Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,891)

Search Parameters:
Keywords = microhardness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4114 KiB  
Article
Effects of Five Different Toothpastes on Remineralization and Surface Roughness of Primary Tooth Enamel with Artificial Initial Caries
by Gokce Ozcan Altinsoy and Derya Ceyhan
Appl. Sci. 2024, 14(16), 7232; https://doi.org/10.3390/app14167232 - 16 Aug 2024
Abstract
There are only a few studies about the effects of toothpastes for children on remineralization and surface roughness of primary teeth. The aim of this study was to examine the remineralization capacity of five different toothpastes for children on primary tooth enamels with [...] Read more.
There are only a few studies about the effects of toothpastes for children on remineralization and surface roughness of primary teeth. The aim of this study was to examine the remineralization capacity of five different toothpastes for children on primary tooth enamels with artificial initial caries, their effects on enamel surface roughness, and the relationship between their abrasive effects and remineralization. Sixty of 74 samples were allocated for microhardness and AFM analyses (after initialization, demineralization, and pH cycling), and 14 samples were evaluated by SEM. Sixty samples were divided into five groups, with each group representing a different toothpaste brand, as follows: Group 1: Splat; Group 2: Logodent; Group 3: Eyup Sabri Tuncer; Group 4: Naturalive; and Group 5: Buccotherm. Fourteen samples were divided into seven groups, each representing a different processing stage, with two samples in each group, for the initial (sound enamel surface) stage, post demineralization, and after applying the five remineralizing toothpastes. Toothpastes were applied to samples in a 7-day pH cycle. Data were analyzed statistically. Each toothpaste showed increased microhardness values; however, this increase was significant only for Group 4 (Naturalive) and Group 5 (Buccotherm). The highest surface roughness values were obtained after demineralization. The toothpastes reduced surface roughness, but these reductions were not statistically significant among the different types of toothpastes. The correlation analysis revealed that the toothpastes affected surface roughness according to their remineralization potential. The results were supported by SEM images. All toothpastes recovered primary tooth enamels with artificial initial caries, but only two had significant values. Full article
Show Figures

Figure 1

17 pages, 6174 KiB  
Article
Microstructure and Microhardness Evolution of Mg–8Al–1Zn Magnesium Alloy Processed by Differential Speed Rolling at Elevated Temperatures
by Saad A. Alsubaie, Ahmed S. J. Al-Zubaydi, Emad A. Hussein and Meshal Y. Alawadhi
Materials 2024, 17(16), 4072; https://doi.org/10.3390/ma17164072 - 16 Aug 2024
Abstract
Mg–8Al–1Zn magnesium alloy was successfully processed using deferential speed rolling (DSR) at temperatures of 400 and 450 °C for thickness reduction of 30, 50, and 70% with no significant grain growth and dynamic recrystallization. Using optical microscopy (OM), scanning electron microscopy (SEM), and [...] Read more.
Mg–8Al–1Zn magnesium alloy was successfully processed using deferential speed rolling (DSR) at temperatures of 400 and 450 °C for thickness reduction of 30, 50, and 70% with no significant grain growth and dynamic recrystallization. Using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), the rolled microstructures were examined. Although the results indicate a slight reduction in grain size from the initial condition, the DSR processing of alloy at an elevated temperature was associated with a significant number of twins and a distribution of the fine particles of the second phase. The strength in terms of microhardness measurements and strain hardening in terms of shear punch testing was significantly improved in the rolled microstructure at room temperature. The existence of twins and widely distributed second-phase fine particles at twin boundaries reflected positively on the extent of the elongations in terms of shear displacements when microstructures were tested at elevated temperatures in the shear punch testing. Full article
Show Figures

Figure 1

15 pages, 4336 KiB  
Article
Microstructure and Wear Performance of TaC and Ta/TaC Coatings on 30CrNi2MoVA Steel
by Kai Yang, Xuming Lv, Bo Dang, Zhuoyan Lai, Xiaohu Chen, Dongbo Wei, Shuqin Li and Pingze Zhang
Coatings 2024, 14(8), 1039; https://doi.org/10.3390/coatings14081039 - 15 Aug 2024
Viewed by 222
Abstract
To enhance the wear resistance of artillery barrels in harsh environments, TaC and Ta/TaC coatings were prepared on 30CrNi2MoVA steel using double-glow plasma surface metallurgy technology. These coatings, of which their surfaces consisted of almost pure TaC phases, showed defect-free interfaces with the [...] Read more.
To enhance the wear resistance of artillery barrels in harsh environments, TaC and Ta/TaC coatings were prepared on 30CrNi2MoVA steel using double-glow plasma surface metallurgy technology. These coatings, of which their surfaces consisted of almost pure TaC phases, showed defect-free interfaces with the substrate. The Ta/TaC coating demonstrated excellent integration, forming a nearly homogeneous structure. The coatings exhibited a gradient cross-sectional hardness, affecting a depth of approximately 20 μm. The Ta transition layer significantly enhanced the microhardness and adhesive strength of the TaC coating, with about 16.7% and 68.5% increases in the Ta/TaC coating, respectively. Both coatings markedly improved the wear resistance, showing slight wear at room temperature and minor oxidative wear at high temperatures. The Ta/TaC coating had more stable friction coefficient curves and a lower specific wear rate, with an 11.4% wear rate of the substrate at 500 °C. Thermal mismatch and stress concentration under wear loads caused extensive cracks and edge chipping in the TaC coating. In contrast, the good compatibility between the Ta transition layer and the TaC layer allowed for cooperative deformation with the substrate, creating a plastic deformation zone that reduced internal stresses and stress concentration, maintaining the intact structure. This study provides insights into applying Ta/TaC coatings for artillery barrel protection and broadens the possible application scenarios of the preparation technology. Full article
Show Figures

Figure 1

15 pages, 13694 KiB  
Article
Karwowskiite, Ca9(Fe2+0.50.5)Mg(PO4)7—A New Merrillite Group Mineral from Paralava of the Hatrurim Complex, Daba-Siwaqa, Jordan
by Evgeny V. Galuskin, Irina O. Galuskina, Joachim Kusz, Maria Książek, Yevgeny Vapnik and Grzegorz Zieliński
Minerals 2024, 14(8), 825; https://doi.org/10.3390/min14080825 - 14 Aug 2024
Viewed by 225
Abstract
Crystals of karwowskiite, Ca9Mg(Fe2+0.50.5)(PO4)7, a new mineral of the merrillite group, were found on an amygdule wall in the central part of an anorthite–tridymite–diopside paralava of the Hatrurim Complex, Daba-Siwaqa, Jordan. The [...] Read more.
Crystals of karwowskiite, Ca9Mg(Fe2+0.50.5)(PO4)7, a new mineral of the merrillite group, were found on an amygdule wall in the central part of an anorthite–tridymite–diopside paralava of the Hatrurim Complex, Daba-Siwaqa, Jordan. The amygdule was filled with a sulfide melt, which after crystallization gave a differentiated nodule, consisting of troilite and pentlandite parts and containing tetrataenite and nickelphosphide inclusions. Karwowskiite crystals are colorless, although sometimes a greenish tint is observed. The mineral has a vitreous luster. The microhardness VHN25 is 365 (12), corresponding to 4 on the Mohs hardness scale. Cleavage is not observed, and fracture is conchoidal. The calculated density is 3.085 g/cm3. Karwowskiite is uniaxial (−): ω = 1.638 (3), ε = 1.622 (3) (λ = 589 nm), and pleochroism is not observed. The composition of karwowskiite is described by the empirical formula: Ca9.00(□0.54Fe2+0.23Mg0.12Na0.04 Sr0.03 Ni0.03K0.01) Σ1.00Mg1.00(PO4)7.02. Karwowskiite is distinct from the known minerals of the merrillite subgroup with the general formula A9XM[TO3(Ø)]7, where A = Ca, Na, Sr, and Y; X = Na, Ca, and □; M = Mg, Fe2+, Fe3+, and Mn; T = P; and Ø = O, in that the X site in it is occupied by Fe2+0.50.5. Karwowskiite is trigonal, space group R-3c with a = 10.3375 (2) Å, c = 37.1443 (9) Å, and V = 3437.60 (17) Å3. Karwowskiite crystallizes at temperatures lower than 1100 °C in a thin layer of secondary melt forming on the walls of amygdules and gaseous channels in paralava as a result of contact with heated gases which are by-products of the combustion process. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Graphical abstract

12 pages, 2664 KiB  
Article
Research on the Structural–Phase and Physical–Mechanical Characteristics of the Cr3C2-NiCr Composite Coating Deposited by the HVOF Method on E110 Zirconium Alloy
by Sherzod Kurbanbekov, Bauyrzhan Rakhadilov, Dauir Kakimzhanov, Bekbolat Seitov, Karakoz Katpaeva, Abil Kurmantayev, Merkhat Dautbekov and Aidar Kengesbekov
Coatings 2024, 14(8), 1030; https://doi.org/10.3390/coatings14081030 - 14 Aug 2024
Viewed by 270
Abstract
Composite coatings based on chromium carbide (Cr3C2) and nickel–chromium alloys (NiCr) are widely used due to their unique properties, including high heat resistance, wear resistance and corrosion resistance. This article studies the structural–phase and physical–mechanical characteristics of Cr3 [...] Read more.
Composite coatings based on chromium carbide (Cr3C2) and nickel–chromium alloys (NiCr) are widely used due to their unique properties, including high heat resistance, wear resistance and corrosion resistance. This article studies the structural–phase and physical–mechanical characteristics of Cr3C2-NiCr composite coatings applied by high-velocity oxygen fuel to E110 zirconium alloy. The HVOF method was chosen to create coatings with high adhesion to the substrate and excellent performance properties. Analysis of the microstructure of the cross-section showed the thickness of the modified surface layer from 75 to 110 μm, depending on the processing modes. Energy dispersive X-ray spectral analysis revealed the presence of elements Cr, Ni, C and O in the coating composition. Structural–phase analysis confirmed the formation of coatings with a high concentration of Cr3C2 carbide particles and NiCr (nickel–chromium) phases. The resulting composite coatings based on Cr3C2-NiCr had a significantly high microhardness, ranging from HV 1190 to HV 1280, and the friction coefficient varied in a significant range from 0.679 to 0.502 depending on the processing conditions. The maximum adhesion strength was 9.19 MPa per square centimeter. Full article
Show Figures

Figure 1

15 pages, 11362 KiB  
Article
Influence of Laser Scanning Speed on Wear and Corrosion Resistance of Aluminum–Nickel Coating on Magnesium Alloy
by Yali Gao, Shan Jiang, Pengyong Lu, Sicheng Bai, Dongdong Zhang and Meng Jie
Processes 2024, 12(8), 1689; https://doi.org/10.3390/pr12081689 - 13 Aug 2024
Viewed by 350
Abstract
To improve the wear and corrosion resistance, Al-Ni coating was prepared on Mg alloy by laser cladding, and the influence of the laser scanning speed on the microstructure, wear and corrosion resistance of the coatings was systematically analyzed. The results showed that the [...] Read more.
To improve the wear and corrosion resistance, Al-Ni coating was prepared on Mg alloy by laser cladding, and the influence of the laser scanning speed on the microstructure, wear and corrosion resistance of the coatings was systematically analyzed. The results showed that the coatings with different scanning speeds were composed of Al3Ni2, Mg17Al12 and Mg2Al3 phases. The coatings presented fine needle-like grains. Under different scanning speeds, the microhardness of the coatings was 3.3–4.8 times that of the substrate, and the wear volume of the coatings was decreased by 40.08–51.38%. The coating with a laser scanning speed of 600 mm/min had the highest hardness, the best wear and corrosion resistance. Full article
(This article belongs to the Special Issue Microstructure, Processing and Numerical Simulation of Coatings)
Show Figures

Figure 1

15 pages, 5822 KiB  
Article
Microstructure and Mechanical Properties of As-Cast Al-10Ce-3Mg-xZn Alloys
by Haiyang Zhang, Mingdong Wu, Zeyu Li, Daihong Xiao, Yang Huang, Lanping Huang and Wensheng Liu
Materials 2024, 17(16), 3999; https://doi.org/10.3390/ma17163999 - 12 Aug 2024
Viewed by 300
Abstract
The microstructure and mechanical properties of as-cast Al-10Ce-3Mg-xZn (x = 0, 1, 3, 5 wt.%) alloys were systematically investigated, with a focus on the effect of Zn on the Al11Ce3 reinforcing phase in the alloy. The results showed that the [...] Read more.
The microstructure and mechanical properties of as-cast Al-10Ce-3Mg-xZn (x = 0, 1, 3, 5 wt.%) alloys were systematically investigated, with a focus on the effect of Zn on the Al11Ce3 reinforcing phase in the alloy. The results showed that the Al-10Ce-3Mg alloy consists of α-Al, a Chinese-script Al11Ce3 eutectic phase, and a massive Al11Ce3 primary phase. With the addition of Zn content, most of the Zn atoms are enriched in the Al11Ce3 phase to form the acicular-like Al2CeZn2 phase within the Al11Ce3 phase. Increasing the Zn content can increase the volume fraction of the Al11Ce3 phase. Compared to the alloy without Zn addition, the microhardness and elastic modulus of the Al2CeZn2-reinforced Al11Ce3 phase in the alloy with 5 wt.% Zn increased by 18.9% and 9.0%, respectively. Moreover, the room-temperature mechanical properties of Al-10Ce-3Mg alloys were significantly improved due to the addition of Zn element. The alloy containing 5 wt.% Zn had the best tensile properties with an ultimate tensile strength of 210 MPa and a yield strength of 171MPa, which were 21% and 77% higher than those of the alloy without Zn, respectively. The alloy containing 5 wt.% Zn demonstrated a superior retention ratio of tensile strength at 200–300 °C, indicating that the alloy has excellent heat resistance. The improvement in the mechanical properties is primarily attributed to second-phase strengthening and solid solution strengthening. Full article
(This article belongs to the Collection Alloy and Process Development of Light Metals)
Show Figures

Graphical abstract

22 pages, 20905 KiB  
Article
Study on Pulsed Gas Tungsten Arc Lap Welding Techniques for 304L Austenitic Stainless Steel
by Yi Jiang, Jiafeng Wu, Chao Zhou, Qingqing Han and Chunjian Hua
Crystals 2024, 14(8), 715; https://doi.org/10.3390/cryst14080715 - 9 Aug 2024
Viewed by 278
Abstract
The lap welding process for 304L stainless steel welded using the pulsed gas tungsten arc welding (P-GTAW) procedure was studied, and the effects of the pulse welding parameters (the peak current, background current, duty cycle, pulse frequency, and welding speed) on the macroscopic [...] Read more.
The lap welding process for 304L stainless steel welded using the pulsed gas tungsten arc welding (P-GTAW) procedure was studied, and the effects of the pulse welding parameters (the peak current, background current, duty cycle, pulse frequency, and welding speed) on the macroscopic morphology, microstructure, and mechanical properties of the resultant lap joints were investigated. Tensile tests, hardness measurements, and SEM/EDS/XRD analyses were conducted to reveal the characterization of the joint. The relationships between the welding parameters; certain joint characteristic dimensions (the weld width, D; the weld width on the lower plate, La; the weld depth on the lower plate, P; and the minimum fusion radius, R); and the maximum tensile bearing capacity were studied. The weld zone was primarily composed of vermicular ferrite, skeletal ferrite, and austenite, and no obvious welding defects, precipitation, or phase transformations were evident in the weld. Microhardness tests demonstrated that the weld microhardness was highest in the base metal zone and lowest in the weld zone. As the heat input increased, the average microhardness decreased. The hardness difference reached 17.6 Hv10 due to the uneven grain size and the transformation of the structure to ferrite in the weld. The fracture location in welded joints varied as the heat input changed. In some parameter combinations, the weld tensile strength was significantly higher than that of the base material, with fractures occurring in the weld. Scanning electron microscopy results exhibited an obvious dimple morphology, which is a typical form of ductile fracture. XRD revealed no significant phase changes in the weld zone, with a higher intensity of the austenite diffraction peaks compared to the ferrite diffraction peaks. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 5191 KiB  
Article
Impact of Density Variations and Growth Direction in 3D-Printed Titanium Alloys on Surface Topography and Bonding Performance with Dental Resins
by Omar Alageel, Najm Alfrisany, Abdullah Aldosari, Saud Qashish, Majed M. Alsarani and Abdullah Yahia AlFaify
Crystals 2024, 14(8), 712; https://doi.org/10.3390/cryst14080712 - 8 Aug 2024
Viewed by 367
Abstract
Titanium-based dental prostheses are essential for prosthodontics and can now be 3D printed using powder bed fusion (PBF) technology with different densities by controlling the process parameters. This study aimed to assess the surface topography and bonding strength of dental resins made of [...] Read more.
Titanium-based dental prostheses are essential for prosthodontics and can now be 3D printed using powder bed fusion (PBF) technology with different densities by controlling the process parameters. This study aimed to assess the surface topography and bonding strength of dental resins made of 3D-printed titanium alloys with varying densities and growth directions. Three groups of titanium alloy (Ti6Al4V) specimens differentiated by density (low, medium, and high) were produced using laser-melting 3D printing technology (N = 8). Each group included specimen surfaces with vertical and horizontal growths. Vickers microhardness, surface profilometry, wettability, and shear bond strength (SBS) of the titanium samples were measured for all groups. Scanning electron microscopy (SEM) was performed. Statistical analyses were conducted using a two-way ANOVA and Fisher’s multiple test. Higher-density specimens exhibited greater microhardness (p < 0.05), and those with horizontal growth directions were harder (p < 0.05) than their vertical counterparts within the same density category. Additionally, low-density specimens in both growth directions had the highest surface roughness values (p < 0.05) compared to the other groups. The wettability values were similar (p > 0.05) among the groups in the vertical direction, but not in the horizontal direction (p < 0.05). However, the density type did not significantly (p > 0.05) influence the bonding strength of 3D-printed titanium. This study revealed significant variations in surface roughness, contact angle, and microhardness based on density and growth direction. Full article
Show Figures

Figure 1

14 pages, 4743 KiB  
Article
Influence of Ca3(PO4)2 on the Surface Morphology and Properties of a CaO-Al2O3-SiO2-Fe2O3-Based High Temperature Phase Reconstructed Complex
by Huanyin Yang, Hongli Guo, Hongjuan Sun and Tongjiang Peng
Molecules 2024, 29(16), 3740; https://doi.org/10.3390/molecules29163740 - 7 Aug 2024
Viewed by 290
Abstract
In this study, a glaze slurry was prepared with different contents of tricalcium phosphate. It was then applied to a fly ash microcrystalline ceramic billet and sintered at 1180 °C for 30 min to prepare the complex. The aim was to obtain a [...] Read more.
In this study, a glaze slurry was prepared with different contents of tricalcium phosphate. It was then applied to a fly ash microcrystalline ceramic billet and sintered at 1180 °C for 30 min to prepare the complex. The aim was to obtain a high value-added application of fly ash in order to reduce environmental pollution. The study systematically investigated the influence of the Ca3(PO4)2 content on the crystal phase evolution, physical-mechanical properties, and micro-morphology of the complex. The results showed that products sintered at 1180 °C with 8 wt% Ca3(PO4)2 demonstrated better performance, with a water absorption of 0.03% and a Vickers microhardness of 6.5 GPa. Additionally, the study observed a strong correlation between the Ca3(PO4)2 content and the opacity effect. A feasible opacity mechanism was also proposed to explain the variation of glaze colors and patterns with different contents of Ca3(PO4)2. Full article
Show Figures

Graphical abstract

12 pages, 3837 KiB  
Article
The Influence of Ionizing Radiation on the Morphological Structure of the Fluoride-Releasing Restorative Materials in Cancer Patients: An In Vitro Study
by Eva Klarić, Bruno Špiljak, Luka Šimunović, Majana Soče, Timor Grego and Ana Ivanišević
Sci 2024, 6(3), 47; https://doi.org/10.3390/sci6030047 - 7 Aug 2024
Viewed by 487
Abstract
Radiotherapy plays a key role in the treatment of the early and advanced stages of head and neck cancer. To date, there is still no consensus on the effects of radiotherapy on the mechanical properties of fluoride-releasing restorative materials which can be used [...] Read more.
Radiotherapy plays a key role in the treatment of the early and advanced stages of head and neck cancer. To date, there is still no consensus on the effects of radiotherapy on the mechanical properties of fluoride-releasing restorative materials which can be used in patients undergoing radiotherapy with increased incidence of caries. The fluoride-releasing materials Equia Forte HT and Cention N were compared to the resin-based materials Tetric EvoCeram and Tetric Power Fill. Standard irradiation was performed with a linear accelerator. Vickers microhardness, mass, surface roughness and color were measured before and after irradiation. Cention N and Tetric PowerFill showed stability in the mass, while the surface roughness did not change in any of the examined groups. Resistance to microhardness change was shown by Cention N, Tetric PowerFill and Tetric EvoCeram, and the color change was significant in all groups (p < 0.05). It should be remembered that patients receiving head and neck radiation therapy may experience adverse effects from the treatment, including changes in the mechanical properties of the restorative materials. The obtained results suggest that Cention N can be used as a material in patients undergoing head and neck radiotherapy due to the mechanical stability and depo effect of fluoride release. Full article
Show Figures

Figure 1

17 pages, 16568 KiB  
Article
Thermally Sprayed Coatings for the Protection of Industrial Fan Blades
by Maria Richert
Materials 2024, 17(16), 3903; https://doi.org/10.3390/ma17163903 - 7 Aug 2024
Viewed by 330
Abstract
This paper presents a study on thermally sprayed coatings. Coatings produced by high-velocity oxygen–fuel spraying HVOF and plasma spraying deposited on the A03590 aluminum casting alloy are tested. The subject of this research concerns coatings based on tungsten carbide WC, chromium carbide Cr [...] Read more.
This paper presents a study on thermally sprayed coatings. Coatings produced by high-velocity oxygen–fuel spraying HVOF and plasma spraying deposited on the A03590 aluminum casting alloy are tested. The subject of this research concerns coatings based on tungsten carbide WC, chromium carbide Cr3C2, composite coatings NiCrSiB + 2.5%Fe + 2.5%Cr, mixtures of tungsten and chromium powders WC-CrC-Ni, mixtures of carbide powders with the Cr3C2-NiCr + the composite 5% NiCrBSi and WC-Co + 5% NiCrBSi. The aim of this research is to find a coating most resistant to the erosive impact of particles contained in the medium centrifuged by industrial rotors. The suitability of the coating is determined by its high level of microhardness. The hardest coatings are selected from the coatings tested and subjected to abrasion tests against a sand particle impact jet and the centrifugation of a medium with corundum particles. It is found that the most favorable anti-erosion properties are demonstrated by a coating composed of a mixture of tungsten carbide and chromium carbide WC-CrC-Ni powders. It is concluded that the greatest resistance of this coating to the erosive impact of the particle jet results from the synergistic enhancement of the most favorable features of both cermets. Full article
(This article belongs to the Special Issue Recent Advances and Emerging Challenges in Functional Coatings)
Show Figures

Figure 1

15 pages, 8941 KiB  
Article
Formation of Symmetric Gradient Microstructure in Carbon Steel Bars
by Irina Volokitina, Andrey Volokitin and Bolat Makhmutov
Symmetry 2024, 16(8), 997; https://doi.org/10.3390/sym16080997 - 6 Aug 2024
Viewed by 339
Abstract
In recent years, severe plastic deformation has attracted the most attention as a way to improve the mechanical properties of steel bars. Obtaining ultrafine grains and nanostructures in such bars leads to a strong increase in strength properties but strongly reduces their plastic [...] Read more.
In recent years, severe plastic deformation has attracted the most attention as a way to improve the mechanical properties of steel bars. Obtaining ultrafine grains and nanostructures in such bars leads to a strong increase in strength properties but strongly reduces their plastic properties. This study shows that the formation of a gradient microstructure allows simultaneous improvement in the strength and plastic properties of carbon steel bars, taking into account the symmetry of the microstructure distribution from the center of machining. A new combined technology is proposed to obtain such a microstructure. This technology consists of drawing bars from medium carbon steel on a radial-displacement rolling mill and carrying out subsequent drawing. Steel bars with a diameter of 30 mm were strained in three passes to a diameter of 16 mm at room temperature. The results show that the average value of microhardness in the center, neutral, and surface areas for the three straining cycles were 1890 MPa, 2335 MPa, and 2920 MPa, respectively. This symmetrical distribution of microhardness confirms the gradient microstructure. Strength characteristics also increased almost twofold: the yield strength increased from 330 to 735 MPa, and the ultimate strength increased from 600 MPa to 1025 MPa. Relative elongation decreased from 18 to 14 MPa, and relative reduction decreased from 40 to 31%, but remained at a fairly good level for AISI 1045 steel. The validity of all results was confirmed through numerous experiments using a set of traditional and modern research methods, which included optical, scanning, and transmission microscopy. EBSD analysis allowed precise positioning of the field of vision for studying microstructural changes across the entire bar cross-section. All of these methods used together, including tensile testing of the mechanical properties and the fractographic method, allow us to assess changes in microhardness and the reproduction of results. Full article
Show Figures

Figure 1

14 pages, 11569 KiB  
Article
Effect of Swing Amplitude on Microstructure and Properties of TC4 Titanium Alloy in Laser Welding
by Jianhui Liang and Zhanqi Liu
Metals 2024, 14(8), 893; https://doi.org/10.3390/met14080893 - 5 Aug 2024
Viewed by 469
Abstract
The welding of TC4 titanium alloy sheets with a thickness of 1 mm was successfully accomplished by a swinging laser. The microstructure and mechanical properties of the welding seam under different swing amplitudes were studied. In this paper, the microstructure, phase composition, mechanical [...] Read more.
The welding of TC4 titanium alloy sheets with a thickness of 1 mm was successfully accomplished by a swinging laser. The microstructure and mechanical properties of the welding seam under different swing amplitudes were studied. In this paper, the microstructure, phase composition, mechanical properties, and fracture morphology of the weld with swing frequency of 50 Hz and different swing amplitudes (0.2 mm, 1 mm, 2 mm, and 3 mm) were tested and analyzed. The results show that basket-weave microstructures are present in the fusion zone of welds under different oscillation amplitudes, but the morphology of martensite within the basket-weave differs. The weld microstructure is mainly composed of acicular α′ martensite, initial α phase, secondary α phase, and residual β phase. The hardness of the weld is higher than that of the base metal, and the overall hardness decreases from the weld center to the base metal. When the oscillation amplitude A = 1 mm, the weld microstructure has the smallest average grain size, the highest microhardness (388.86 HV), the largest tensile strength (1115.4 MPa), and quasi-cleavage fracture occurs. At an oscillation amplitude of A = 2 mm, the tensile specimen achieves the maximum elongation of 14%, with ductile fracture as the dominant mechanism. Full article
Show Figures

Figure 1

15 pages, 5299 KiB  
Article
Corrosion Resistance of Coatings Based on Chromium and Aluminum of Titanium Alloy Ti-6Al-4V
by Tetiana Loskutova, Michael Scheffler, Ivan Pavlenko, Kamil Zidek, Inna Pohrebova, Nadiia Kharchenko, Iryna Smokovych, Oleksandr Dudka, Volodymyr Palyukh, Vitalii Ivanov and Yaroslav Kononenko
Materials 2024, 17(15), 3880; https://doi.org/10.3390/ma17153880 - 5 Aug 2024
Viewed by 355
Abstract
Improvement of wear, corrosion, and heat-resistant properties of coatings to expand the operational capabilities of metals and alloys is an urgent problem for modern enterprises. Diffusion titanium, chromium, and aluminum-based coatings are widely used to solve this challenge. The article aims to obtain [...] Read more.
Improvement of wear, corrosion, and heat-resistant properties of coatings to expand the operational capabilities of metals and alloys is an urgent problem for modern enterprises. Diffusion titanium, chromium, and aluminum-based coatings are widely used to solve this challenge. The article aims to obtain the corrosion-electrochemical properties and increase the microhardness of the obtained coatings compared with the initial Ti-6Al-4V alloy. For this purpose, corrosion resistance, massometric tests, and microstructural analysis were applied, considering various aggressive environments (acids, sodium carbonate, and hydrogen peroxide) at different concentrations, treatment temperatures, and saturation times. As a result, corrosion rates, polarization curves, and X-ray microstructures of the uncoated and coated Ti-6Al-4V titanium alloy samples were obtained. Histograms of corrosion inhibition ratio for the chromium–aluminum coatings in various environments were discussed. Overall, the microhardness of the obtained coatings was increased 2.3 times compared with the initial Ti-6Al-4V alloy. The corrosion-resistant chromaluminizing alloy in aqueous solutions of organic acids and hydrogen peroxide was recommended for practical application in conditions of exposure to titanium products. Full article
Show Figures

Figure 1

Back to TopTop