Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (235)

Search Parameters:
Keywords = laser beam welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 76562 KiB  
Review
Atmosphere Effects in Laser Powder Bed Fusion: A Review
by Ben Brown, Cody Lough, Davis Wilson, Joseph Newkirk and Frank Liou
Materials 2024, 17(22), 5549; https://doi.org/10.3390/ma17225549 - 13 Nov 2024
Viewed by 330
Abstract
The use of components fabricated by laser powder bed fusion (LPBF) requires the development of processing parameters that can produce high-quality material. Manipulating the most commonly identified critical build parameters (e.g., laser power, laser scan speed, and layer thickness) on LPBF equipment can [...] Read more.
The use of components fabricated by laser powder bed fusion (LPBF) requires the development of processing parameters that can produce high-quality material. Manipulating the most commonly identified critical build parameters (e.g., laser power, laser scan speed, and layer thickness) on LPBF equipment can generate acceptable parts for established materials and moderately intricate part geometries. The need to fabricate increasingly complex parts from unique materials drives the limited research into LPBF process control using underutilized parameters, such as atmosphere composition and pressure. As presented in this review, manipulating atmosphere composition and pressure in laser beam welding has been shown to expand processing windows and produce higher-quality welds. The similarities between laser beam welding and laser-based AM processes suggest that this atmosphere control research could be effectively adapted for LPBF, an area that has not been widely explored. Tailoring this research for LPBF has significant potential to reveal novel processing regimes. This review presents the current state of the art in atmosphere research for laser beam welding and LPBF, with a focus on studies exploring cover gas composition and pressure, and concludes with an outlook on future LPBF atmosphere control systems. Full article
(This article belongs to the Special Issue Advanced Materials: Process, Properties, and Applications)
Show Figures

Figure 1

21 pages, 13729 KiB  
Review
Numerical Simulation of Fatigue Crack Growth and Fracture in Welded Joints Using XFEM—A Review of Case Studies
by Aleksandar Sedmak, Aleksandar Grbović, Nenad Gubeljak, Simon Sedmak and Nikola Budimir
Materials 2024, 17(22), 5531; https://doi.org/10.3390/ma17225531 - 13 Nov 2024
Viewed by 237
Abstract
Numerical simulation of fatigue crack growth in welded joints is not well represented in the literature, especially from the point of view of material heterogeneity in a welded joint. Thus, several case studies are presented here, including some focusing on fracture, presented by [...] Read more.
Numerical simulation of fatigue crack growth in welded joints is not well represented in the literature, especially from the point of view of material heterogeneity in a welded joint. Thus, several case studies are presented here, including some focusing on fracture, presented by two case studies of mismatched high-strength low-alloyed (HSLA) steel welded joints, with cracks in the heat affected zone (HAZ) or in weld metal (WM). For fatigue crack growth, the extended finite element method FEM (XFEM) was used, built in ABAQUS and ANSYS R19.2, as presented by four case studies, two of them without modelling different properties of the welded joint (WJ). In the first one, fatigue crack growth (FCG) in integral (welded) wing spar was simulated by XFEM to show that its path is partly along welded joints and provides a significantly longer fatigue life than riveted spars of the same geometry. In the second one, an integral skin-stringer panel, produced by means of laser beam welding (LBW), was analysed by XFEM in its usual form with stringers and additional welded clips. It was shown that the effect of the welded joint is not significant. In the remaining two papers, different zones in welded joints (base metal—BM, WM, and HAZ) were represented by different coefficients of the Paris law to simulate different resistances to FCG in the two cases; one welded joint was made of high-strength low-alloyed steel (P460NL1) and the other one of armour steel (Protac 500). Since neither ABAQUS nor ANSYS provide an option for defining different fatigue properties in different zones of the WJ, an innovative procedure was introduced and applied to simulate fatigue crack growth through different zones of the WJ and evaluate fatigue life more precisely than if the WJ is treated as a homogeneous material. Full article
Show Figures

Figure 1

18 pages, 6075 KiB  
Article
Analysis and Optimization of Laser Beam Welding Parameters for Aluminium Composite (Al-Zn-Cu Alloy) by Grey Relational Optimization
by Nitish Kumar Singh, Balaguru Sethuraman and Manoj Gupta
Micro 2024, 4(4), 641-658; https://doi.org/10.3390/micro4040039 - 31 Oct 2024
Viewed by 483
Abstract
Aluminium and its composites are widely used in production to enhance the strength of lightweight objects. In this study, an AA7075/SiC composite was fabricated using a stir casting route. Multi-objective optimization and finite element analysis were performed with various process parameters on a [...] Read more.
Aluminium and its composites are widely used in production to enhance the strength of lightweight objects. In this study, an AA7075/SiC composite was fabricated using a stir casting route. Multi-objective optimization and finite element analysis were performed with various process parameters on a manufactured aluminium composite (AA7075 + SiC) undergoing a laser beam welding process. Four welding parameters, i.e., pulse frequency, power, welding speed (transverse), and wire size were taken for laser welding as per the L-9 orthogonal array for experimental study. Tensile strength, deflection, temperature distribution, Rockwell hardness (fusion zone), and Rockwell hardness (heat affected zone) were taken as output parameters after welding. The standard deviation objective weighting–grey relational optimization method optimized the process parameter. ANSYS APDL 23 software was utilized to simulate the entire laser welding method with a cylindrical heat source to predict the temperature distribution in the butt-welded plates. This software uses finite element analysis and gives a deviation of only 5.85% for temperature distribution with experimental results. This study helps to understand the effect of various parameters on the welding strength of the aluminium composite. Full article
Show Figures

Figure 1

16 pages, 4739 KiB  
Review
A Review of Welding Process for UNS S32750 Super Duplex Stainless Steel
by Tianqing Li, Kai Wang and Yucheng Lei
Materials 2024, 17(21), 5215; https://doi.org/10.3390/ma17215215 - 26 Oct 2024
Viewed by 560
Abstract
Super duplex stainless steel UNS S32750 is widely used in marine industries, pulp and paper industries, and the offshore oil and gas industry. Welding manufacturing is one of the main manufacturing processes to make material into products in the above fields. It is [...] Read more.
Super duplex stainless steel UNS S32750 is widely used in marine industries, pulp and paper industries, and the offshore oil and gas industry. Welding manufacturing is one of the main manufacturing processes to make material into products in the above fields. It is of great importance to obtain high-quality welded UNS S32750 joints. The austenite content and ferrite content in UNS S32750 play an important role in determining UNS S32750 properties such as mechanical properties and corrosion resistance. However, the phase proportion between the ferrite phase and austenite phase in the welded joint will be changed during welding. Lots of research has been done on how to weld UNS S32750 and how to obtain welded joints with good quality. In this work, the recent studies on welding UNS S32750 are categorized based on the welding process. The welding process for UNS S32750 will be classified as gas tungsten arc welding, submerged arc welding, plasma arc welding, laser beam welding, electron beam welding, friction stir welding, and laser-MIG hybrid welding, and each will be reviewed in turn. The microstructure and properties of the joints welded using different welding processes will also be discussed. The critical challenge of balancing the two phases of austenite and ferrite in UNS S32750 welded joints will be discussed. This review about the welding process for UNS S32750 will provide people in the welding field with some advice on welding UNS S32750 super duplex stainless steel. Full article
(This article belongs to the Special Issue Advances in Welding Process and Materials (2nd Edition))
Show Figures

Figure 1

17 pages, 11153 KiB  
Article
Microstructural and Mechanical Characterization of the Laser Beam Welded SAF 2507 Super-Duplex Stainless Steel
by Beáta Šimeková, Mária Dománková, Ingrid Kovaříková, Pavel Kovačócy, Maroš Martinkovič, Michal Šimek and Luke Ciuła
Metals 2024, 14(10), 1184; https://doi.org/10.3390/met14101184 - 17 Oct 2024
Viewed by 765
Abstract
The influence of laser beam welding parameters (power, welding rate, focusing, head oscillation, shielding gas) on the microstructure, mechanical properties and corrosion resistance of the super-duplex stainless steel SAF 2507 was studied in this paper. The presented results clearly report the effects of [...] Read more.
The influence of laser beam welding parameters (power, welding rate, focusing, head oscillation, shielding gas) on the microstructure, mechanical properties and corrosion resistance of the super-duplex stainless steel SAF 2507 was studied in this paper. The presented results clearly report the effects of welding parameter changes on the character of the steel’s microstructure. The presence of secondary phase M2N in weld metals has an important influence on their mechanical properties. Optimal mechanical properties, an acceptable ferrite/austenite ratio, and the minimum content of M2N nitride required in the weld metal were acquired in the case the following application: 1100 W power, welding speed of 10 mm/s, focusing of 4 mm, and pure nitrogen shielding gas (20 L/min). Full article
(This article belongs to the Special Issue Design, Processing and Characterization of Metals and Alloys)
Show Figures

Figure 1

25 pages, 12866 KiB  
Review
Advances in and Future Perspectives on High-Power Ceramic Lasers
by Vinay Rastogi and Shivanand Chaurasia
Photonics 2024, 11(10), 942; https://doi.org/10.3390/photonics11100942 - 7 Oct 2024
Viewed by 596
Abstract
Advancements in laser glass compositions and manufacturing techniques has allowed the development of a new category of high-energy and high-power laser systems which are being used in various applications, such as for fundamental research, material processing and inertial confinement fusion (ICF) technologies research. [...] Read more.
Advancements in laser glass compositions and manufacturing techniques has allowed the development of a new category of high-energy and high-power laser systems which are being used in various applications, such as for fundamental research, material processing and inertial confinement fusion (ICF) technologies research. A ceramic laser is a remarkable revolution in solid state lasers. It exhibits crystalline properties, high yields, better thermal conductivity, a uniformly broadened emission cross-section, and a higher mechanical constant. Polycrystalline ceramic lasers combine the properties of glasses and crystals, which offer the unique advantages of high thermal stability, excellent optical transparency, and the ability to incorporate active laser ions homogeneously. They are less expensive and have a similar fabrication process to glass lasers. Recent developments in these classes of lasers have led to improvements in their efficiency, beam quality, and wavelength versatility, making them suitable for a broad range of applications, such as scientific research requiring ultra-fast laser pulses, medical procedures like laser surgery and high-precision cutting and welding in industrial manufacturing. The future of ceramic lasers looks promising, with ongoing research focused on enhancing their performance, developing new doping materials and expanding their functional wavelengths. The ongoing progress in high-power ceramic lasers is continuously expanding the limits of laser technology, therefore allowing the development of more powerful and efficient systems for a wide range of advanced and complex applications. In this paper, we review the advances, limitations and future perspectives of ceramic lasers. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in Solid-State Lasers)
Show Figures

Figure 1

25 pages, 7905 KiB  
Review
Review and Analysis of Modern Laser Beam Welding Processes
by Andrzej Klimpel
Materials 2024, 17(18), 4657; https://doi.org/10.3390/ma17184657 - 23 Sep 2024
Viewed by 753
Abstract
Laser beam welding is the most modern and promising process for the automatic or robotized welding of structures of the highest Execution Class, EXC3-4, which are made of a variety of weldable structural materials, mainly steel, titanium, and nickel alloys, but also a [...] Read more.
Laser beam welding is the most modern and promising process for the automatic or robotized welding of structures of the highest Execution Class, EXC3-4, which are made of a variety of weldable structural materials, mainly steel, titanium, and nickel alloys, but also a limited range of aluminum, magnesium, and copper alloys, reactive materials, and even thermoplastics. This paper presents a systematic review and analysis of the author’s research results, research articles, industrial catalogs, technical notes, etc., regarding laser beam welding (LBW) and laser hybrid welding (LHW) processes. Examples of industrial applications of the melt-in-mode and keyhole-mode laser welding techniques for low-alloy and high-alloy steel joints are analyzed. The influence of basic LBW and LHW parameters on the quality of welded joints proves that the laser beam power, welding speed, and Gas Metal Arc (GMA) welding current firmly decide the quality of welded joints. A brief review of the artificial intelligence (AI)-supported online quality-monitoring systems for LBW and LHW processes indicates the decisive influence on the quality control of welded joints. Full article
Show Figures

Figure 1

17 pages, 10684 KiB  
Article
Alternatives to Reduce Hot Cracking Susceptibility of IN718 Casting Alloy Laser Beam Welds with a Mushroom Shape
by Leire García-Sesma, Pedro Álvarez, Eider Gorostegui-Colinas, I. Huarte and Fernando Santos
Metals 2024, 14(9), 1067; https://doi.org/10.3390/met14091067 - 18 Sep 2024
Viewed by 761
Abstract
Reducing hot cracking is essential for ensuring seamless production of nickel superalloys, which are extensively used in welded structures for aircraft engines. The prevalence of hot cracking in precipitation-strengthened alloy 718 is primarily governed by two factors: firstly, the chemical composition and the [...] Read more.
Reducing hot cracking is essential for ensuring seamless production of nickel superalloys, which are extensively used in welded structures for aircraft engines. The prevalence of hot cracking in precipitation-strengthened alloy 718 is primarily governed by two factors: firstly, the chemical composition and the coarse microstructure formed during solidification, and secondly, the activation of hot cracking mechanisms, which is particularly critical in mushroom-shaped welding morphologies. In this study, different nickel-based superalloys welded using laser beam welding (LBW), more specifically bead on plate welding (BoP), specimens are compared. The cracking susceptibility of both wrought and two investment casting 718 alloys with tailored chemical compositions is examined through the application of both continuous and pulsed LBW. Additionally, various pre-weld treatments, including with and without Pre-HIP (hot isostatic pressing), are analyzed. The influences of chemical composition, LBW parameters and pre- and post-welding treatments on both internal and external cracks determined by conventional and advanced non-destructive tests are studied. A clear reduction of hot cracking susceptibility and overall welding quality improvement was observed in a tailored 718 alloy with relatively high Ni (55.6% wt) and Co (1.11% wt) contents. Full article
Show Figures

Figure 1

25 pages, 14228 KiB  
Review
A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels
by Fabio Giudice, Severino Missori, Cristina Scolaro and Andrea Sili
Materials 2024, 17(17), 4420; https://doi.org/10.3390/ma17174420 - 8 Sep 2024
Viewed by 1105
Abstract
Carbon and low-alloy steel plates clad with stainless steel or other metals are a good choice to meet the demand for cost-effective materials to be used in many corrosive environments. Numerous technical solutions are developed for the production of clad steel plates, as [...] Read more.
Carbon and low-alloy steel plates clad with stainless steel or other metals are a good choice to meet the demand for cost-effective materials to be used in many corrosive environments. Numerous technical solutions are developed for the production of clad steel plates, as well as for their joining by fusion welding. For thick plates, a careful strategy is required in carrying out the multiple passes and in choosing the most suitable filler metals, having to take into account the composition of the base metal and the cladding layer. The specificity of the different processes and materials involved requires an adequate approach in the study of the metallurgical characteristics of clad steel, thus arousing the interest of researchers. Focusing mainly on ferritic steel plates clad with austenitic steel, this article aims to review the scientific literature of recent years which deals with both the production and the fusion welding processes. The metallurgical issues concerning the interfaces and the effects of microstructural characteristics on mechanical behaviour and corrosion resistance will be addressed; in particular, the effects on the fusion and thermally affected zones that form during the fusion welding and weld overlay processes will be analysed and discussed. Full article
Show Figures

Figure 1

11 pages, 4589 KiB  
Communication
Effect of Laser Beam Overlap Rate on Mechanical Properties of Aluminum Alloy Arc Welding with Laser Peening
by Jae-Ook Jeon, Ye-Sol Yun, Moo-Keun Song, Pyeong-Soo Kim and Jong-Do Kim
Metals 2024, 14(9), 1021; https://doi.org/10.3390/met14091021 - 6 Sep 2024
Viewed by 606
Abstract
This study aims to investigate the effect of the laser beam overlap rate on the mechanical properties of Al3003 aluminum alloy arc weldment with laser peening. To determine the optimal laser beam overlap rate for laser peening of the weldment, peening experiments were [...] Read more.
This study aims to investigate the effect of the laser beam overlap rate on the mechanical properties of Al3003 aluminum alloy arc weldment with laser peening. To determine the optimal laser beam overlap rate for laser peening of the weldment, peening experiments were conducted on bead-welded and butt-welded specimens with varying overlap rates, and the effect of the beam overlap rate was analyzed. As the overlap rate increased, the residual stress changed from tensile to compressive, with the highest level of compressive residual stress at the overlap rate of 75%. Laser peening was performed on the aluminum weldment of the prototype, applying the optimal peening conditions identified earlier. As a result of comparing the residual stress, hardness, and tensile strength of the weld before and after laser peening, it was found that the tensile residual stress in the weldment was improved to a compressive residual stress of about −50 MPa or more. The hardness and tensile strength of the weld increased after peening, and the mechanical properties were also improved. Full article
Show Figures

Figure 1

18 pages, 26175 KiB  
Article
Influence of Scanning Paths on the Weld Pool Behavior, Microstructure, and Mechanical Property of AA2060 Al-Li Alloy Joints by Laser Beam Oscillation Welding
by Yanbo Song, Ying Liang, Hongbing Liu, Luchan Lin, Yanfeng Gao, Hua Zhang and Jin Yang
Coatings 2024, 14(8), 1065; https://doi.org/10.3390/coatings14081065 - 20 Aug 2024
Viewed by 825
Abstract
In this paper, the laser beam oscillation welding (LBOW) was utilized to weld a 2 mm thick AA2060 aluminum-lithium (Al-Li) alloy plate. The weld pool behaviors under three scanning paths (pure laser, O-shaped, and ∞-shaped) were investigated. It was observed that the O-shaped [...] Read more.
In this paper, the laser beam oscillation welding (LBOW) was utilized to weld a 2 mm thick AA2060 aluminum-lithium (Al-Li) alloy plate. The weld pool behaviors under three scanning paths (pure laser, O-shaped, and ∞-shaped) were investigated. It was observed that the O-shaped scanning path resulted in the most stable welding process. In addition, the weld macroscopic formation, microstructure, and mechanical property between different paths were studied. The results showed that pure laser and ∞-shaped patterns produced welding defects such as spatters and collapse during the welding process, while the O-shaped pattern exhibited good macroscopic formation at varying laser powers. The O-shaped pattern promoted the finest grain in the weld center and reduced the heat input during the welding process. The equiaxed grain zone (EQZ) width of the O-shaped pattern is the smallest compared to the other two patterns at high laser power. In addition to this, the O-shaped pattern could effectively reduce the porosity in the weld. When an O-shaped scanning pattern was adopted at the ideal laser power parameter of 3000 W, the microhardness of the weld center increased by approximately 5.6% compared to pure laser mode. Full article
Show Figures

Figure 1

19 pages, 12138 KiB  
Article
Strength and Fracture Toughness of TIG- and Laser-Welded Joints of Low Carbon Ferritic Steels
by Tadeusz Pała and Wiktor Wciślik
Materials 2024, 17(16), 3956; https://doi.org/10.3390/ma17163956 - 9 Aug 2024
Viewed by 920
Abstract
This paper presents the results of experimental testing of joints welded using conventional TIG and laser methods. The welded components were sheets of the low-carbon steels 13CrMo4-5 and 16Mo3. Welded joints were made using different levels of linear welding energy. In the case [...] Read more.
This paper presents the results of experimental testing of joints welded using conventional TIG and laser methods. The welded components were sheets of the low-carbon steels 13CrMo4-5 and 16Mo3. Welded joints were made using different levels of linear welding energy. In the case of laser welding, a bifocal beam with longitudinal positioning of the focal lengths in relation to the welding direction was used. Experimental tests on welded joints included a bending test and determination of hardness distribution, mechanical properties, and fracture toughness, as well as microstructural research in the material of the various joint zones. Based on the determined strength characteristics, the true stress–strain relationships were defined, and a numerical model of the laser joints was developed in Abaqus 6.12-3. The modelled joint was subjected to loading to determine the most stressed areas of the joints. The numerical results were compared with those obtained using GOM’s Aramis 3D 5M digital image correlation system. The system used made it possible to record displacements on the surface of the analysed joints in real time. Good agreement was obtained between the strain fields calculated numerically and those recorded using the Aramis 3D 5M video system. The numerical calculations provided information on the strains and stresses occurring inside the analysed joint during loading. It was found that the welded joints were characterised by increased hardness and high strength properties in relation to the base material. The bending test of the laser-welded joints gave a positive result—no cracks were observed on the face or root of the weld. The fracture toughness of the joint zones is slightly lower in relation to that of the base material, but no brittle fracture was observed. Full article
(This article belongs to the Special Issue Assessment of the Strength of Materials and Structure Elements)
Show Figures

Figure 1

12 pages, 3883 KiB  
Article
A Case Study of a Laser Beam Welding Model for the Welding of Inconel 718 Sheets of a Dissimilar Thickness
by Oihane Murua, Jon Iñaki Arrizubieta, Aitzol Lamikiz and Heinz Ingo Schneider
Metals 2024, 14(7), 829; https://doi.org/10.3390/met14070829 - 19 Jul 2024
Viewed by 1018
Abstract
Laser beam welding (LBW) is a highly demanded process for premium-quality joints in aeronautic, energy, or industrial sectors, where flexibility and low-heat-affected zones are required. One of the main applications of LBW in the near future is expected to be the welding of [...] Read more.
Laser beam welding (LBW) is a highly demanded process for premium-quality joints in aeronautic, energy, or industrial sectors, where flexibility and low-heat-affected zones are required. One of the main applications of LBW in the near future is expected to be the welding of new turbine engine components, which are typically made of Nickel-based superalloys. However, parameter setup is time- and resource-consuming, where experiment-based methods are typically employed. Therefore, the process development is far from an efficient resource utilization. In the present work, an LBW numerical model is developed and experimentally validated through a machine-integrated monitoring system. The LBW model is based on solving the heat transfer problem produced by the laser and provides the resulting temperature field, as well as the weld bead dimensions. The model includes a variable heat source that automatically adapts to the welding regime, conduction, or keyhole. For the model validation, two Inconel 718 sheets of different thicknesses are butt-welded and an error of around 10% is obtained, which ensures the validity of the model. Full article
(This article belongs to the Special Issue Numerical Simulation of Metals Welding Process—2nd Edition)
Show Figures

Figure 1

15 pages, 11104 KiB  
Article
FEM-Based Conductive Heat Transfer Analytical Description of Solidification Rate and Temperature Gradient during Lateral Laser Beam Oscillation Welding of Aluminum Alloy
by Jason Cheon, Cheolhee Kim, Sanghoon Kang and Minjung Kang
Materials 2024, 17(13), 3248; https://doi.org/10.3390/ma17133248 - 2 Jul 2024
Viewed by 931
Abstract
This study investigates the feasibility of utilizing the finite element method (FEM)-based conductive heat transfer (CHT) analysis simulation to determine temperature gradients and solidification rates at the solid–liquid interface during laser beam oscillation welding. By comparing experimental observations with FEM-based CHT analysis, the [...] Read more.
This study investigates the feasibility of utilizing the finite element method (FEM)-based conductive heat transfer (CHT) analysis simulation to determine temperature gradients and solidification rates at the solid–liquid interface during laser beam oscillation welding. By comparing experimental observations with FEM-based CHT analysis, the underlying microstructural evolution and grain formation during welding were examined. FEM-based CHT enables the calculation of temperature gradients (G) and solidification rates (R), offering insights into the formation of equiaxed structures, which are crucial for suppressing hot cracking. Columnar-to-equiaxed structure transition thresholds, such as G/R and G3/R, accurately predict the emergence of fully equiaxed grain structures, validated by electron backscatter diffraction. This research provides valuable insights into temperature gradients and solidification rates in oscillation welding, guiding process design for achieving refined equiaxed structures and minimizing hot cracks. Full article
Show Figures

Figure 1

9 pages, 4839 KiB  
Communication
Dissimilar Welding of Thick Ferritic/Austenitic Steels Plates Using Two Simultaneous Laser Beams in a Single Pass
by Fabio Giudice, Severino Missori and Andrea Sili
J. Manuf. Mater. Process. 2024, 8(4), 134; https://doi.org/10.3390/jmmp8040134 - 27 Jun 2024
Cited by 1 | Viewed by 796
Abstract
Dissimilar welds between ferritic and austenitic stainless steels are widely used in industrial applications. Taking into account the issues inherent to arc welding, such as the high heat input and the need to carry out multiple passes in the case of thick plates, [...] Read more.
Dissimilar welds between ferritic and austenitic stainless steels are widely used in industrial applications. Taking into account the issues inherent to arc welding, such as the high heat input and the need to carry out multiple passes in the case of thick plates, a procedure with two simultaneous laser beams (working in a single pass) and consumable inserts as filler metal has been considered. Particular attention was paid to the choice of the filler metal (composition and amount), as well as welding parameters, which are crucial to obtain the right dilution necessary for a correct chemical composition in the weld zone. The first experimental investigations confirmed the achievement of a good weldability of the dissimilar pair ASTM A387 ferritic/AISI 304L austenitic steel, having ascertained that the microstructure of the weld zone is austenitic with a little amount of residual primary ferrite, which is the best condition to minimize the risk of hot cracking. Full article
Show Figures

Figure 1

Back to TopTop