Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = knee exoskeleton-assistant system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9199 KiB  
Article
Wireless PID-Based Control for a Single-Legged Rehabilitation Exoskeleton
by Rabé Andersson, Mikael Cronhjort and José Chilo
Machines 2024, 12(11), 745; https://doi.org/10.3390/machines12110745 - 22 Oct 2024
Viewed by 428
Abstract
The demand for remote rehabilitation is increasing, opening up convenient and effective home-based therapy for the sick and elderly. In this study, we use AnyBody simulations to analyze muscle activity and determine key parameters for designing a rehabilitation exoskeleton, as well as selecting [...] Read more.
The demand for remote rehabilitation is increasing, opening up convenient and effective home-based therapy for the sick and elderly. In this study, we use AnyBody simulations to analyze muscle activity and determine key parameters for designing a rehabilitation exoskeleton, as well as selecting the appropriate motor torque to assist patients during rehabilitation sessions. The exoskeleton was designed with a PID control mechanism for the precise management of motor positions and joint torques, and it operates in both automated and teleoperation modes. Hip and knee movements are monitored via smartphone-based IMU sensors, enabling real-time feedback. Bluetooth communication ensures seamless control during various training scenarios. Our study demonstrates that remotely controlled rehabilitation systems can be implemented effectively, offering vital support not only during global health crises such as pandemics but also in improving the accessibility of rehabilitation services in remote or underserved areas. This approach has the potential to transform the way physical therapy can be delivered, making it more accessible and adaptable to the needs of a larger patient population. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

22 pages, 6111 KiB  
Article
Research on the Motion Control Strategy of a Lower-Limb Exoskeleton Rehabilitation Robot Using the Twin Delayed Deep Deterministic Policy Gradient Algorithm
by Yifeng Guo, Min He, Xubin Tong, Min Zhang and Limin Huang
Sensors 2024, 24(18), 6014; https://doi.org/10.3390/s24186014 - 17 Sep 2024
Viewed by 637
Abstract
The motion control system of a lower-limb exoskeleton rehabilitation robot (LLERR) is designed to assist patients in lower-limb rehabilitation exercises. This research designed a motion controller for an LLERR-based on the Twin Delayed Deep Deterministic policy gradient (TD3) algorithm to control the lower-limb [...] Read more.
The motion control system of a lower-limb exoskeleton rehabilitation robot (LLERR) is designed to assist patients in lower-limb rehabilitation exercises. This research designed a motion controller for an LLERR-based on the Twin Delayed Deep Deterministic policy gradient (TD3) algorithm to control the lower-limb exoskeleton for gait training in a staircase environment. Commencing with the establishment of a mathematical model of the LLERR, the dynamics during its movement are systematically described. The TD3 algorithm is employed to plan the motion trajectory of the LLERR’s right-foot sole, and the target motion curve of the hip (knee) joint is deduced inversely to ensure adherence to human physiological principles during motion execution. The control strategy of the TD3 algorithm ensures that the movement of each joint of the LLERR is consistent with the target motion trajectory. The experimental results indicate that the trajectory tracking errors of the hip (knee) joints are all within 5°, confirming that the LLERR successfully assists patient in completing lower-limb rehabilitation training in a staircase environment. The primary contribution of this study is to propose a non-linear control strategy tailored for the staircase environment, enabling the planning and control of the lower-limb joint motions facilitated by the LLERR. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

16 pages, 1998 KiB  
Article
Preliminary Virtual Constraint-Based Control Evaluation on a Pediatric Lower-Limb Exoskeleton
by Anthony C. Goo, Curt A. Laubscher, Douglas A. Wajda and Jerzy T. Sawicki
Bioengineering 2024, 11(6), 590; https://doi.org/10.3390/bioengineering11060590 - 8 Jun 2024
Viewed by 1056
Abstract
Pediatric gait rehabilitation and guidance strategies using robotic exoskeletons require a controller that encourages user volitional control and participation while guiding the wearer towards a stable gait cycle. Virtual constraint-based controllers have created stable gait cycles in bipedal robotic systems and have seen [...] Read more.
Pediatric gait rehabilitation and guidance strategies using robotic exoskeletons require a controller that encourages user volitional control and participation while guiding the wearer towards a stable gait cycle. Virtual constraint-based controllers have created stable gait cycles in bipedal robotic systems and have seen recent use in assistive exoskeletons. This paper evaluates a virtual constraint-based controller for pediatric gait guidance through comparison with a traditional time-dependent position tracking controller on a newly developed exoskeleton system. Walking experiments were performed with a healthy child subject wearing the exoskeleton under proportional-derivative control, virtual constraint-based control, and while unpowered. The participant questionnaires assessed the perceived exertion and controller usability measures, while sensors provided kinematic, control torque, and muscle activation data. The virtual constraint-based controller resulted in a gait similar to the proportional-derivative controlled gait but reduced the variability in the gait kinematics by 36.72% and 16.28% relative to unassisted gait in the hips and knees, respectively. The virtual constraint-based controller also used 35.89% and 4.44% less rms torque per gait cycle in the hips and knees, respectively. The user feedback indicated that the virtual constraint-based controller was intuitive and easy to utilize relative to the proportional-derivative controller. These results indicate that virtual constraint-based control has favorable characteristics for robot-assisted gait guidance. Full article
Show Figures

Figure 1

19 pages, 5717 KiB  
Article
SensAA—Design and Verification of a Cloud-Based Wearable Biomechanical Data Acquisition System
by Jonas Paul David, David Schick, Lorenz Rapp, Johannes Schick and Markus Glaser
Sensors 2024, 24(8), 2405; https://doi.org/10.3390/s24082405 - 9 Apr 2024
Cited by 1 | Viewed by 806
Abstract
Exoskeletons designed to assist patients with activities of daily living are becoming increasingly popular, but still are subject to research. In order to gather requirements for the design of such systems, long-term gait observation of the patients over the course of multiple days [...] Read more.
Exoskeletons designed to assist patients with activities of daily living are becoming increasingly popular, but still are subject to research. In order to gather requirements for the design of such systems, long-term gait observation of the patients over the course of multiple days in an environment of daily living are required. In this paper a wearable all-in-one data acquisition system for collecting and storing biomechanical data in everyday life is proposed. The system is designed to be cost efficient and easy to use, using off-the-shelf components and a cloud server system for centralized data storage. The measurement accuracy of the system was verified, by measuring the angle of the human knee joint at walking speeds between 3 and 12 km/h in reference to an optical motion analysis system. The acquired data were uploaded to a cloud database via a smartphone application. Verification results showed that the proposed toolchain works as desired. The system reached an RMSE from 2.9° to 8°, which is below that of most comparable systems. The system provides a powerful, scalable platform for collecting and processing biomechanical data, which can help to automize the generation of an extensive database for human kinematics. Full article
Show Figures

Graphical abstract

17 pages, 7387 KiB  
Article
Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting
by Yuxuan Xia, Wei Wei, Xichuan Lin and Jiaqian Li
Sensors 2024, 24(5), 1505; https://doi.org/10.3390/s24051505 - 26 Feb 2024
Viewed by 1419
Abstract
The choice of torque curve in lower-limb enhanced exoskeleton robots is a key problem in the control of lower-limb exoskeleton robots. As a human–machine coupled system, mapping from sensor data to joint torque is complex and non-linear, making it difficult to accurately model [...] Read more.
The choice of torque curve in lower-limb enhanced exoskeleton robots is a key problem in the control of lower-limb exoskeleton robots. As a human–machine coupled system, mapping from sensor data to joint torque is complex and non-linear, making it difficult to accurately model using mathematical tools. In this research study, the knee torque data of an exoskeleton robot climbing up stairs were obtained using an optical motion-capture system and three-dimensional force-measuring tables, and the inertial measurement unit (IMU) data of the lower limbs of the exoskeleton robot were simultaneously collected. Nonlinear approximations can be learned using machine learning methods. In this research study, a multivariate network model combining CNN and LSTM was used for nonlinear regression forecasting, and a knee joint torque-control model was obtained. Due to delays in mechanical transmission, communication, and the bottom controller, the actual torque curve will lag behind the theoretical curve. In order to compensate for these delays, different time shifts of the torque curve were carried out in the model-training stage to produce different control models. The above model was applied to a lightweight knee exoskeleton robot. The performance of the exoskeleton robot was evaluated using surface electromyography (sEMG) experiments, and the effects of different time-shifting parameters on the performance were compared. During testing, the sEMG activity of the rectus femoris (RF) decreased by 20.87%, while the sEMG activity of the vastus medialis (VM) increased by 17.45%. The experimental results verify the effectiveness of this control model in assisting knee joints in climbing up stairs. Full article
(This article belongs to the Special Issue Human Movement Monitoring Using Wearable Sensor Technology)
Show Figures

Figure 1

13 pages, 1790 KiB  
Article
Exploring the Impact of Passive Ankle Exoskeletons on Lower-Limb Neuromechanics during Walking on Sloped Surfaces: Implications for Device Design
by James L. Williamson, Glen A. Lichtwark and Taylor J. M. Dick
Machines 2023, 11(12), 1071; https://doi.org/10.3390/machines11121071 - 6 Dec 2023
Cited by 1 | Viewed by 1947
Abstract
Humans and animals navigate complex and variable terrain in day-to-day life. Wearable assistive exoskeletons interact with biological tissues to augment movement. Yet, our understanding of how these devices impact the biomechanics of movement beyond steady-state environments remains limited. We investigated how passive ankle [...] Read more.
Humans and animals navigate complex and variable terrain in day-to-day life. Wearable assistive exoskeletons interact with biological tissues to augment movement. Yet, our understanding of how these devices impact the biomechanics of movement beyond steady-state environments remains limited. We investigated how passive ankle exoskeletons influence mechanical energetics and neuromuscular control of the lower-limb during level, incline, and decline walking. We collected kinematic and kinetic measures to determine ankle, knee, and hip mechanics and surface electromyography to characterize muscle activation of lower-limb muscles while participants walked on level, incline, and decline surfaces (0°, +5°, and −5°) with exoskeletons of varying stiffnesses (0–280 Nm rad−1). Our results demonstrate that walking on incline surfaces with ankle exoskeletons was associated with increased negative work and power at the knee and increased positive work and power at the hip. These alterations in joint energetics may be linked to an additional requirement to load the springy exoskeleton in incline conditions. Decline walking with ankle exoskeletons had no influence on knee or hip energetics, likely owing to disrupted exoskeleton clutch actuation. To effectively offload the musculoskeletal system during walking on sloped surfaces, alterations to passive ankle exoskeleton clutch design are necessary. Full article
(This article belongs to the Special Issue Advances and Challenges in Wearable Robotics)
Show Figures

Figure 1

9 pages, 657 KiB  
Case Report
Clinical Utility of Robot-Assisted Gait Training in Patients with Spinal Cord Injury Caused by Electrical Burns: A Case Report
by Seung-Yeol Lee, Cheong-Hoon Seo, Yoon-Soo Cho and So-Young Joo
J. Clin. Med. 2023, 12(23), 7220; https://doi.org/10.3390/jcm12237220 - 21 Nov 2023
Viewed by 1195
Abstract
Robot-assisted gait training (RAGT) has been proven effective in improving gait function in not only patients with central nervous system damage, but also in patients who have undergone musculoskeletal surgery. Nevertheless, evidence supporting the efficacy of such training in burn patients remains insufficient. [...] Read more.
Robot-assisted gait training (RAGT) has been proven effective in improving gait function in not only patients with central nervous system damage, but also in patients who have undergone musculoskeletal surgery. Nevertheless, evidence supporting the efficacy of such training in burn patients remains insufficient. This report aimed to evaluate the effect of RAGT in burn patients with spinal cord injuries (SCI) caused by electrical trauma. We reported a case of two patients. The total duration of each session was about 1 h 30 min. This included 10 min to put on the exoskeleton, 30 min of robot-assisted training using SUBAR®, 10 min to remove the exoskeleton, 10 min to observe whether complications such as skin abrasion, ulcer, or pain occur in the scar area after RAGT, and 30 min of conventional physiotherapy, at a rate of 5 days a week for 12 weeks. All measurements were assessed before training (0 week) and after training (12 weeks). The American Spinal Cord Injury Association (ASIA) lower extremity motor score (LEMS), passive range of motions (ROMs) of different joints (hip, knee, and ankle), ambulatory motor index (AMI), functional ambulation categories (FAC), and 6 min walking (6 MWT) distances were evaluated to measure the degree of gait function through training. In both patients, manual muscle test measurement and joint ROM in the lower extremities improved after 12 weeks training. The first patient scored 0 in the FAC before training. After 12 weeks of training, he could walk independently indoors, improving to an FAC score of 4. He also reached 92.16 m in the 6 MWT. LEMS improved from 22 before training to 30 after training, and AMI score improved from 12 before training to 16 after training. In the second patient, an independent walking function was not acquired. LEMS improved from 10 before training to 26 after training. AMI scores were the same at 10 points before and after training. The results suggested the possibility of achieving clinical effects in terms of improving lower extremity muscle strength, joint ROMs, and gait performance in patients with SCI caused by electrical trauma. Full article
(This article belongs to the Special Issue Clinical Treatment and Management of Orthopedic Trauma)
Show Figures

Figure 1

30 pages, 24978 KiB  
Article
A New Exoskeleton Prototype for Lower Limb Rehabilitation
by Ionut Geonea, Cristian Copilusi, Sorin Dumitru, Alexandru Margine, Adrian Rosca and Daniela Tarnita
Machines 2023, 11(11), 1000; https://doi.org/10.3390/machines11111000 - 30 Oct 2023
Cited by 2 | Viewed by 2314
Abstract
This paper presents a new solution for an exoskeleton robotic system that is used for locomotor assistance in people with locomotor disabilities. As novel features of the present research, a novel structural solution of a plane-parallel kinematic chain, intended to be used as [...] Read more.
This paper presents a new solution for an exoskeleton robotic system that is used for locomotor assistance in people with locomotor disabilities. As novel features of the present research, a novel structural solution of a plane-parallel kinematic chain, intended to be used as the leg of an exoskeleton robot, is proposed. A virtual prototype is made, on the basis of which kinematic and dynamic studies are carried out using ADAMS software for the dynamic analysis of multibody systems. The dynamic simulation of the exoskeleton is performed in two simulation situations: walking on a horizontal plane, as well as the simulation of motion assistance when climbing stairs. Following this analysis, it is noted that the robotic system achieves angular variations in the hip and knee joints similar to that of a human subject. As a result, the constructive solution is feasible, and the next stage of the study is to realize an experimental prototype by the rapid prototyping technique. The kinematic elements of the exoskeleton are designed to provide structural strength, to be easily manufactured by 3D printing and to be easy to assemble. For this purpose, the structural optimization is performed with the finite element method to eliminate stress concentrators. Finally, an experimental prototype of the exoskeleton robot is manufactured and assembled, whose motion is analyzed using ultrafast-camera-based video analysis. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

15 pages, 14382 KiB  
Article
Design, Control, and Assessment of a Synergy-Based Exosuit for Patients with Gait-Associated Pathologies
by Ashwin Jayakumar, Javier Bermejo-García, Daniel Rodríguez Jorge, Rafael Agujetas, Francisco Romero-Sánchez and Francisco J. Alonso-Sánchez
Actuators 2023, 12(8), 309; https://doi.org/10.3390/act12080309 - 28 Jul 2023
Cited by 1 | Viewed by 1536
Abstract
With ever-rising population comes a corresponding rise in people with mobility issues who have difficulty handling tasks in their daily lives. Such persons could benefit significantly from an active movement assistance device. This paper presents the design of a lower-limb exosuit designed to [...] Read more.
With ever-rising population comes a corresponding rise in people with mobility issues who have difficulty handling tasks in their daily lives. Such persons could benefit significantly from an active movement assistance device. This paper presents the design of a lower-limb exosuit designed to provide the wearer with useful gait assistance. While exoskeletons have existed for a while, soft exoskeletons or exosuits are relatively new. One challenge in the design of a gait-assistance device is the reduction of device weight. In order to facilitate this, the concept of kinematic synergies is implemented to reduce the number of actuators. In this prototype, the exosuit can actuate the hip, ankle, and knee of both legs using just one single motor, and a transmission system consisting of gears and clutches. The implementation of these synergies and their advantages are detailed in this paper, as well as preliminary tests to assess performance. This was performed by testing the exosuit worn by a subject on a treadmill while taking EMG readings and measuring cable tension produced. Significant reductions by up to 35% in certain muscle activations were observed, demonstrating the validity of this prototype for gait assistance. Full article
(This article belongs to the Special Issue Actuation Solutions for Wearable Robots)
Show Figures

Figure 1

13 pages, 3852 KiB  
Article
Investigating Inter-Day Variations in the Physical Effects of Exoskeletons: Requirements for Long-Term Biomechanical Studies
by Julia Riemer, Thomas Jaitner and Sascha Wischniewski
Appl. Sci. 2023, 13(11), 6483; https://doi.org/10.3390/app13116483 - 25 May 2023
Cited by 3 | Viewed by 1232
Abstract
Exoskeletons potentially reduce physical strain on workers. However, studies investigating the long-term effects of exoskeletons in the workplace are rare, not least because demonstrating physical long-term impacts faces several challenges, including the collection of reliable biomechanical data with the exoskeleton. By examining the [...] Read more.
Exoskeletons potentially reduce physical strain on workers. However, studies investigating the long-term effects of exoskeletons in the workplace are rare, not least because demonstrating physical long-term impacts faces several challenges, including the collection of reliable biomechanical data with the exoskeleton. By examining the potential impact of using an exoskeleton on inter-day measurements, we can provide valuable insights into the suitability of long-term studies. Therefore, this study aims to investigate the inter-day variation in muscle activity (MA) and kinematics of the trunk and legs during lifting, carrying, walking, and static bending with and without a passive back exoskeleton. The majority of results show no significant differences in inter-day variation. However, we found minor significant unilateral variation in knee and ankle kinematics when using the BSE during the lifting, carrying, and walking tasks, as well as in MA of M. biceps femoris when measuring without the BSE during the lifting tasks. Cohen’s d showed small effect sizes, ranging from −0.0045 ≤ d ≤ 0.384 for all significant p-values. While we classify the observed significant differences as minor, it is still crucial to consider day-to-day variations in long-term studies. However, by implementing high levels of standardization in study designs, including precise exoskeleton fitting, consistent assistance level, familiarization with measurement systems, and standardized working tasks, the impact of the exoskeleton on inter-day measurements can be minimized. Additional field studies are necessary to validate our findings in real work conditions. Full article
(This article belongs to the Special Issue Exoskeleton Robotic Systems)
Show Figures

Figure 1

10 pages, 1454 KiB  
Article
Human Factors Assessment of a Novel Pediatric Lower-Limb Exoskeleton
by Anthony C. Goo, Jason J. Wiebrecht, Douglas A. Wajda and Jerzy T. Sawicki
Robotics 2023, 12(1), 26; https://doi.org/10.3390/robotics12010026 - 9 Feb 2023
Cited by 3 | Viewed by 2907
Abstract
While several lower-limb exoskeletons have been designed for adult patients, there remains a lack of pediatric-oriented devices. This paper presented a human factor assessment of an adjustable pediatric lower-limb exoskeleton for childhood gait assistance. The hip and knee exoskeleton uses an adjustable frame [...] Read more.
While several lower-limb exoskeletons have been designed for adult patients, there remains a lack of pediatric-oriented devices. This paper presented a human factor assessment of an adjustable pediatric lower-limb exoskeleton for childhood gait assistance. The hip and knee exoskeleton uses an adjustable frame for compatibility with children 6–11 years old. This assessment evaluates the device’s comfort and ease of use through timed donning, doffing, and reconfiguration tasks. The able-bodied study participants donned the device in 6 min and 8 s, doffed it in 2 min and 29 s, and reconfigured it in 8 min and 23 s. The results of the timed trials suggest that the exoskeleton can be easily donned, doffed, and reconfigured to match the anthropometrics of pediatric users. A 6-min unpowered walking experiment was conducted while the child participant wore the exoskeletal device. Inspection of both the device and participant yielded no evidence of damage to either the device or wearer. Participant feedback on the device was positive with a system usability scale rating of 80/100. While minor improvements can be made to the adjustability indicators and padding placement, the results indicate the exoskeleton is suitable for further experimental evaluation through assistive control assessments. Full article
(This article belongs to the Special Issue Human Factors in Human–Robot Interaction)
Show Figures

Figure 1

11 pages, 4946 KiB  
Case Report
Postoperative Acute-Phase Gait Training Using Hybrid Assistive Limb Improves Gait Ataxia in a Patient with Intradural Spinal Cord Compression Due to Spinal Tumors
by Yuichiro Soma, Shigeki Kubota, Hideki Kadone, Yukiyo Shimizu, Yasushi Hada, Masao Koda, Yoshiyuki Sankai and Masashi Yamazaki
Medicina 2022, 58(12), 1825; https://doi.org/10.3390/medicina58121825 - 12 Dec 2022
Cited by 4 | Viewed by 2692
Abstract
Sensory ataxia due to posterior cord syndrome is a relevant, disabling condition in nontraumatic spinal cord dysfunction. Ataxic gait is a common symptom of sensory ataxia that restricts activities of daily living. A 70-year-old woman with severe sensory disturbance was diagnosed with intradural [...] Read more.
Sensory ataxia due to posterior cord syndrome is a relevant, disabling condition in nontraumatic spinal cord dysfunction. Ataxic gait is a common symptom of sensory ataxia that restricts activities of daily living. A 70-year-old woman with severe sensory disturbance was diagnosed with intradural extramedullary spinal cord tumors found in the thoracic spine region (T8). Surgical management of the tumors was performed. The patient received gait training 20 days after surgery (postoperative acute phase) using a hybrid assistive limb (HAL). HAL is a wearable exoskeleton cyborg that provides real-time assistance to an individual for walking and limb movements through actuators mounted on the bilateral hip and knee joints. Walking ability was assessed using the 10 m walking test, which included evaluating walking speed, step length, and cadence in every session. To evaluate the immediate effects of HAL training, walking speed and step length were measured before and after the training in each session. During the 10 m walking test, gait kinematics and lower muscle activity were recorded using a motion capture system and wireless surface electromyography before the first session and after completion of all HAL sessions. After the HAL training sessions, improvement in the patient’s gait performance was observed in the gait joint angles and muscle activity of the lower limb. After 10 training sessions, we observed the following changes from baseline: walking speed (from 0.16 m/s to 0.3 m/s), step length (from 0.19 m to 0.37 m), and cadence (from 50.9 steps/min to 49.1 steps/min). The average standard deviations of the knee (from right, 7.31; left, 6.75; to right, 2.93; p < 0.01, left, 2.63; p < 0.01) and ankle joints (from right, 6.98; left, 5.40; to right, 2.39; p < 0.01, left, 2.18; p < 0.01) were significantly decreased. Additionally, walking speed and step length improved immediately after completing all the HAL training sessions. This suggests that HAL gait training might be a suitable physical rehabilitation program for patients with sensory ataxia causing dysfunctional movement of the lower limb. Full article
Show Figures

Figure 1

17 pages, 13054 KiB  
Article
Be Careful What You Wish for: Cost Function Sensitivity in Predictive Simulations for Assistive Device Design
by Ali Nikoo and Thomas K. Uchida
Symmetry 2022, 14(12), 2534; https://doi.org/10.3390/sym14122534 - 30 Nov 2022
Cited by 6 | Viewed by 4303
Abstract
Software packages that use optimization to predict the motion of dynamic systems are powerful tools for studying human movement. These “predictive simulations” are gaining popularity in parameter optimization studies for designing assistive devices such as exoskeletons. The cost function is a critical component [...] Read more.
Software packages that use optimization to predict the motion of dynamic systems are powerful tools for studying human movement. These “predictive simulations” are gaining popularity in parameter optimization studies for designing assistive devices such as exoskeletons. The cost function is a critical component of the optimization problem and can dramatically affect the solution. Many cost functions have been proposed that are biologically inspired and that produce reasonable solutions, but which may lead to different conclusions in some contexts. We used OpenSim Moco to generate predictive simulations of human walking using several cost functions, each of which produced a reasonable trajectory of the human model. We then augmented the model with motors that generated hip flexion, knee flexion, or ankle plantarflexion torques, and repeated the predictive simulations to determine the optimal motor torques. The model was assumed to be planar and bilaterally symmetric to reduce computation time. Peak torques varied from 41.3 to 79.0 N·m for the hip flexion motors, from 48.0 to 94.2 N·m for the knee flexion motors, and from 42.6 to 79.8 N·m for the ankle plantarflexion motors, which could have important design consequences. This study highlights the importance of evaluating the robustness of results from predictive simulations. Full article
(This article belongs to the Special Issue Recent Advances in Mechanical and Biomedical Mechanical Engineering)
Show Figures

Figure 1

11 pages, 3498 KiB  
Article
Relationships between Body Weight Support and Gait Speed Parameters and Muscle Activity and Torque during Robot-Assisted Gait Training in Non-Neurological Adults: A Preliminary Investigation
by Haeun Park, Baekdong Cha, Chanhee Park, Jeha Ryu and Joshua (Sung) H. You
Appl. Sci. 2022, 12(22), 11326; https://doi.org/10.3390/app122211326 - 8 Nov 2022
Cited by 1 | Viewed by 1622
Abstract
Robot-assisted gait training (RAGT) is a promising therapeutic vehicle to maximize active participation and enhance functional neuroplasticity in patients with central nervous system pathology by adequately adjusting gait speed, body weight support (BWS) level, and impedance provided by the exoskeleton. The aim of [...] Read more.
Robot-assisted gait training (RAGT) is a promising therapeutic vehicle to maximize active participation and enhance functional neuroplasticity in patients with central nervous system pathology by adequately adjusting gait speed, body weight support (BWS) level, and impedance provided by the exoskeleton. The aim of the present study was to determine the relationship between RAGT training parameters (BWS and speed) and electromyography (EMG) muscle activity torques in the knee and hip joint during RAGT. To analyze the correlation between the joint torques measured in the Walkbot gait rehabilitation system and the EMG signal of the lower limbs (vastus lateralis oblique, biceps femoris, tibialis anterior, and gastrocnemius) and understand the real-time state of the lower limb an experiment involving 20 subjects was conducted. The EMG–torque relationship was evaluated in a general rehabilitation training setting to overcome the limitations of in vivo settings. Pearson correlation coefficient analysis was performed at p < 0.05. Moderate relationships between biceps femoris activation data and hip and knee torques were statistically significant, ranging from r = 0.412 to −0.590, p < 0.05). Importantly, inverse relationships existed between hip torques and vastus lateralis oblique, biceps femoris, and tibialis anterior activation, respectively. The present results demonstrated the association between EMG locomotor control patterns and torque generation in the hip and knee joints during RAGT-treadmill under the different BWS and walking speed settings while adjusting the impedance mode parameters in non-neurological adults. Additionally, the EMG locomotor control patterns, concurrent torque generation in the hip and knee joints, and application of different BWS and walking speed parameters in the RAGT were linked to the gait speed and BWS. The outcomes also showed that the amount of BWS supplied had an impact on the effects of treadmill speed on muscle activity and temporal step control. It is essential to adjust RAGT parameters precisely in order to maximize training session efficiency and quality. The results of this study nevertheless call for more investigation into the relationship between muscle activity and torque outcomes in diseased populations with gait impairment. Full article
Show Figures

Figure 1

18 pages, 19534 KiB  
Article
Biomechanical Effects of Adding an Ankle Soft Actuation in a Unilateral Exoskeleton
by Sophia Otálora, Felipe Ballen-Moreno, Luis Arciniegas-Mayag, Carlos A. Cifuentes and Marcela Múnera
Biosensors 2022, 12(10), 873; https://doi.org/10.3390/bios12100873 - 14 Oct 2022
Cited by 3 | Viewed by 2812
Abstract
Stroke disease leads to a partial or complete disability affecting muscle strength and functional mobility. Early rehabilitation sessions might induce neuroplasticity and restore the affected function or structure of the patients. Robotic rehabilitation minimizes the burden on therapists by providing repetitive and regularly [...] Read more.
Stroke disease leads to a partial or complete disability affecting muscle strength and functional mobility. Early rehabilitation sessions might induce neuroplasticity and restore the affected function or structure of the patients. Robotic rehabilitation minimizes the burden on therapists by providing repetitive and regularly monitored therapies. Commercial exoskeletons have been found to assist hip and knee motion. For instance, unilateral exoskeletons have the potential to become an effective training system for patients with hemiparesis. However, these robotic devices leave the ankle joint unassisted, essential in gait for body propulsion and weight-bearing. This article evaluates the effects of the robotic ankle orthosis T-FLEX during cooperative assistance with the AGoRA unilateral lower-limb exoskeleton (hip and knee actuation). This study involves nine subjects, measuring muscle activity and gait parameters such as stance and swing times. The results showed a reduction in muscle activity in the Biceps Femoris of 50%, Lateral Gastrocnemius of 59% and Tibialis Anterior of 35% when adding T-FLEX to the AGoRA unilateral lower-limb exoskeleton. No differences were found in gait parameters. Nevertheless, stability is preserved when comparing the two legs. Future works should focus on evaluating the devices in ground tests in healthy subjects and pathological patients. Full article
(This article belongs to the Special Issue Biosensors in Rehabilitation and Assistance Robotics)
Show Figures

Figure 1

Back to TopTop