Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,088)

Search Parameters:
Keywords = microbial ecosystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2375 KiB  
Article
Response of Community Characteristics and Assembly Mechanisms of cbbL-Carrier Carbon-Fixing Microorganisms to Precipitation Changes in Alpine Lakeshore Wetland
by Ni Zhang, Siyu Wang, Shijia Zhou, Desheng Qi, Jing Ma and Kelong Chen
Agriculture 2025, 15(4), 379; https://doi.org/10.3390/agriculture15040379 - 11 Feb 2025
Abstract
Precipitation change strongly influences soil microbial communities, and precipitation patterns have become a key factor affecting carbon and nitrogen cycling processes in wetland ecosystems. The cbbL gene is a key gene in the fixation of carbon dioxide during the Calvin cycle. However, the [...] Read more.
Precipitation change strongly influences soil microbial communities, and precipitation patterns have become a key factor affecting carbon and nitrogen cycling processes in wetland ecosystems. The cbbL gene is a key gene in the fixation of carbon dioxide during the Calvin cycle. However, the response of cbbL-carrier carbon-fixing microorganisms in the lakeshore wetland to precipitation change remains unclear. To this end, we established 25% and 50% increased and decreased precipitation treatments, along with a natural control, and used high-throughput sequencing to investigate the response of the cbbL-carrier carbon-fixing microbial community in a lakeshore wetland of Qinghai Lake in response to precipitation change. The results showed that a 25% reduced precipitation treatment significantly increased the relative abundance of Chlorophyta and Bradyrhizobium. pH was found to be the most important factor influencing the carbon-fixing microbial community, with a significant positive correlation with Ferrithrix. A 25% increased precipitation treatment significantly increased the relative abundance of aerobic chemoheterotrophy and chemoheterotrophy, while a 25% reduced precipitation treatment significantly increased the relative abundance of nitrogen fixation. The increased precipitation and 50% reduced precipitation treatments shift the community assembly process of cbbL-carrier carbon-fixing microorganisms from randomness to determinism. Co-occurrence network analysis showed that the network complexity and connectivity between species of cbbL-carrier carbon-fixing microorganisms initially decreased and then increased with increasing precipitation. In summary, precipitation change tended to reduce the carbon sequestration potential of the lakeshore wetland, while a 25% reduced precipitation treatment favored the nitrogen fixation process in these wetlands. Full article
Show Figures

Figure 1

9 pages, 2367 KiB  
Proceeding Paper
Effective Microorganism (EM) Technology for Lake Conservation and Water Quality Restoration
by Irnis Azura Zakarya, Nursyazarena Azwa Mazwin, Tengku Nuraiti Tengku Izhar, Nur Adlina Mohd Hilmi and Muna’amirah Mohamad
Environ. Earth Sci. Proc. 2025, 33(1), 1; https://doi.org/10.3390/eesp2025033001 - 11 Feb 2025
Viewed by 35
Abstract
Water quality is a crucial determinant in decision-making processes aimed at optimizing resource allocation across various industries. Pollutant impurities that hinder the sufficient supply of water have a deleterious impact on the quality and are damaging to living species, especially aquatic life. Various [...] Read more.
Water quality is a crucial determinant in decision-making processes aimed at optimizing resource allocation across various industries. Pollutant impurities that hinder the sufficient supply of water have a deleterious impact on the quality and are damaging to living species, especially aquatic life. Various chemical and biological treatments are used to reduce water pollution levels. A technology involving a mixture of anaerobic and aerobic beneficial microbes is becoming popular for its eco-friendly characteristics. Effective Microorganism (EM) technology utilizes naturally existing microorganisms that can purify and restore the environment. The study investigated the application of Effective Microorganism-Activated Solution (EMAS), TeMo Decomposer (TeMo), and Lactic Acid Bacteria (LAB) to enhance water quality. Additionally, microbial testing will be carried out to identify bacteria present in each EM. EM-based rehabilitation of polluted and degraded water bodies significantly contributes to the restoration of aquatic habitats and ecosystems. This study aimed to assess the water quality at Tasik Alumni, Kampus Pauh, Perlis, Malaysia. Four sampling points in Tasik Alumni were chosen to reflect the water quality status of the lake. The sampling was conducted once at four points locations in Tasik Alumni. Seven water quality measures, including pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), total suspended solid (TSS), and turbidity, were analysed ex-situ and categorised according to Water Quality Index (WQI) and National Water Quality Standard (NWQS) classifications. The Tasik Alumni was categorised as mildly contaminated. The results clearly showed the efficiency of this technique in restoring and conserving water quality in a degraded or polluted lake. Full article
Show Figures

Figure 1

25 pages, 5223 KiB  
Review
Role of Plants and Urban Soils in Carbon Stock: Status, Modulators, and Sustainable Management Practices
by Antonino Fiorentino, Farah Zahoor Rajput, Annamaria Di Serio, Vincenzo Baldi, Francesco Guarino, Daniela Baldantoni, Domenico Ronga, Pierluigi Mazzei, Oriana Motta, Mariarosaria Falanga, Angela Cicatelli and Stefano Castiglione
Plants 2025, 14(4), 546; https://doi.org/10.3390/plants14040546 (registering DOI) - 10 Feb 2025
Viewed by 266
Abstract
Urban soils are vital components of urban ecosystems, significantly influenced by anthropogenic activities and environmental factors. Despite misconceptions about their quality, urban soils play a pivotal role in carbon (C) cycling and storage, impacting global emissions and sequestration. However, challenges such as soil [...] Read more.
Urban soils are vital components of urban ecosystems, significantly influenced by anthropogenic activities and environmental factors. Despite misconceptions about their quality, urban soils play a pivotal role in carbon (C) cycling and storage, impacting global emissions and sequestration. However, challenges such as soil contamination, land use changes, and urban expansion pose significant threats to soil quality and C storage capacity. Over the last two decades, there has been an increasing interest in the C storage potential of soils as part of climate change mitigation strategies. In this review, a bibliometric analysis covering the last twenty years (2004–2024) was performed to offer insights into global research trends, mainly in urban soils of the Mediterranean region. This paper also identifies research gaps and proposes essential solutions for mitigating the negative impacts of urbanization on soil biodiversity and functions. Key modulators, including plants, microbes, and soil features, are highlighted for their role in C dynamics, emphasizing the importance of effective soil and vegetation management to enhance C sequestration and ecosystem services. Strategies such as reintroducing nature into urban areas and applying organic amendments are promising in improving soil quality and microbial diversity. Further research and awareness are essential to maximize the effectiveness of these strategies, ensuring sustainable urban soil management and climate resilience. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 4874 KiB  
Article
Response of Soil Microbial Communities in Extreme Arid Deserts to Different Long-Term Management Methods
by Yulin Zhang, Yi Du, Zhaobin Mu, Waqar Islam, Fanjiang Zeng, Zhihao Zhang and Norela C. T. Gonzalez
Forests 2025, 16(2), 306; https://doi.org/10.3390/f16020306 - 10 Feb 2025
Viewed by 282
Abstract
(1) Background: As population growth accelerates, unsustainable practices such as excessive cutting and burning of desert plants in the transition zones between deserts and oases have led to widespread vegetation loss. (2) Methods: The experiment was conducted in the oasis transition zone on [...] Read more.
(1) Background: As population growth accelerates, unsustainable practices such as excessive cutting and burning of desert plants in the transition zones between deserts and oases have led to widespread vegetation loss. (2) Methods: The experiment was conducted in the oasis transition zone on the southern edge of the Taklamakan Desert from 2010 to 2023 year. Among the treatments included a control group (CK), cutting in spring (CS), cutting in fall (CF), burning in spring (BS), and flood water irrigation (FI). We used high-throughput sequencing to determine soil microbial composition and diversity and routine laboratory methods to determine soil physical and chemical properties and enzyme activities. (3) Results: No significant differences in bacterial alpha diversity (Chao1, Dominance, Observed_features, Pielou_e, Shannon, and Simpson) across the different long-term disturbance patterns. In fungi, the CK treatment showed significantly higher Chao1, Shannon, and Observed_features indices compared to BS and FI. Principal component analysis revealed a substantial reduction in bacterial community diversity in BS compared to FI, while fungal communities were lower in CK and CS compared to BS, CF, and FI; (4) Conclusions: Soil moisture content, electrical conductivity, organic carbon, and the activity of the enzyme cellobiohydrolase as key factors shaping the bacterial community. For fungi, organic carbon and the β-1,4-glucosidase enzyme were the main drivers. Full article
(This article belongs to the Special Issue How Does Forest Management Affect Soil Dynamics?)
Show Figures

Figure 1

32 pages, 3214 KiB  
Review
Strategies for the Remediation of Micro- and Nanoplastics from Contaminated Food and Water: Advancements and Challenges
by Manikant Tripathi, Pankaj Singh, Sukriti Pathak, Ramaswamy Manimekalai, Diksha Garg and Kavya Dashora
J. Xenobiot. 2025, 15(1), 30; https://doi.org/10.3390/jox15010030 - 9 Feb 2025
Viewed by 697
Abstract
Micro- and nanoplastic (MNP) pollution is a significant concern for ecosystems worldwide. The continuous generation and extensive utilization of synthetic plastics have led to the widespread contamination of water and food resources with MNPs. These pollutants originate from daily-use products and industrial waste. [...] Read more.
Micro- and nanoplastic (MNP) pollution is a significant concern for ecosystems worldwide. The continuous generation and extensive utilization of synthetic plastics have led to the widespread contamination of water and food resources with MNPs. These pollutants originate from daily-use products and industrial waste. Remediation of such pollutants is essential to protect ecosystems and human health since these ubiquitous contaminants pose serious biological and environmental hazards by contaminating food chains, water sources, and the air. Various remediation techniques, including physical, chemical, sophisticated filtration, microbial bioremediation, and adsorption employing novel materials, provide encouraging avenues for tackling this worldwide issue. The biotechnological approaches stand out as effective, eco-friendly, and sustainable solutions for managing these toxic pollutants. However, the complexity of MNP pollution presents significant challenges in its management and regulation. Addressing these challenges requires cross-disciplinary research efforts to develop and implement more efficient, sustainable, eco-friendly, and scalable techniques for mitigating widespread MNP pollution. This review explores the various sources of micro- and nanoplastic contamination in water and food resources, their toxic impacts, remediation strategies—including advanced biotechnological approaches—and the challenges in treating these pollutants to alleviate their effects on ecosystems and human health. Full article
Show Figures

Figure 1

19 pages, 3424 KiB  
Article
Organic Manure Amendment Fortifies Soil Health by Enriching Beneficial Metabolites and Microorganisms and Suppressing Plant Pathogens
by Buqing Wei, Jingjing Bi, Xueyan Qian, Chang Peng, Miaomiao Sun, Enzhao Wang, Xingyan Liu, Xian Zeng, Huaqi Feng, Alin Song and Fenliang Fan
Agronomy 2025, 15(2), 429; https://doi.org/10.3390/agronomy15020429 - 9 Feb 2025
Viewed by 377
Abstract
Soil health reflects the sustained capacity of soil to function as a vital living ecosystem, ensuring support for all forms of life. The evaluation of soil health relies heavily on physicochemical indicators. However, it remains unclear whether and how microbial traits are related [...] Read more.
Soil health reflects the sustained capacity of soil to function as a vital living ecosystem, ensuring support for all forms of life. The evaluation of soil health relies heavily on physicochemical indicators. However, it remains unclear whether and how microbial traits are related to soil health in soil with long-term organic manure amendment. This study aims to examine how detrimental and beneficial microbial traits change with soil health based on physicochemical indicators. This research measures the effects of 9-year manure supplementation on soil health using multiomics techniques. We found that, compared to 100% chemical fertilizers, the soil health index increased by 5.2%, 19.3%, and 72.6% with 25%, 50%, and 100% organic fertilizer amendments, respectively. Correspondingly, the abundance of beneficial microorganisms, including Actinomadura, Actinoplanes, Aeromicrobium, Agromyces, Azospira, Cryobacterium, Dactylosporangium, Devosia, Hyphomicrobium, Kribbella, and Lentzea, increased progressively, while the abundance of the pathogenic fungus Fusarium decreased with the organic manure application rate. In addition, the application of organic manure significantly increased the concentrations of soil metabolites, such as sugars (raffinose, trehalose, maltose, and maltotriose) and lithocholic acid, which promoted plant growth and soil aggregation. Moreover, the abundances of pathogens and beneficial microorganisms and the concentrations of beneficial soil metabolites were significantly correlated with the soil health index based on physicochemical indicators. We conclude that organic fertilizer can enhance soil health by promoting the increase in beneficial microorganisms while suppressing detrimental microorganisms, which can serve as potential indicators for assessing soil health. In agricultural production, substituting 25–50% of chemical fertilizers with organic fertilizers significantly helps improve soil health and promotes crop growth. Full article
Show Figures

Figure 1

11 pages, 375 KiB  
Article
Response of Soil Chemical and Biological Properties to Cement Dust Emissions: Insights for Sustainable Soil Management
by Serdar Bilen, Murat Bilen, Mudahir Ozgul, Ekrem Ozlu and Ugur Simsek
Sustainability 2025, 17(4), 1409; https://doi.org/10.3390/su17041409 - 9 Feb 2025
Viewed by 383
Abstract
Land use change is associated with both higher fossil fuel usage and global cement production, significantly impacting environmental sustainability. Cement dust emission is the third-largest source of anthropogenic CO2 emissions, right behind fossil fuel usage due to intense agricultural practices like aggressive [...] Read more.
Land use change is associated with both higher fossil fuel usage and global cement production, significantly impacting environmental sustainability. Cement dust emission is the third-largest source of anthropogenic CO2 emissions, right behind fossil fuel usage due to intense agricultural practices like aggressive tillage management. This study’s aim is to determine cement dust emissions impacts on various tillage management methods and the formation of cement dust-affected CO2 emissions, soil pH, soil organic matter content, total nitrogen content, available phosphorus, CaCO3 content, bacteria and fungi populations, and enzyme activities. The target of this study is to evaluate how cement dust emissions impact the soil properties and sustainability of different tillage practices. Composite soils from wheat–sugar beet (potato)–fallow cropping sequences under conventional tillage (CT) and no-till (NT) management were collected (0–30 cm depth) with three replications at varying distances from a cement factory (1, 2, 4, 6, 8, and 10 km). To find differences among individual treatments and distances, a two-way ANOVA was employed along with Duncan’s LSD test comparing the various effects of tillage techniques. The associations between soil chemical and biological properties and CO2 fluxes under the impact of cement dust were examined using Pearson’s correlation analysis. There were notable relationships between soil microbial population, enzyme activities, pH, CaCO3, and CO2 fluxes. The sampling distance from the cement plant had a substantial correlation with soil organic carbon, urease activity, pH, CaCO3, and bacterial populations. According to the study, different tillage methods (CT and NT) affected the diversity and abundance of microorganisms within the soil ecosystem. CT was more beneficial for the microbial population and for sustainable management. Full article
Show Figures

Figure 1

27 pages, 3101 KiB  
Article
Effects of Increasing CO2 Concentration on Crop Growth and Soil Ammonia-Oxidizing Microorganisms in a Fababean (Vicia faba L.) and Wheat (Triticum aestivum Yunmai) Intercropping System
by Xingshui Dong, Hui Lin, Feng Wang, Songmei Shi, Junwei Ma and Xinhua He
Plants 2025, 14(4), 516; https://doi.org/10.3390/plants14040516 - 8 Feb 2025
Viewed by 204
Abstract
Elevated carbon dioxide (eCO2) levels can enhance crop yields but may simultaneously reduce quality, impacting both macronutrient and micronutrient concentrations, and potentially decreasing protein content in cereal grains. This study examined the effects of elevated CO2 (eCO2) and [...] Read more.
Elevated carbon dioxide (eCO2) levels can enhance crop yields but may simultaneously reduce quality, impacting both macronutrient and micronutrient concentrations, and potentially decreasing protein content in cereal grains. This study examined the effects of elevated CO2 (eCO2) and nitrogen (N) fertilization on crop growth, yield, and soil nitrogen cycling through a glass greenhouse experiment using Eutric Regosol soil. The experimental design incorporated two CO2 gradients: ambient CO2 (aCO2) at approximately 410 ppm during the day and 460 ppm at night, and eCO2 at approximately 550 ppm during the day and 610 ppm at night. Additionally, two nitrogen fertilization treatments were applied: no fertilizer (N0) and 100 mg N kg−1 dry weight (DW) soil (N100). Crops were cultivated under two cropping systems: the monoculturing of fababean (Vicia faba L.) or wheat (Triticum aestivum Yunmai) and the intercropping of both species. The results demonstrated that eCO2 significantly enhanced the growth and yield of both fababean and wheat, particularly when nitrogen fertilization was applied. Nitrogen fertilizer application did not always enhance crop yield, considering the complexity of nitrogen management under elevated CO2 conditions. Furthermore, the intercropping of fababean and wheat presented multiple advantages, including improved crop yields, enhanced soil health, and increased ecosystem services. These findings suggest that intercropping can serve as a sustainable strategy to boost productivity and ecosystem resilience in the face of climate change. The changes in nitrogen application and CO2 concentration affect the gene copy number of ammonia-oxidizing bacteria and archaea, which may affect the nitrogen cycling process in soil. There are complex interactions between crop biomass, nitrogen accumulation, transpiration rate, photosynthetic rate and stomatal conductance with soil properties (e.g., pH, organic matter, nitrogen content) and microbial community structure. The interaction between CO2 concentration, nitrogen application level and crop intercropping pattern had significant effects on crop growth, soil properties and microbial communities. Future research should prioritize investigating the long-term effects of intercropping on soil productivity and the development of management strategies that optimize the benefits of this cropping system. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

18 pages, 3489 KiB  
Article
Plastic Film Residue Reshaped Protist Communities and Induced Soil Nutrient Deficiency Under Field Conditions
by Ge Wang, Qian Sun, Maolu Wei, Miaomiao Xie, Ting Shen and Dongyan Liu
Agronomy 2025, 15(2), 419; https://doi.org/10.3390/agronomy15020419 - 7 Feb 2025
Viewed by 351
Abstract
The use of plastic agricultural mulching films presents a “double-edged sword”: while these films enhance crop yields, they also lead to the accumulation of plastic film residues in the soil, creating new pollutants (microplastics). Our understanding of the “plastisphere”, a niche formed by [...] Read more.
The use of plastic agricultural mulching films presents a “double-edged sword”: while these films enhance crop yields, they also lead to the accumulation of plastic film residues in the soil, creating new pollutants (microplastics). Our understanding of the “plastisphere”, a niche formed by agricultural film residues in the soil, where unique microbial communities and soil conditions converge remains limited. This is particularly true for protists, which are recognized as key determinants of soil health. Therefore, this study simulated a field experiment to analyze the effects of long-term plastic film residues on the structure of protist microbial communities in the rhizosphere, bulk soil and plastisphere of oilseed rape as well as their effects on soil nutrients. The results revealed that the residual plastic films underwent significant structural and chemical degradations. Protist diversity and co-occurrence network complexity were markedly reduced in plastisphere soils. In addition, soil moisture content, inorganic nitrogen and available phosphorus levels declined, leading to deficiencies in soil nutrients. Functional shifts in consumer protists and phototrophs along with weakened network interactions, have been identified as key drivers of impaired nutrient turnover. Our study underscores the critical role of protist communities in maintaining soil nutrient cycling and highlights the profound adverse effects of plastic film residues on soil ecosystems. These findings provide valuable insights into mitigating plastic residue accumulation to preserve long-term soil fertility and ensure sustainable agricultural productivity. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

20 pages, 3900 KiB  
Article
Responses of Soil Enzyme Activity and Microbial Nutrient Limitations to Vegetation Types in a Degraded Karst Trough Valley
by Fengling Gan, Hailong Shi, Xiaohong Tan, Lisha Jiang, Wuyi Li, Yuanyue Xia, Junbing Pu, Quanhou Dai, Youjin Yan and Yuchuan Fan
Forests 2025, 16(2), 279; https://doi.org/10.3390/f16020279 - 6 Feb 2025
Viewed by 322
Abstract
Soil enzyme activities serve as the key indicators of microbial nutrient limitations. Vegetation types after farmland is returned modify both the biological and abiotic properties of the soil, thereby impacting the soil nutrient cycle and the stability of forest ecosystems. However, soil enzyme [...] Read more.
Soil enzyme activities serve as the key indicators of microbial nutrient limitations. Vegetation types after farmland is returned modify both the biological and abiotic properties of the soil, thereby impacting the soil nutrient cycle and the stability of forest ecosystems. However, soil enzyme activities and microbial nutrient limitations in degraded karst forests under different vegetation types after farmland return remain unclear. Therefore, this study investigated the soil physicochemical properties, enzyme activities, and microbial resource limitations in different vegetation types (grasslands (G), transitional grass–shrub (SG), shrubland (S), and secondary forest (F)) after returning farmland on dip and anti-dip slopes in a karst trough valley. The relationships among the factors influencing soil enzyme activities were analyzed to identify the drivers of microbial nutrient limitation. The results revealed that soil enzyme activities and physicochemical properties were significantly greater on anti-dip slopes than on dip slopes. Total nitrogen (27.4%) and bulk density (24.4%) influenced mainly soil enzyme activity and its stoichiometric ratio, whereas carbon and phosphorus limitations impacted soil microorganisms on the dip slopes of the F and G vegetation types. The soil physicochemical properties and enzyme characteristics accounted for 85.5% and 75.6%, respectively, of the observed influence. Notably, the total phosphorus content (36.8%) on the anti-dip erosion slope was significantly greater than that on the other slopes. These factors, especially bedrock strata dip and vegetation type, significantly affect soil enzyme activity. This study confirms that vegetation type enhances soil enzyme activities on anti-dip erosion slopes, providing a scientific basis for karst ecosystem restoration. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

33 pages, 1473 KiB  
Review
Humic Substances: Bridging Ecology and Agriculture for a Greener Future
by Angela Maffia, Mariateresa Oliva, Federica Marra, Carmelo Mallamaci, Serenella Nardi and Adele Muscolo
Agronomy 2025, 15(2), 410; https://doi.org/10.3390/agronomy15020410 - 6 Feb 2025
Viewed by 610
Abstract
Humic substances (HSs) are emerging as multifunctional natural catalysts in sustainable agriculture, offering novel opportunities to enhance soil health, plant productivity, and environmental resilience. This review synthesizes recent insights into the chemical diversity, biological mechanisms, and ecological impacts of HSs, presenting a new [...] Read more.
Humic substances (HSs) are emerging as multifunctional natural catalysts in sustainable agriculture, offering novel opportunities to enhance soil health, plant productivity, and environmental resilience. This review synthesizes recent insights into the chemical diversity, biological mechanisms, and ecological impacts of HSs, presenting a new perspective on their role as dynamic agents in agroecosystems. Derived from decomposed organic matter, HSs regulate critical processes such as nutrient cycling, carbon sequestration, and pollutant detoxification. Unlike plant and microbial biomass, which undergo rapid mineralization due to their active dynamism, HSs exhibit significant resistance to biodegradation, leading to a prolonged residence time in soil that spans years or even centuries. This stability allows HSs to maintain their functional roles over extended periods, contributing to long-term soil health and ecosystem sustainability. Their integration into agricultural systems has demonstrated profound effects, including improved soil structure, increased water retention, and the stimulation of microbial activity, which collectively bolster plant stress tolerance and yield. Notably, it has been proposed that HSs exhibit hormone-like properties, influencing plant signaling pathways to enhance root architecture and nutrient acquisition. Moreover, HSs contribute to environmental remediation by regulating the leaching of heavy metals, mitigating nutrient runoff, and fostering climate resilience. This review highlights the synergistic potential of combining HSs with organic amendments like compost and biochar, positioning HSs as a cornerstone of regenerative farming practices. Addressing challenges such as variability in composition and application methods, the discussion underscores the urgency of developing standardized approaches to harness their full potential. By framing HSs as versatile and adaptive tools, this review paves the way for advancing sustainable agricultural systems while addressing global challenges like food security and climate change. Full article
Show Figures

Figure 1

17 pages, 2681 KiB  
Article
Effects of Nitrogen Addition and Drought on Soil Microbial Diversity and Community Composition in a Young Tree Community
by Yanyan Bian, Xingli Wu, Yulin Zhu, Xin Xiong, Dan Xi, Qingpei Yang, Jun Liu, Qingni Song, Guorong Ni and Xiong Fang
Forests 2025, 16(2), 276; https://doi.org/10.3390/f16020276 - 6 Feb 2025
Viewed by 316
Abstract
Soil microorganisms are well known to play a crucial role in carbon and nutrient cycling within terrestrial ecosystems. Numerous research efforts have demonstrated that nitrogen deposition can change forest soil microbial diversity and community composition; however, it is still unclear how nitrogen deposition [...] Read more.
Soil microorganisms are well known to play a crucial role in carbon and nutrient cycling within terrestrial ecosystems. Numerous research efforts have demonstrated that nitrogen deposition can change forest soil microbial diversity and community composition; however, it is still unclear how nitrogen deposition will affect the soil microbial diversity and community composition in subtropical forests under the background of increasing drought. Consequently, over a period of 2.5 years, we carried out an experiment using two N addition regimes and three soil water treatment levels to reveal the effects of nitrogen, drought, and the influence of their interaction on the diversity and community composition of soil microorganisms. Overall, we found that both N addition and drought decreased the bacterial Shannon and Simpson indices yet had no significant effect on fungal diversity. In the well-watered treatments, nitrogen addition did not significantly reduce bacterial diversity, while in the moderate drought and severe drought treatments, N addition significantly decreased bacterial diversity, reducing the Shannon and Simpson indices by 27.05% and 0.13%, respectively, in the severe drought treatment. Drought significantly altered the community composition of bacteria regardless of N addition. N addition significantly changed the community composition of bacteria under moderate drought treatments, while both N addition and drought had less significant effects on the fungal community composition. The soil water content, fine root biomass, and soil pH were significantly correlated with bacterial community composition, which explained 53.3%, 11.1%, and 8.7% of the changes in soil bacterial community composition, respectively. These results suggest that drought may intensify the inhibitory effect of nitrogen on bacterial diversity and change the magnitude and direction of the impact of nitrogen on the composition of the bacterial community. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

20 pages, 4522 KiB  
Article
Intercropping Between Panax ginseng and Arisaema amurense Improves Ginseng Quality by Improving Soil Properties and Microbial Communities
by Bochen Lv, Hai Sun, Weiyu Cao, Jiapeng Zhu, Hao Liang, Hongjie Long, Yanmei Cui, Cai Shao and Yayu Zhang
Horticulturae 2025, 11(2), 172; https://doi.org/10.3390/horticulturae11020172 - 6 Feb 2025
Viewed by 311
Abstract
The imbalance in soil microcosm systems caused by the long-term monoculture of ginseng is the main cause of continuous cropping disorder in ginseng, an important factor limiting the development of the ginseng industry. The ecological intercropping pattern of medicinal plants is a planting [...] Read more.
The imbalance in soil microcosm systems caused by the long-term monoculture of ginseng is the main cause of continuous cropping disorder in ginseng, an important factor limiting the development of the ginseng industry. The ecological intercropping pattern of medicinal plants is a planting technology that achieves efficient, high-quality and sustainable production of Chinese medicinal materials by increasing the diversity of farmland ecosystems and improving the stability of soil micro-ecosystems, thereby alleviating the continuous cropping disorder of medicinal plants. However, there remains a lack of research on the ecological intercropping cultivation of ginseng. We constructed a Panax ginseng/Arisaema amurense intercropping model to explore the changes in soil nutrients, enzyme activities, soil microbial communities and ginseng quality. The findings of this study demonstrated that intercropping could decelerate the acidification process of soils and effectively increased 37.02% of soil organic matter, 32.39% of total nitrogen, 5.18% of total potassium and 9.03% of available phosphorus contents in ginseng inter-root soil compared with monocropping. The results revealed that intercropping increased the soil urease and soil acid phosphatase activities while reducing the soil sucrase activity in the inter-root soil. Additionally, intercropping elevated the α-diversity of the inter-root soil bacterial community and diminished the composition and abundance of the fungal community. The intercropping exhibited a pronounced inhibitory impact on two common genera of pathogenic fungi, Fusarium and Cylindrocarpon Furthermore, the total ginsenosides and diverse monomer ginsenosides present in the roots of intercropped ginseng exhibited varying degrees of enhancement. The results of the analyses indicated that the observed increase in ginsenoside content under intercropping was attributable to interactions between soil microorganisms, including the Prevotella_7, Penicillium, Humicola and Deconica, and soil factors such as SOM, NH4+–N, AP and S-UE. Thus, implementing P. ginseng/A. amurense ecological intercropping can effectively mitigate soil acidification, enhance soil nutrient effectiveness, optimize soil microbial community composition and augment ginsenoside content. Full article
Show Figures

Figure 1

22 pages, 5077 KiB  
Article
Agronomic Efficiency of Compost Extracts and Nitrogen-Fixing Bacteria in Soybean Crops
by Andressa Pereira de Jesus, Mateus Neri Oliveira Reis, Lucas Loram Lourenço, Daniel José de Souza Mol, Layara Alexandre Bessa, Marivaine da Silva Brasil and Luciana Cristina Vitorino
Microorganisms 2025, 13(2), 341; https://doi.org/10.3390/microorganisms13020341 - 5 Feb 2025
Viewed by 387
Abstract
Regenerative agriculture and the use of bioinputs have been gaining prominence in the global agribusiness sector, driven by the growing demand for healthier foods produced with minimal impact on ecosystems. In this context, compost and its derivatives (compost extracts and teas) are used [...] Read more.
Regenerative agriculture and the use of bioinputs have been gaining prominence in the global agribusiness sector, driven by the growing demand for healthier foods produced with minimal impact on ecosystems. In this context, compost and its derivatives (compost extracts and teas) are used to provide effective microorganisms to crops, although production processes affect the efficiency of compost extracts, as well as the soil microbiota. Thus, the hypothesis raised was that the organic matter source used for compost formation affects the agronomic efficiency of compost extracts. The objective of this study was to evaluate the effect of compost extracts based on litterfall of angiosperm (AC) and gymnosperm (GC) species, and the use of inoculation with the nitrogen-fixing bacteria Bradyrhizobium japonicum and Azospirillum brasilense (Bra+Azo), on soil quality, crop growth, grain yield, and disease control in soybean (Glycine max L.) crops. Using AC and GC resulted in varying effects on soybean growth and soil microbial biomass carbon (SMBC), confirming the hypothesis that the organic matter source affects the agronomic efficiency of compost extracts. Plants inoculated with Bra+Azo exhibited higher chlorophyll contents, resulting in a higher photochemical yield than for those treated with compost extracts (AC and GC). However, plants inoculated with AC and GC exhibited high plasticity in mitigating photochemical stress, reaching similar photosynthetic and transpiration rates to those observed in plants inoculated with Bra+Azo. Additionally, inoculation with Bra+Azo, overall, improved the photosynthetic efficiency of soybean plants, and the compost extracts (AC and GC) were more effective than the inoculation with Bra+Azo in increasing soybean 1000-grain weight, probably due to improvements in root development. The growth promotion observed with AC and GC is likely attributed to increases in SMBC by these compounds, denoting improvements in soil quality and biocontrol of damage caused by insect attacks. Full article
(This article belongs to the Special Issue Microorganisms in Agriculture)
Show Figures

Figure 1

16 pages, 2972 KiB  
Article
Complex Microbial Fertilizer Promotes the Growth of Summer-Sown Short-Season-Cultivated Cotton and Increases Cotton Yield in the Yangtze River Basin by Changing the Soil Microbial Community Structure
by Zhangshu Xie, Xiaorong Wang, Xuefang Xie, Dan Yang, Zhonghua Zhou, Qiming Wang, Aiyu Liu and Xiaoju Tu
Agronomy 2025, 15(2), 404; https://doi.org/10.3390/agronomy15020404 - 4 Feb 2025
Viewed by 484
Abstract
The summer-sowing short-season cotton cultivation model is an important method for simplified and mechanized cotton planting in the Yangtze River Basin. However, the effects of microbial fertilizers on cotton growth and soil under this model remain unclear. In 2023, we conducted a systematic [...] Read more.
The summer-sowing short-season cotton cultivation model is an important method for simplified and mechanized cotton planting in the Yangtze River Basin. However, the effects of microbial fertilizers on cotton growth and soil under this model remain unclear. In 2023, we conducted a systematic analysis on the application of microbial fertilizers (compost) at varying levels (CK, MF1, MF2, and MF3) during different growth stages of cotton (bud, flowering, bolling, and boll opening). Results showed that appropriate microbial fertilizer application (MF2 and MF3) enhanced soil bacterial and fungal diversity, enriched beneficial microorganisms (e.g., Acidobacteriota and Candidatus Udaeobacter), improved soil nutrient availability, and increased antioxidant enzyme activity (POD, SOD), while reducing membrane lipid peroxidation (MDA). These effects led to significant improvements in yield traits, such as cotton plant height, number of fruiting branches and bolls, boll weight, and coat weight. The highest microbial fertilizer application level (MF3) resulted in a 54.35% increase in seed yield and a 75.37% increase in lint yield compared to CK. PLS-DA (Partial Least Squares Discriminant Analysis) and multivariate statistical analyses revealed that microbial fertilizer application fine-tuned soil microbial community composition, emphasizing the dynamic balance of the microbial ecosystem. This study provides scientific support for optimizing microbial fertilizer strategies to enhance the yield and quality of summer-sown short-season cotton and promote sustainable agriculture. Full article
Show Figures

Figure 1

Back to TopTop