes in 7-ketodeoxycholic acid (r = −0.595) and glycolithocholic acid (r = −0.471) were inversely correlated with treatment-induced reductions in FFAs for RPS but not the placebo, suggesting the effects were from the prebiotic. Shifts in β-hydroxybutyrate were further correlated with FFA changes in both treatments (q < 0.05). Conclusions: These findings demonstrate that low doses of RPS positively influence fatty acid metabolism in humans, reducing circulating levels of FFA and conjugated BAs. Full article
Show Figures

Graphical abstract

18 pages, 1983 KiB  
Article
An Exogenous Ketone Ester Slows Tumor Progression in Murine Breast and Renal Cancer Models
by Henry Nnaemeka Ogbonna, Zachary Roberts, Nicholas Godwin, Pia Muri, William J. Turbitt, Zoey N. Swalley, Francesca R. Dempsey, Holly R. Stephens, Jianqing Zhang, Eric P. Plaisance and Lyse A. Norian
Cancers 2024, 16(19), 3390; https://doi.org/10.3390/cancers16193390 - 4 Oct 2024
Viewed by 768
Abstract
Background/Objectives: Ketone esters (KEs) exhibit promise as anti-cancer agents but their impact on spontaneous metastases remains poorly understood. Although consumption of a ketogenic diet (KD) that is low in carbohydrates and high in fats can lead to KE production in vivo, the restrictive [...] Read more.
Background/Objectives: Ketone esters (KEs) exhibit promise as anti-cancer agents but their impact on spontaneous metastases remains poorly understood. Although consumption of a ketogenic diet (KD) that is low in carbohydrates and high in fats can lead to KE production in vivo, the restrictive composition of KDs may diminish adherence in cancer patients. Methods: We investigated the effects of an exogenous ketone ester-supplemented (eKET), carbohydrate-replete diet on tumor growth, metastasis, and underlying mechanisms in orthotopic models of metastatic breast (4T1-Luc) and renal (Renca-Luc) carcinomas. Mice were randomized to diet after tumor challenge. Results: Administration of KEs did not alter tumor cell growth in vitro. However, in mice, our eKET diet increased circulating β-hydroxybutyrate and inhibited primary tumor growth and lung metastasis in both models. Body composition analysis illustrated the overall safety of eKET diet use, although it was associated with a loss of fat mass in mice with renal tumors. Immunogenetic profiling revealed divergent intratumoral eKET-related changes by tumor type. In mammary tumors, Wnt and TGFβ pathways were downregulated, whereas in renal tumors, genes related to hypoxia and DNA damage repair were downregulated. Conclusions: Thus, our eKET diet exerts potent antitumor and antimetastatic effects in both breast and renal cancer models, albeit with different modes of action and physiologic effects. Its potential as an adjuvant dietary approach for patients with diverse cancer types should be explored further. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

16 pages, 2730 KiB  
Article
Analysis of the Organic Chemical Fractions of Three Coal Extracts
by Xiaohua Wang, Zhongchao Zhu and Xiaojun Li
Appl. Sci. 2024, 14(19), 8933; https://doi.org/10.3390/app14198933 - 3 Oct 2024
Viewed by 757
Abstract
Coal is an important fossil energy source in the world, which provides important support for the development of industry. However, the chemical composition of coal is complex, and it may cause harm to the human body and environment during the process of mining [...] Read more.
Coal is an important fossil energy source in the world, which provides important support for the development of industry. However, the chemical composition of coal is complex, and it may cause harm to the human body and environment during the process of mining and utilization, especially some aromatic hydrocarbons in coal that are strongly carcinogenic to human beings; thus, it is necessary to analyze the organic chemical compositions of coal so as to realize the clean and harmless utilization of coal. In this article, three different coal samples were extracted by seven solvent-graded extractions, and then the extracts were tested by gas chromatography–mass spectrometry (GC-MS). According to the results of the GC-MS test, it was found that CS2 could dissolve a large amount of aromatic hydrocarbons in the coal, n-hexane could dissolve a larger amount of aliphatic hydrocarbons, methanol could dissolve a larger amount of ketones, benzene could extract phenolic compounds in the coal, acetone could dissolve alcoholic compounds, and the mixed solvent methanol/THF could dissolve coal esters. Then, by analyzing these extracts, researchers can clearly understand the microscopic organic components of coal, which have a significant role in the development of the coal chemical industry and ecological environment protection. Full article
Show Figures

Figure 1

16 pages, 2921 KiB  
Article
Improving Stroke Outcome Prediction Using Molecular and Machine Learning Approaches in Large Vessel Occlusion
by Madhusmita Rout, April Vaughan, Evgeny V. Sidorov and Dharambir K. Sanghera
J. Clin. Med. 2024, 13(19), 5917; https://doi.org/10.3390/jcm13195917 - 3 Oct 2024
Viewed by 799
Abstract
Introduction: Predicting stroke outcomes in acute ischemic stroke (AIS) can be challenging, especially for patients with large vessel occlusion (LVO). Available tools such as infarct volume and the National Institute of Health Stroke Scale (NIHSS) have shown limited accuracy in predicting outcomes [...] Read more.
Introduction: Predicting stroke outcomes in acute ischemic stroke (AIS) can be challenging, especially for patients with large vessel occlusion (LVO). Available tools such as infarct volume and the National Institute of Health Stroke Scale (NIHSS) have shown limited accuracy in predicting outcomes for this specific patient population. The present study aimed to confirm whether sudden metabolic changes due to blood-brain barrier (BBB) disruption during LVO reflect differences in circulating metabolites and RNA between small and large core strokes. The second objective was to evaluate whether integrating molecular markers with existing neurological and imaging tools can enhance outcome predictions in LVO strokes. Methods: The infarction volume in patients was measured using magnetic resonance diffusion-weighted images, and the 90-day stroke outcome was defined by a modified Rankin Scale (mRS). Differential expression patterns of miRNAs were identified by RNA sequencing of serum-driven exosomes. Nuclear magnetic resonance (NMR) spectroscopy was used to identify metabolites associated with AIS with small and large infarctions. Results: We identified 41 miRNAs and 11 metabolites to be significantly associated with infarct volume in a multivariate regression analysis after adjusting for the confounders. Eight miRNAs and ketone bodies correlated significantly with infarct volume, NIHSS (severity), and mRS (outcome). Through integrative analysis of clinical, radiological, and omics data using machine learning, our study identified 11 top features for predicting stroke outcomes with an accuracy of 0.81 and AUC of 0.91. Conclusions: Our study provides a future framework for advancing stroke therapeutics by incorporating molecular markers into the existing neurological and imaging tools to improve predictive efficacy and enhance patient outcomes. Full article
(This article belongs to the Special Issue Stroke Diagnosis and Outcome Prediction)
Show Figures

Figure 1

18 pages, 1525 KiB  
Article
Efficacy, Safety, and Tolerability of a Very Low-Calorie Ketogenic Diet in Women with Obesity and Symptomatic Knee Osteoarthritis: A Pilot Interventional Study
by Jacopo Ciaffi, Luana Mancarella, Giulia Pederzani, Lucia Lisi, Veronica Brusi, Federica Pignatti, Susanna Ricci, Giorgia Vitali, Cesare Faldini and Francesco Ursini
Nutrients 2024, 16(19), 3236; https://doi.org/10.3390/nu16193236 - 24 Sep 2024
Viewed by 1453
Abstract
Background/Objectives: Obesity is a major risk factor for knee osteoarthritis (OA), and weight loss is crucial for its management. This pilot study explores the effects of a Very Low-Calorie Ketogenic Diet (VLCKD) in women with obesity and symptomatic knee OA. Methods: Women with [...] Read more.
Background/Objectives: Obesity is a major risk factor for knee osteoarthritis (OA), and weight loss is crucial for its management. This pilot study explores the effects of a Very Low-Calorie Ketogenic Diet (VLCKD) in women with obesity and symptomatic knee OA. Methods: Women with symptomatic knee OA and obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, were eligible for the VLCKD protocol. The intervention included a ketogenic phase from baseline (T0) to the 8th week (T8), followed by a progressive reintroduction of carbohydrates over the next 12 weeks, ending at the 20th week (T20). Body mass index (BMI), the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index, the EuroQol 5D (EQ-5D), and the 36-item Short Form Health Survey (SF-36) were assessed at all time points. Generalized estimating equations were used to analyze the association between BMI and patient-reported outcomes across the study period. Results: Twenty participants started the study, but four discontinued the intervention, with two of these being due to adverse effects. The mean age of the 16 patients who completed the 20-week program was 57.3 ± 5.5 years, and their mean BMI was 40.0 ± 4.8 kg/m2. The mean BMI significantly decreased to 37.5 ± 4.5 at T4, 36.3 ± 4.6 at T8, and 34.8 ± 4.8 at T20 (all p < 0.001 compared to baseline). The total WOMAC score improved from a mean of 43.6 ± 16.9 at T0 to 30.2 ± 12.8 at T4 (p = 0.005) and further to 24.7 ± 10.6 at T8 (p = 0.001) and to 24.8 ± 15.9 at T20 (p = 0.005). The reduction in BMI was significantly correlated with the improvements in WOMAC, EQ-5D, and SF-36 over time. No major adverse effects were observed. Conclusions: A 20-week VLCKD in women with obesity and knee OA significantly reduced their weight and improved their outcomes, warranting further research. This trial is registered with number NCT05848544 on ClinicalTrials.gov. Full article
Show Figures

Figure 1

12 pages, 296 KiB  
Review
Fueling the Heart: What Are the Optimal Dietary Strategies in Heart Failure?
by Anahita Ataran, Alexander Pompian, Hamidreza Hajirezaei, Rehman Lodhi and Ali Javaheri
Nutrients 2024, 16(18), 3157; https://doi.org/10.3390/nu16183157 - 18 Sep 2024
Viewed by 991
Abstract
Objectives: Heart failure (HF) is a global health concern with rising incidence and poor prognosis. While the essential role of nutritional and dietary strategies in HF patients is acknowledged in the existing scientific guidelines and clinical practice, there are no comprehensive nutritional recommendations [...] Read more.
Objectives: Heart failure (HF) is a global health concern with rising incidence and poor prognosis. While the essential role of nutritional and dietary strategies in HF patients is acknowledged in the existing scientific guidelines and clinical practice, there are no comprehensive nutritional recommendations for optimal dietary management of HF. Methods: In this review, we discuss results from recent studies on the obesity paradox and the effects of calorie restriction and weight loss, intermittent fasting, the Western diet, the Mediterranean diet, the ketogenic diet, and the DASH diet on HF progression. Results: Many of these strategies remain under clinical and basic investigation for their safety and efficacy, and there is considerable heterogeneity in the observed response, presumably because of heterogeneity in the pathogenesis of different types of HF. In addition, while specific aspects of cardiac metabolism, such as changes in ketone body utilization, might underlie the effects of certain dietary strategies on the heart, there is a critical divide between supplement strategies (i.e., with ketones) and dietary strategies that impact ketogenesis. Conclusion: This review aims to highlight this gap by exploring emerging evidence supporting the importance of personalized dietary strategies in preventing progression and improving outcomes in the context of HF. Full article
15 pages, 3759 KiB  
Article
Comparing the Immune Response to PEEK as an Implant Material with and without P-15 Peptide as Bone Graft Material in a Rabbit Long Bone Model
by Boyle C. Cheng, Isaac R. Swink, Cooper T. Cheng, Owen G. Corcoran, Vicki Z. Wang, Edward J. McClain, Praveer S. Vyas, Izzy Owen, Chen Xu, Daniel T. Altman and Alexander K. Yu
Bioengineering 2024, 11(9), 898; https://doi.org/10.3390/bioengineering11090898 - 6 Sep 2024
Viewed by 860
Abstract
P-15 is a 15-amino-acid-long biomimetic peptide widely demonstrated to enhance osteogenesis in vivo. Despite the prevalence of polyether-ether-ketone (PEEK) in interbody device manufacturing, a growing body of evidence suggests it may produce an unfavorable immune response. The purpose of this preliminary study was [...] Read more.
P-15 is a 15-amino-acid-long biomimetic peptide widely demonstrated to enhance osteogenesis in vivo. Despite the prevalence of polyether-ether-ketone (PEEK) in interbody device manufacturing, a growing body of evidence suggests it may produce an unfavorable immune response. The purpose of this preliminary study was to characterize the immune response and new bone growth surrounding PEEK implants with and without a P-15 peptide-based osteobiologic. A bilateral femoral defect model was conducted using New Zealand white rabbits. A total of 17 test subjects received one implant in each distal femur, either with or without bone graft material. Animals were allowed to survive to 4 or 8 weeks, at which time the femurs were collected and subjected to micro-computer tomography (microCT) or cytokine analysis. MicroCT analysis included the quantification of bone growth and density surrounding each implant. The cytokine analysis of periprosthetic tissue homogenates included the quantification of interleukins (ILs) and TNF-α expression via ELISA kits. Improvements in bone volume were observed in the P-15 cohort for the regions of interest, 500–136 and 136–0 µm from the implant surface, at 8 weeks post-op. Concentrations of IL-1β, IL-4, and IL-6 cytokines were significantly higher in the P-15 cohort compared to the PEEK cohort at the 4-week timepoint. Significant reductions in the concentrations of IL-4 and IL-6 cytokines from the 4- to 8-week cohort were observed in the P-15 cohort only. The P-15 peptide has the potential to modulate the immune response to implanted materials. We observed improvements in bone growth and a more active micro-environment in the P-15 cohort relative to the PEEK control. This may indicate an earlier transition from the inflammatory to remodeling phase of healing. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

23 pages, 10568 KiB  
Article
Neuroregeneration Improved by Sodium-D,L-Beta-Hydroxybutyrate in Primary Neuronal Cultures
by Csilla Ari, Dominic P. D’Agostino and Byeong J. Cha
Pharmaceuticals 2024, 17(9), 1160; https://doi.org/10.3390/ph17091160 - 31 Aug 2024
Cited by 1 | Viewed by 1290
Abstract
Ketone bodies are considered alternative fuels for the brain when glucose availability is limited. To determine the neuroregenerative potential of D,L-sodium-beta-hydroxybutyrate (D/L-BHB), Sprague Dawley rat primary cortical neurons were exposed to simulated central nervous system injury using a scratch assay. The neuronal cell [...] Read more.
Ketone bodies are considered alternative fuels for the brain when glucose availability is limited. To determine the neuroregenerative potential of D,L-sodium-beta-hydroxybutyrate (D/L-BHB), Sprague Dawley rat primary cortical neurons were exposed to simulated central nervous system injury using a scratch assay. The neuronal cell migration, cell density and degree of regeneration in the damaged areas (gaps) in the absence (control) and presence of BHB (2 mM) were documented with automated live-cell imaging by the CytoSMART system over 24 h, which was followed by immunocytochemistry, labeling synapsin-I and β3-tubulin. The cell density was significantly higher in the gaps with BHB treatment after 24 h compared to the control. In the control, only 1.5% of the measured gap areas became narrower over 24 h, while in the BHB-treated samples 49.23% of the measured gap areas became narrower over 24 h. In the control, the gap expanded by 63.81% post-injury, while the gap size decreased by 10.83% in response to BHB treatment, compared to the baseline. The cell density increased by 97.27% and the gap size was reduced by 74.64% in response to BHB, compared to the control. The distance travelled and velocity of migrating cells were significantly higher with BHB treatment, while more synapsin-I and β3-tubulin were found in the BHB-treated samples after 24 h, compared to the control. The results demonstrate that D/L-BHB enhanced neuronal migration and molecular processes associated with neural regeneration and axonogenesis. These results may have clinical therapeutic applications in the future for nervous system injuries, such as for stroke, concussion and TBI patients. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

22 pages, 1437 KiB  
Review
Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases
by Corrado Calì, Iva Cantando, Maria Fernanda Veloz Castillo, Laurine Gonzalez and Paola Bezzi
Int. J. Mol. Sci. 2024, 25(16), 8922; https://doi.org/10.3390/ijms25168922 - 16 Aug 2024
Viewed by 2134
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes [...] Read more.
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood–brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer’s and Huntington’s disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 2684 KiB  
Article
Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet
by Kenyon W. Sprankle, Mya A. Knappenberger, Erica J. Locke, Jack H. Thompson, Madison F. Vinovrski, Kaylin Knapsack and Stephen C. Kolwicz
Nutrients 2024, 16(16), 2731; https://doi.org/10.3390/nu16162731 - 16 Aug 2024
Viewed by 1219
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that results in the elevation of serum ketone bodies, known as ketosis. This metabolic consequence has been suggested as a method for treating neurological conditions, improving exercise performance, and facilitating weight loss for overweight [...] Read more.
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that results in the elevation of serum ketone bodies, known as ketosis. This metabolic consequence has been suggested as a method for treating neurological conditions, improving exercise performance, and facilitating weight loss for overweight individuals. However, since most research primarily uses male populations, little is known about the potential sex differences during the consumption of the KD. In addition, the effects of the KD on aging are relatively unexplored. Therefore, the purpose of this study was to explore sex- and age-specific differences in mice fed the KD. Male and female C57BL/6N mice at either 12 wks or 24 wks of age were randomly assigned to a KD (90% fat, 1% carbohydrate) or chow (13% fat, 60% carbohydrate) group for 6 wks. KD induced weight gain, increased adiposity, induced hyperlipidemia, caused lipid accumulation in the heart and liver, and led to glycogen depletion in the heart, liver, and muscle with varying degrees of changes depending on age and sex. While younger and older male mice on the KD were prone to glucose intolerance, the KD acutely improved rotarod performance in younger females. Overall, this study highlights potential sex and aging differences in the adaptation to the KD. Full article
(This article belongs to the Special Issue Clinical Impact of Ketogenic Diet)
Show Figures

Figure 1

Back to TopTop