Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (316)

Search Parameters:
Keywords = micro pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5260 KiB  
Article
Lubrication, Friction and Wear Characteristics of Textured Surface Slipper Pairs in Axial Piston Pumps
by Bin Bian, Zhiqiang Zhang, Lin Li, Qun Chao, Hao Yuan and Zhiqi Liu
Lubricants 2024, 12(11), 370; https://doi.org/10.3390/lubricants12110370 - 25 Oct 2024
Viewed by 543
Abstract
The study investigates the impact of textured surface parameters and pump operating parameters on the friction performance of slipper pairs in axial piston pumps. The orthogonal experimental scheme was developed, and the influence of several factors was explored, such as rotational speed, area [...] Read more.
The study investigates the impact of textured surface parameters and pump operating parameters on the friction performance of slipper pairs in axial piston pumps. The orthogonal experimental scheme was developed, and the influence of several factors was explored, such as rotational speed, area ratio, micro-pit shape, diameter, depth-to-diameter ratio and film thickness. Optimal dimension combinations of the micro-pit were identified by numerical simulation and standard pin–disk friction experiment. In the pin–disk friction pair test, the friction coefficient of the textured surface compared to the smooth surface showed a maximum average friction reduction rate of 26.974%. Under various pump pressures (4, 8, 12 MPa) and pump displacements (10, 20, 35 L/min), the friction reduction rates of the textured surface slipper pairs (texture diameter 500 µm, depth 250 µm, area ratio 20%) ranged from 0.78% to 18.13%. The study underscores the importance of surface texture in enhancing the operational efficiency and reliability of axial piston pumps, offering valuable insights for the design and maintenance of hydraulic pumps. Full article
Show Figures

Figure 1

16 pages, 5381 KiB  
Article
Absorber-Free Mode-Locking of a Hybrid Integrated Diode Laser at Sub-GHz Repetition Rate
by Anzal Memon, Albert van Rees, Jesse Mak, Youwen Fan, Peter J. M. van der Slot, Hubertus M. J. Bastiaens and Klaus-Jochen Boller
Photonics 2024, 11(11), 1002; https://doi.org/10.3390/photonics11111002 - 24 Oct 2024
Viewed by 680
Abstract
We demonstrate absorber-free passive and hybrid mode-locking at sub-GHz repetition rates, using a hybrid integrated extended cavity diode laser operating near 1550 nm. The laser is based on InP as a gain medium and a Si3N4 waveguide feedback circuit. Absorber-free [...] Read more.
We demonstrate absorber-free passive and hybrid mode-locking at sub-GHz repetition rates, using a hybrid integrated extended cavity diode laser operating near 1550 nm. The laser is based on InP as a gain medium and a Si3N4 waveguide feedback circuit. Absorber-free Fourier domain mode-locking with ≈15 comb lines at around 0.2 mW total power is achieved with repetition rates around 500 MHz, using three highly frequency-selective micro-ring resonators that extend the on-chip cavity length to 0.6 m. To stabilize the repetition rate, hybrid mode-locking is demonstrated by weak RF modulation of the diode current. The RF injection reduces the Lorentzian linewidth component from 8.9 kHz to a detection-limited value of around 300 mHz. To measure the locking range of the repetition rate, the injected RF frequency is tuned with regard to the passive mode-locking frequency and the injected RF power is varied. The locking range increases approximately as a square-root function of the injected RF power. At 1 mW injection, a wide locking range of about 80 MHz is obtained. We also observe the laser maintaining stable mode-locking when the DC diode pump current is increased from 40 mA to 190 mA, provided that the cavity length is maintained constant with thermo-refractive tuning. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 3885 KiB  
Article
Simulation and Experimental Study on Heat Transfer Performance of Bionic Structure-Based Battery Liquid Cooling Plate
by Zhizhong Wang, Dinghong Liu, Zhaoyang Li, Xin Qi and Chaoyi Wan
World Electr. Veh. J. 2024, 15(10), 464; https://doi.org/10.3390/wevj15100464 - 12 Oct 2024
Viewed by 589
Abstract
This study presents a bionic structure-based liquid cooling plate designed to address the heat generation characteristics of prismatic lithium-ion batteries. The size of the lithium-ion battery is 148 mm × 26 mm × 97 mm, the positive pole size is 20 mm × [...] Read more.
This study presents a bionic structure-based liquid cooling plate designed to address the heat generation characteristics of prismatic lithium-ion batteries. The size of the lithium-ion battery is 148 mm × 26 mm × 97 mm, the positive pole size is 20 mm × 20 mm × 3 mm, and the negative pole size is 22 mm × 20 mm × 3 mm. Experimental testing of the Li-ion battery’s heat generation model parameters, in conjunction with bionic structure and micro-channel features, has led to the development of this innovative cooling system. The traditional bionic liquid cooling plate’s structure is often singular; however, the flow path of the liquid cooling plate designed in this paper is based on the combination of the distribution of human blood vessel branches and the structure of insect wing veins. The external dimension of the liquid cooling plate is 152 mm × 100 mm × 6 mm (length × width × height). Utilizing numerical simulation and thermodynamic principles, we analyzed the heat transfer efficacy of the bionic liquid cooling module for power batteries. Specifically, we investigated the impact of varying coolant flow rates and the contact radius between flow channels on the thermal performance of the bionic battery modules. Our findings indicate that a liquid flow rate of 0.6 m/s achieves a stable maximum surface temperature and temperature differential across the bionic battery liquid cooling module, with a relatively low overall system power consumption, suggesting room for further enhancement of heat transfer performance. By augmenting the contact radius between flow channels, we observed an initial increase in the maximum surface temperature, temperature differential, and inlet–outlet pressure differential at a flow rate of 0.2 m/s. However, at flow rates equal to or exceeding 0.4 m/s, these parameters stabilized across different design Scenarios. Notably, the pump power consumption remained consistent across various scenarios and flow rates. This study’s outcomes offer valuable insights for the development of liquid-cooled battery thermal management systems that are energy-efficient and offer superior heat transfer capabilities. Full article
Show Figures

Figure 1

12 pages, 4888 KiB  
Article
Compact Partially End-Pumped Innoslab Laser Based on Micro-Cylindrical Lens Array Homogenizer
by Xinhui Sun, Xiaonan Zhao, Jinxin Chen, Yajun Wu, Yibin Fu, Gang Cheng, Xi Chen, Pan Liu, Linhao Shang, Guangqiang Fan, Huihui Gao, Yan Xiang and Tianshu Zhang
Photonics 2024, 11(10), 932; https://doi.org/10.3390/photonics11100932 - 1 Oct 2024
Viewed by 501
Abstract
We demonstrate a compact, partially end-pumping Innoslab laser based on a micro-cylindrical lens array homogenizer. A dimension of 12 × 0.4 mm2 flat-top pumping line with a Gaussian intensity distribution across the line was simulated by the ray tracing technique. The rate [...] Read more.
We demonstrate a compact, partially end-pumping Innoslab laser based on a micro-cylindrical lens array homogenizer. A dimension of 12 × 0.4 mm2 flat-top pumping line with a Gaussian intensity distribution across the line was simulated by the ray tracing technique. The rate equations considering the asymmetric transverse spatial distributions are theoretically developed. The simulation results are in good agreement with the experimental results. Preliminary data shows that for a pump power of 260 W, a maximum pulse energy of 15.7 mJ was obtained with a pulse width of 8.5 ns at a repetition frequency of 1 kHz. The beam quality M2 factors in the unstable and stable directions were 1.732 and 1.485, respectively. The technology has been successfully applied to temperature and humidity profiling lidar and ozone lidar and has been productized, yielding direct economic value. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

13 pages, 2707 KiB  
Article
Microscale Flow Control and Droplet Generation Using Arduino-Based Pneumatically-Controlled Microfluidic Device
by Woohyun Park, Se-woon Choe and Minseok Kim
Biosensors 2024, 14(10), 469; https://doi.org/10.3390/bios14100469 - 30 Sep 2024
Viewed by 745
Abstract
Microfluidics are crucial for managing small-volume analytical solutions for various applications, such as disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. The precise control of flow control devices can generate diverse flow patterns using pneumatic control with solenoid valves and [...] Read more.
Microfluidics are crucial for managing small-volume analytical solutions for various applications, such as disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. The precise control of flow control devices can generate diverse flow patterns using pneumatic control with solenoid valves and a microcontroller. This system enables the active modulation of the pneumatic pressure through Arduino programming of the solenoid valves connected to the pressure source. Additionally, the incorporation of solenoid valve sets allows for multichannel control, enabling simultaneous creation and manipulation of various microflows at a low cost. The proposed microfluidic flow controller facilitates accurate flow regulation, especially through periodic flow modulation beneficial for droplet generation and continuous production of microdroplets of different sizes. Overall, we expect the proposed microfluidic flow controller to drive innovative advancements in technology and medicine owing to its engineering precision and versatility. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

9 pages, 8090 KiB  
Article
Corrosion Failure Mechanism of 2507 Duplex Stainless Steel Circulation Pump Impeller
by Weihua Wang, Chengbao Hou, Jiaxing Li, Mingxiao Shi, Jiugong Chen and Gong Qian
Processes 2024, 12(9), 1897; https://doi.org/10.3390/pr12091897 - 4 Sep 2024
Viewed by 618
Abstract
The circulation pump in a distillation column is a core device in a material circulation system, and its stable operation is crucial for the production process. The impeller of the circulation pump is prone to failure due to long-term contact with corrosive media, [...] Read more.
The circulation pump in a distillation column is a core device in a material circulation system, and its stable operation is crucial for the production process. The impeller of the circulation pump is prone to failure due to long-term contact with corrosive media, and subjected to a large amount of material erosion, which severely challenges the safety control of the distillation reaction system. Focusing on the corrosion failure phenomenon of circulation pump impellers, the failure mechanism was studied by means of macroscopic inspection, chemical composition analysis, metallographic examination, scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). Results indicated that the corrosion of circulation pump impellers was the result of the combined effects of surface wear, cavitation, and halogen element corrosion. The medium in contact with the impeller contained chloride ions, fluoride ions, and solid particles. During circulation pump operation, a low-pressure zone formed at the inlet, generating numerous water vapor bubbles. These bubbles burst in the high-pressure zone, creating highly localized impact forces. Combined with the abrasive action of solid particles on the impeller surface, this led to the destruction of the passivation film and the formation of numerous small pits. These corrosion pits and the surrounding environment formed micro-galvanic corrosion cells with small anodes and large cathodes. Under the accelerated corrosion caused by fluoride and chloride ions, the corrosion process towards the inner wall of the impeller intensified, ultimately leading to impeller failure. This study clarified the corrosion failure mechanism and its root causes in the 2507 duplex stainless steel circulation pump impeller and proposes corresponding improvement recommendations, providing a scientific basis for preventing similar issues from occurring in the future. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 13226 KiB  
Article
Innovative Energy Sustainable Solutions for Urban Infrastructure: Implementing Micro-Pumped Hydro Storage in Singapore’s Multi-Level Carparks
by Chiang Liang Kok, Chee Kit Ho, Yit Yan Koh, Wan Xuan Tay and Tee Hui Teo
Appl. Sci. 2024, 14(17), 7531; https://doi.org/10.3390/app14177531 - 26 Aug 2024
Viewed by 861
Abstract
As part of the initiative to achieve Singapore’s Green Plan 2030, we propose to investigate the potential of utilizing micro-pumped hydroelectric energy storage (PHES) systems in multi-level carparks (MLCP: a stacked car park that has multiple levels, may be enclosed, and can be [...] Read more.
As part of the initiative to achieve Singapore’s Green Plan 2030, we propose to investigate the potential of utilizing micro-pumped hydroelectric energy storage (PHES) systems in multi-level carparks (MLCP: a stacked car park that has multiple levels, may be enclosed, and can be an independent building) as a more environmentally friendly alternative to traditional battery storage for a surplus of solar energy. This study focuses on an MLCP with a surface area of 3311 m2 and a height of 12 m, considering design constraints such as a floor load capacity of 5 kN/m2 and the requirement for a consistent energy discharge over a 12 h period. The research identifies a Turgo turbine as the optimal choice, providing a power output of 2.9 kW at a flow rate of 0.03 m3/s with an efficiency of 85%. This system, capable of storing 1655.5 m3 of water, can supply power to 289 light bulbs (each consuming 10 W) for 15.3 h, thus having the capacity to support up to three MLCPs. These results underscore the environmental advantages of PHES over conventional batteries, highlighting its potential for integration with solar panels to decrease carbon emissions. This approach not only aligns with Singapore’s green initiatives but also promotes the development of a more sustainable energy infrastructure. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

16 pages, 5342 KiB  
Article
Puerarin Alleviates Blood Pressure via Inhibition of ROS/TLR4/NLRP3 Inflammasome Signaling Pathway in the Hypothalamic Paraventricular Nucleus of Salt-Induced Prehypertensive Rats
by Hong-Li Gao, Yu Yang, Hua Tian, Shen-Liang Xu, Bo-Wen Li, Li-Yan Fu, Kai-Li Liu, Xiao-Lian Shi, Yu-Ming Kang and Xiao-Jing Yu
Nutrients 2024, 16(16), 2580; https://doi.org/10.3390/nu16162580 - 6 Aug 2024
Viewed by 1207
Abstract
Background: Puerarin is an isoflavone compound isolated from the roots of a leguminous plant, the wild kudzu. Various functional activities of this compound in multiple diseases have been reported. However, the effect and mechanism of puerarin in improving blood pressure remain non-elucidated. Purpose: [...] Read more.
Background: Puerarin is an isoflavone compound isolated from the roots of a leguminous plant, the wild kudzu. Various functional activities of this compound in multiple diseases have been reported. However, the effect and mechanism of puerarin in improving blood pressure remain non-elucidated. Purpose: The current study was designed to assess the preventive effects of puerarin on the onset and progression of hypertension and to verify the hypothesis that puerarin alleviates blood pressure by inhibiting the ROS/TLR4/NLRP3 inflammasome signaling pathway in the hypothalamic paraventricular nucleus (PVN) of salt-induced prehypertensive rats. Methods: Male Dahl salt-sensitive rats were fed low NaCl salt (3% in drinking water) for the control (NS) group or 8% (HS) to induce prehypertension. Each batch was divided into two group and treated by bilateral PVN microinjection with either artificial cerebrospinal fluid or puerarin through a micro-osmotic pump for 6 weeks. The mean arterial pressure (MAP) was recorded, and samples were collected and analyzed. Results: We concluded that puerarin significantly prevented the elevation of blood pressure and effectively alleviated the increase in heart rate caused by high salt. Norepinephrine (NE) in the plasma of salt-induced prehypertensive rats also decreased upon puerarin chronic infusion. Additionally, analysis of the PVN sample revealed that puerarin pretreatment decreased the positive cells and gene level of TLR4 (Toll-like receptor 4), NLRP3, Caspase-1 p10, NOX2, MyD88, NOX4, and proinflammatory cytokines in the PVN. Puerarin pretreatment also decreased NF-κBp65 activity, inhibited oxidative stress, and alleviated inflammatory responses in the PVN. Conclusion: We conclude that puerarin alleviated blood pressure via inhibition of the ROS/TLR4/NLRP3 inflammasome signaling pathway in the PVN, suggesting the therapeutic potential of puerarin in the prevention of hypertension. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

12 pages, 3058 KiB  
Article
Raman Lasing and Transverse Mode Selection in a Multimode Graded-Index Fiber with a Thin-Film Mirror on Its End Face
by Alexey G. Kuznetsov, Vadim S. Terentyev, Victor A. Simonov, Hiba A. Rizk, Ilya N. Nemov, Kirill A. Bronnikov, Alexander V. Dostovalov and Sergey A. Babin
Micromachines 2024, 15(8), 940; https://doi.org/10.3390/mi15080940 - 24 Jul 2024
Viewed by 791
Abstract
Multimode fibers are attractive for high-power lasers if transverse modes are efficiently controlled. Here, a dielectric thin-film mirror (R~20%) is micro-fabricated on the central area of the end face of a 1 km multimode 100/140 µm graded-index fiber and tested as the output [...] Read more.
Multimode fibers are attractive for high-power lasers if transverse modes are efficiently controlled. Here, a dielectric thin-film mirror (R~20%) is micro-fabricated on the central area of the end face of a 1 km multimode 100/140 µm graded-index fiber and tested as the output mirror of a Raman laser with highly multimode (M2~34) 940 nm diode pumping. In the cavity with highly reflective input FBG, Raman lasing of the Stokes wave at 976 nm starts at the threshold pump power of ~80 W. Mode-selective properties of mirrors with various diameters were tested experimentally and compared with calculations in COMSOL, with the optimum diameter found to be around 12 µm. The measured Raman laser output beam at 976 nm has a quality factor of M2~2 near the threshold, which confirms a rather good selection of the fundamental transverse mode. The power scaling capabilities, together with a more detailed characterization of the output beam’s spatial profile, spectrum, and their stability, are performed. An approximately 35 W output power with an approximately 60% slope efficiency and a narrow spectrum has been demonstrated at the expense of a slight worsening of beam quality to M2~3 without any sign of mirror degradation at the achieved intensity of >30 MW/cm2. Further power scaling of such lasers as well as the application of the proposed technique in high-power fiber lasers are discussed. Full article
(This article belongs to the Special Issue High Power Fiber Laser Technology)
Show Figures

Figure 1

17 pages, 8351 KiB  
Article
Impact of Impeller Speed Adjustment Interval on Hemolysis Performance of an Intravascular Micro-Axial Blood Pump
by Yuan Liu, Yuanfei Zhu, Shangting Wang, Hualin Fu, Zhexin Lu and Ming Yang
Micromachines 2024, 15(7), 934; https://doi.org/10.3390/mi15070934 - 22 Jul 2024
Viewed by 669
Abstract
Background: In recent years, intravascular micro-axial blood pumps have been increasingly used in the treatment of patients with cardiogenic shock. The flow rate of such blood pumps requires adjustment based on the patient’s physiological condition. Compared to a stable flow state with fixed [...] Read more.
Background: In recent years, intravascular micro-axial blood pumps have been increasingly used in the treatment of patients with cardiogenic shock. The flow rate of such blood pumps requires adjustment based on the patient’s physiological condition. Compared to a stable flow state with fixed rotation speed, adjusting the speed of blood pump impeller to alter flow rate may lead to additional hemolysis. This study aimed at elucidating the relationship between adjusting interval of a blood pump’s impeller speed and the hemolysis index. Methods: By comparing simulation results with P-Q characteristic curves of the blood pump measured by experiments, the accuracy of the blood pump flow field simulation model was confirmed. In this study, a drainage tube was employed as the device analogous to an intravascular micro-axial blood pump for achieving similar shear stress levels and residence times. The hemolysis finite element prediction method based on a power-law model was validated through hemolysis testing of porcine blood flow through the drainage tube. The validated models were subsequently utilized to investigate the impact of impeller speed adjusting intervals on hemolysis in the blood pump. Results: Compared to steady flow, the results demonstrate that the hemolysis index increased to 6.3% when changing the blood pump flow rate from 2 L/min to 2.5 L/min by adjusting the impeller speed within 0.072 s. Conclusions: An adjustment time of impeller speed longer than 0.072 s can avoid extra hemolysis when adjusting the intravascular micro-axial blood pump flow rate from 2 L/min to 2.5 L/min. Full article
Show Figures

Figure 1

24 pages, 7857 KiB  
Article
Vibration Suppression of Multi-Stage-Blade AMB-Rotor Using Parallel Adaptive and Cascaded Multi-Frequency Notch Filters
by Min Zhang, Jiqiang Tang, Jinxiang Zhou, Xue Han and Kun Wang
Appl. Sci. 2024, 14(14), 6255; https://doi.org/10.3390/app14146255 - 18 Jul 2024
Viewed by 744
Abstract
The application of active magnetic bearings (AMBs) in high-speed rotating machinery faces the challenge of micro-vibration. This research addresses the vibration control of a high-speed magnetically suspended turbo molecular pump (MSTMP) with rotor mass imbalance vibration and multi-stage-blade modal vibration. A novel integrated [...] Read more.
The application of active magnetic bearings (AMBs) in high-speed rotating machinery faces the challenge of micro-vibration. This research addresses the vibration control of a high-speed magnetically suspended turbo molecular pump (MSTMP) with rotor mass imbalance vibration and multi-stage-blade modal vibration. A novel integrated AMB controller consisting of parallel co-frequency adaptive notch filter (ANF) and cascaded multi-frequency improved double-T notch filters (DTNFs) is proposed. To suppress rotor mass imbalance vibration, a bandwidth factor rectification method of the ANF based on displacement stiffness perturbation is designed. To suppress multi-stage-blade modal vibration, a multi-objective constrained optimization method of cascaded improved DTNFs based on linear normalization is designed. Simulation and experimental results validate that the proposed structure improvement of the addition of an AMB controller and multi-parameter optimization of the algorithm can effectively improve not only the phase stability margin and the notch vibration performance of the magnetically suspended rotor (MSR) system but also the efficiency and practicability of the algorithm. At rotational speeds of 12,000 rpm, 15,000 rpm, 18,000 rpm, and 21,000 rpm, the suppression of co-frequency synchronous vibration is approximately maintained between −30.94 dB and −30.56 dB. At the rated speed of 24,000 rpm, compared with other algorithms, the value of the rotor displacement converges from 0.08 mm to 0.03 mm, a reduction of 62.50%. The convergence time decreases from 3.67 s to 2.85 s, a reduction of 22.34%. Full article
Show Figures

Figure 1

16 pages, 19664 KiB  
Article
Effect of Complex Well Conditions on the Swelling and Tribological Properties of High-Acrylonitrile Stator Rubber in Screw Pumps
by Xinfu Liu, Xiangzhi Shi, Zhongxian Hao, Songbo Wei, Yi Sun, Xinglong Niu, Chunhua Liu, Ming Li and Zunzhao Li
Polymers 2024, 16(14), 2036; https://doi.org/10.3390/polym16142036 - 17 Jul 2024
Cited by 1 | Viewed by 622
Abstract
The effects of complex well conditions in shale oil wells on the swelling and tribological properties of high-acrylonitrile stator rubber used in screw pumps were investigated in this study. Tests were conducted considering the combined effects of immersion medium, temperature, and duration. The [...] Read more.
The effects of complex well conditions in shale oil wells on the swelling and tribological properties of high-acrylonitrile stator rubber used in screw pumps were investigated in this study. Tests were conducted considering the combined effects of immersion medium, temperature, and duration. The key parameters measured included mass change rate, volume change rate, hardness, elongation at break, tensile strength, surface micro-morphology of the rubber after thermal expansion and swelling, friction coefficient, and wear quantity. The results indicated that in the actual well fluids, the mass change rate of high-acrylonitrile rubber ranged from −1.08% to 1.29%, with a maximum volume change rate of 2.78%. In diesel oil, the greatest mass change rate of the rubber was 4.68%, and the volume change rate did not exceed ±1%, indicating superior swelling resistance. In both actual well fluids and diesel oil, the maximum decreases in hardness were 8.7% and 9.5%, respectively. Tensile strength and elongation at break decreased with increasing immersion temperature, with elongation at break in 80 °C diesel oil decreasing by over 50%, indicating a significant decline in the tensile properties of the rubber. The average friction coefficient of rubber specimens immersed in actual well fluids at three temperatures, as well as in diesel oil at 25 and 50 °C, decreased compared with the high-acrylonitrile rubber without thermal expansion and swelling. However, the average friction coefficient of rubber specimens immersed in diesel oil at 80 °C increased. The wear quantity of the rubber increased following immersion in both media. Additionally, the friction coefficient and wear quantity of the rubber increased with increasing immersion temperatures. The results of the study can offer valuable insights into assessing the durability of properties in high-acrylonitrile stator rubber under complex well conditions. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 7256 KiB  
Article
Precipitation Behavior and Strengthening–Toughening Mechanism of Nb Micro-Alloyed Direct-Quenched and Tempered 1000 MPa Grade High-Strength Hydropower Steel
by Zhongde Pan, Enmao Wang and Huibin Wu
Metals 2024, 14(7), 794; https://doi.org/10.3390/met14070794 - 8 Jul 2024
Viewed by 676
Abstract
Faced with the rapid development of large-scale pumped-storage power stations, the trade-off between the strength and toughness of hydropower steels in extreme environments has been limiting their application. The effects of Nb micro-alloying and direct quenching and tempering processes on the strengthening–toughening mechanism [...] Read more.
Faced with the rapid development of large-scale pumped-storage power stations, the trade-off between the strength and toughness of hydropower steels in extreme environments has been limiting their application. The effects of Nb micro-alloying and direct quenching and tempering processes on the strengthening–toughening mechanism of 1000 MPa grade high-strength hydropower steel are studied in this paper, and the precipitation behavior of Nb is discussed. The results showed that only the 0.025Nb steel using the DQT process achieved a cryogenic impact energy of more than 100 J at −60 °C. Under the DQT process, a large number of deformation bands and dislocations were retained, refining the prior austenite grains and providing more nucleation sites for the precipitation of NbC during the cooling process. The DQT process has a more obvious local strain concentration, mainly focusing on the refined lath boundary, which indicates that the refinement of the microstructure also promotes the stacking of dislocations. The improvement in fine grain strengthening and dislocation strengthening by the DQT process jointly led to an increase in strength, resulting in a better combination of strength and toughness. Full article
Show Figures

Figure 1

8 pages, 1431 KiB  
Article
Assessing the Impact of PRESERFLO MicroShunt on Intraocular Pressure in Porcine Eyes Ex Vivo Using Infusion Pump System
by Andi Masdipa, Sachiko Kaidzu and Masaki Tanito
Bioengineering 2024, 11(7), 669; https://doi.org/10.3390/bioengineering11070669 - 29 Jun 2024
Viewed by 830
Abstract
To evaluate the effectiveness of the PRESERFLO MicroShunt (PFM) in reducing intraocular pressure (IOP) ex vivo in porcine eyes using an infusion pump system and to simulate various IOP conditions, In this study, porcine eyes received increasing flows between 2 and 20 μL/min. [...] Read more.
To evaluate the effectiveness of the PRESERFLO MicroShunt (PFM) in reducing intraocular pressure (IOP) ex vivo in porcine eyes using an infusion pump system and to simulate various IOP conditions, In this study, porcine eyes received increasing flows between 2 and 20 μL/min. IOP measurements were taken under conditions with and without the PFM [PFM (+) and PFM (−), respectively]. In the PFM (−) group, IOP increased from 7.4 mmHg to 46.3 mmHg as the flow rate increased from 2 μL/min to 20 μL/min. The rate of IOP reduction (%ΔIOP) rose with increasing flow rates, although the absolute IOP values achieved with the PFM insertion also increased. The correlation between IOPs in the PFM (−) conditions and the %ΔIOP was modeled as %ΔIOP = 22.4 Ln [PFM(−) IOP] − 41.7. According to this equation, IOP reduction by PFM insertion is 0% at IOPs of 6.4 mmHg or lower. IOP reductions of 10%, 20%, 30%, and 40% were observed when the pre-insertion IOPs were 10.1, 15.7, 24.6, and 38.4 mmHg, respectively. Achievable post-insertion IOP levels of ≤21 mmHg, ≤18 mmHg, ≤15 mmHg, and ≤12 mmHg corresponded to the initial IOPs of 33 mmHg, 26 mmHg, 20 mmHg, and 14.8 mmHg, respectively. In conclusion, the PFM effectively reduced IOP within a specific range of IOP values in an ex vivo experimental system. In clinical situations, the PFM is unlikely to be effective at low IOP levels. At higher levels, the PFM reduces IOP, but it may be insufficient to achieve the target IOP. Full article
(This article belongs to the Special Issue Recent Advances and Trends in Ophthalmic Diseases Treatment)
Show Figures

Figure 1

18 pages, 3200 KiB  
Article
Human Activity Recording Based on Skin-Strain-Actuated Microfluidic Pumping in Asymmetrically Designed Micro-Channels
by Caroline Barbar Askar, Nick Cmager, Rana Altay and I. Emre Araci
Sensors 2024, 24(13), 4207; https://doi.org/10.3390/s24134207 - 28 Jun 2024
Viewed by 830
Abstract
The capability to record data in passive, image-based wearable sensors can simplify data readouts and eliminate the requirement for the integration of electronic components on the skin. Here, we developed a skin-strain-actuated microfluidic pump (SAMP) that utilizes asymmetric aspect ratio channels for the [...] Read more.
The capability to record data in passive, image-based wearable sensors can simplify data readouts and eliminate the requirement for the integration of electronic components on the skin. Here, we developed a skin-strain-actuated microfluidic pump (SAMP) that utilizes asymmetric aspect ratio channels for the recording of human activity in the fluidic domain. An analytical model describing the SAMP’s operation mechanism as a wearable microfluidic device was established. Fabrication of the SAMP was achieved using soft lithography from polydimethylsiloxane (PDMS). Benchtop experimental results and theoretical predictions were shown to be in good agreement. The SAMP was mounted on human skin and experiments conducted on volunteer subjects demonstrated the SAMP’s capability to record human activity for hundreds of cycles in the fluidic domain through the observation of a stable liquid meniscus. Proof-of-concept experiments further revealed that the SAMP could quantify a single wrist activity repetition or distinguish between three different shoulder activities. Full article
(This article belongs to the Special Issue Soft and Wearable Sensors for Human Health Monitoring)
Show Figures

Figure 1

Back to TopTop