Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,086)

Search Parameters:
Keywords = microwave imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8181 KiB  
Article
Experimental Study on the Influence of Microwave Energy Pulse Width and Duty Cycle on Evaporation and Ignition Characteristics of ADN-Based Liquid Propellant Droplets
by Dezhao Yu, Jiale Yao, Jiafu Ma, Yangyang Hou, Shaoyun Zhang and Yusong Yu
Aerospace 2024, 11(7), 573; https://doi.org/10.3390/aerospace11070573 - 12 Jul 2024
Viewed by 259
Abstract
This study investigates the evaporation and ignition characteristics of a single droplet of ammonium dinitramide (ADN)-based liquid propellant utilizing a waveguide resonant cavity device, in conjunction with a high-speed photographic imaging system and testing system. Experimental methods are employed to analyze the impact [...] Read more.
This study investigates the evaporation and ignition characteristics of a single droplet of ammonium dinitramide (ADN)-based liquid propellant utilizing a waveguide resonant cavity device, in conjunction with a high-speed photographic imaging system and testing system. Experimental methods are employed to analyze the impact of microwave pulse width and duty cycle on the puffing and meicro-explosion phenomena of the droplet, as well as the delay time and duration of ignition. The experimental findings reveal that increasing the duty cycle enhances the ignition success rate and diminishes flame development time. Specifically, elevating the microwave duty cycle from 60% to 80% reduces the ignition delay time of the droplet from 132.8 ms to 88.1 ms, and the ignition duration from 23.1 ms to 19.9 ms. Furthermore, an increase in microwave energy pulse width expedites the combustion process of the flame and influences plasma generation. Increasing the pulse width of microwave energy from 20 µs to 40 µs prolongs the ignition delay time from 140.3 ms to 200.5 ms and extends the ignition duration from 56.7 ms to 77.8 ms. Additionally, it is observed that a higher duty cycle leads to a more pronounced puffing phenomenon that initiates earlier. In contrast, a higher pulse width results in a more pronounced puffing phenomenon that commences later. This study provides a thorough investigation into the microwave ignition mechanism of ADN-based liquid propellants, offering theoretical insights into the ignition and combustion stability of such propellants in microwave-assisted ignition systems. Full article
Show Figures

Figure 1

31 pages, 4981 KiB  
Review
Review of Microwave Near-Field Sensing and Imaging Devices in Medical Applications
by Cristina Origlia, David O. Rodriguez-Duarte, Jorge A. Tobon Vasquez, Jean-Charles Bolomey and Francesca Vipiana
Sensors 2024, 24(14), 4515; https://doi.org/10.3390/s24144515 - 12 Jul 2024
Viewed by 509
Abstract
Microwaves can safely and non-destructively illuminate and penetrate dielectric materials, making them an attractive solution for various medical tasks, including detection, diagnosis, classification, and monitoring. Their inherent electromagnetic properties, portability, cost-effectiveness, and the growth in computing capabilities have encouraged the development of numerous [...] Read more.
Microwaves can safely and non-destructively illuminate and penetrate dielectric materials, making them an attractive solution for various medical tasks, including detection, diagnosis, classification, and monitoring. Their inherent electromagnetic properties, portability, cost-effectiveness, and the growth in computing capabilities have encouraged the development of numerous microwave sensing and imaging systems in the medical field, with the potential to complement or even replace current gold-standard methods. This review aims to provide a comprehensive update on the latest advances in medical applications of microwaves, particularly focusing on the near-field ones working within the 1–15 GHz frequency range. It specifically examines significant strides in the development of clinical devices for brain stroke diagnosis and classification, breast cancer screening, and continuous blood glucose monitoring. The technical implementation and algorithmic aspects of prototypes and devices are discussed in detail, including the transceiver systems, radiating elements (such as antennas and sensors), and the imaging algorithms. Additionally, it provides an overview of other promising cutting-edge microwave medical applications, such as knee injuries and colon polyps detection, torso scanning and image-based monitoring of thermal therapy intervention. Finally, the review discusses the challenges of achieving clinical engagement with microwave-based technologies and explores future perspectives. Full article
(This article belongs to the Special Issue Microwave Sensing Systems)
Show Figures

Figure 1

24 pages, 15151 KiB  
Article
Polar Sea Ice Monitoring Using HY-2B Satellite Scatterometer and Scanning Microwave Radiometer Measurements
by Tao Zeng, Lijian Shi, Yingni Shi, Dunwang Lu and Qimao Wang
Remote Sens. 2024, 16(13), 2486; https://doi.org/10.3390/rs16132486 - 6 Jul 2024
Viewed by 540
Abstract
The Ku band microwave scatterometer (SCA) and scanning microwave radiometer (SMR) onboard HaiYang-2B (HY-2B) can simultaneously supply active and passive microwave observations over the polar region. In this paper, a polar ice water discrimination model and Arctic sea-ice-type classification model based on the [...] Read more.
The Ku band microwave scatterometer (SCA) and scanning microwave radiometer (SMR) onboard HaiYang-2B (HY-2B) can simultaneously supply active and passive microwave observations over the polar region. In this paper, a polar ice water discrimination model and Arctic sea-ice-type classification model based on the support vector machine (SVM) method were established and used to produce a daily sea ice extent dataset from 2019 to 2021 with data from SCA and SMR. First, suitable scattering and radiation parameters are chosen as input data for the discriminant model. Then, the sea ice extent was obtained based on the monthly ice water discrimination model, and finally, the ice over the Arctic was classified into multiyear ice (MYI) and first-year ice (FYI). The 3-year ice extent and MYI extent products were consistent with the similar results of the National Snow and Ice Data Center (NSIDC) and Ocean and Sea Ice Satellite Application Facility (OSISAF). Using the OSISAF similar product as validation data, the overall accuracies (OAs) of ice/water discrimination and FYI/MYI discrimination are 99% and 97%, respectively. Compared with the high spatial resolution classification results of the Moderate Resolution Imaging Spectroradiometer (MODIS) and SAR, the OAs of ice/water discrimination and FYI/MYI discrimination are 96% and 86%, respectively. In conclusion, the SAC and SMR of HY-2B have been verified for monitoring polar sea ice, and the sea ice extent and sea-ice-type products are promising for integration into long-term sea ice records. Full article
(This article belongs to the Special Issue Recent Advances in Sea Ice Research Using Satellite Data)
Show Figures

Figure 1

20 pages, 9507 KiB  
Article
Sparse SAR Imaging Based on Non-Local Asymmetric Pixel-Shuffle Blind Spot Network
by Yao Zhao, Decheng Xiao, Zhouhao Pan, Bingo Wing-Kuen Ling, Ye Tian and Zhe Zhang
Remote Sens. 2024, 16(13), 2367; https://doi.org/10.3390/rs16132367 - 28 Jun 2024
Viewed by 360
Abstract
The integration of Synthetic Aperture Radar (SAR) imaging technology with deep neural networks has experienced significant advancements in recent years. Yet, the scarcity of high-quality samples and the difficulty of extracting prior information from SAR data have experienced limited progress in this domain. [...] Read more.
The integration of Synthetic Aperture Radar (SAR) imaging technology with deep neural networks has experienced significant advancements in recent years. Yet, the scarcity of high-quality samples and the difficulty of extracting prior information from SAR data have experienced limited progress in this domain. This study introduces an innovative sparse SAR imaging approach using a self-supervised non-local asymmetric pixel-shuffle blind spot network. This strategy enables the network to be trained without labeled samples, thus solving the problem of the scarcity of high-quality samples. Through asymmetric pixel-shuffle downsampling (AP) operation, the spatial correlation between pixels is broken so that the blind spot network can adapt to the actual scene. The network also incorporates a non-local module (NLM) into its blind spot architecture, enhancing its capability to analyze a broader range of information and extract more comprehensive prior knowledge from SAR data. Subsequently, Plug and Play (PnP) technology is used to integrate the trained network into the sparse SAR imaging model to solve the regularization term problem. The optimization of the inverse problem is achieved through the Alternating Direction Method of Multipliers (ADMM) algorithm. The experimental results of the unlabeled samples demonstrate that our method significantly outperforms traditional techniques in reconstructing images across various regions. Full article
(This article belongs to the Special Issue Advances in Radar Imaging with Deep Learning Algorithms)
Show Figures

Graphical abstract

15 pages, 2004 KiB  
Article
Helmholtz–Galerkin Technique in Dipole Field Scattering from Buried Zero-Thickness Perfectly Electrically Conducting Disk
by Mario Lucido, Giovanni Andrea Casula, Gaetano Chirico, Marco Donald Migliore, Daniele Pinchera and Fulvio Schettino
Appl. Sci. 2024, 14(13), 5544; https://doi.org/10.3390/app14135544 - 26 Jun 2024
Viewed by 678
Abstract
Non-invasive concealed object detection, identification, and discrimination have been of interest to the research community for decades due to the needs to preserve infrastructures and artifacts, guarantee safe conditions for the detection and location of landmines, etc. A modern approach is based on [...] Read more.
Non-invasive concealed object detection, identification, and discrimination have been of interest to the research community for decades due to the needs to preserve infrastructures and artifacts, guarantee safe conditions for the detection and location of landmines, etc. A modern approach is based on the use of an unmanned aerial vehicle equipped with ground-penetrating radar, which has the advantage of not requiring direct contact with the ground. Moreover, high-resolution underground images are obtained by coherently combining measurements by using a synthetic aperture radar algorithm. Due to the complexity of the real scenario, numerical analyses have always been welcomed to provide almost real-time information to make the best use of the potential of such kinds of techniques. This paper proposes an analysis of the scattering from a zero-thickness perfectly electrically conducting disk buried in a lossy half-space surrounded by air and illuminated by a field generated by a Hertzian dipole located in the air. It is carried out by means of a generalized form of the analytically regularizing Helmholtz–Galerkin technique, introduced and successfully applied by the authors to analyze the plane-wave scattering from a disk and a holed plane in a homogeneous medium. As clearly shown in the numerical results, the proposed method is very effective and drastically outperforms the commercial software CST Microwave Studio 2023. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 38601 KiB  
Article
Interferometric Calibration Model for the LuTan-1 Mission: Enhancing Digital Elevation Model Accuracy
by Jingwen Mou, Yu Wang, Jun Hong, Yachao Wang, Aichun Wang, Shiyu Sun and Guikun Liu
Remote Sens. 2024, 16(13), 2306; https://doi.org/10.3390/rs16132306 - 24 Jun 2024
Viewed by 331
Abstract
The LuTan-1 (LT-1) mission, China’s first civilian bistatic spaceborne Synthetic Aperture Radar (SAR) mission, comprises two L-band SAR satellites. These satellites operate in bistatic InSAR strip map mode, maintaining a formation flight with an adjustable baseline to generate global digital elevation models (DEMs) [...] Read more.
The LuTan-1 (LT-1) mission, China’s first civilian bistatic spaceborne Synthetic Aperture Radar (SAR) mission, comprises two L-band SAR satellites. These satellites operate in bistatic InSAR strip map mode, maintaining a formation flight with an adjustable baseline to generate global digital elevation models (DEMs) with high accuracy and spatial resolution. This research introduces a dedicated interferometric calibration model for LT-1, tackling the unique challenges of the bistatic system, such as interferometric parameter coupling and the π-ambiguity problem caused by synchronization phase errors. This study validates the model using SAR images from LT-1 and Xinjiang corner reflector data, achieving interferometric phase accuracy better than 0.1 rad and baseline accuracy better than 2 mm, thereby producing high-precision DEMs with a height accuracy meeting the 5 m requirement. Full article
Show Figures

Figure 1

19 pages, 15821 KiB  
Article
A Novel Multi-Beam SAR Two-Dimensional Ambiguity Suppression Method Based on Azimuth Phase Coding
by Yihao Xu, Fubo Zhang, Wenjie Li, Yangliang Wan, Longyong Chen and Tao Jiang
Remote Sens. 2024, 16(13), 2298; https://doi.org/10.3390/rs16132298 - 24 Jun 2024
Viewed by 340
Abstract
In order to address the problems of range ambiguity and azimuth ambiguity in the wide-swath imaging of synthetic aperture radar (SAR), this paper proposes a multi-beam SAR two-dimensional ambiguity suppression method based on azimuth phase coding (APC). The scheme employs an elevation simultaneous [...] Read more.
In order to address the problems of range ambiguity and azimuth ambiguity in the wide-swath imaging of synthetic aperture radar (SAR), this paper proposes a multi-beam SAR two-dimensional ambiguity suppression method based on azimuth phase coding (APC). The scheme employs an elevation simultaneous multi-beam transmission system with azimuth under-sampling, transmitting different APC waveforms to various range-ambiguous sub-regions. After receiving the echoes, the azimuth digital beamforming (DBF) is used to separate the APC waveform echoes with multi-order Doppler ambiguity, achieving azimuth reconstruction and range ambiguity suppression simultaneously. Finally, the elevation nulling DBF is used to further suppress range ambiguity and obtain the SAR wide-swath image. The superiority of this scheme is reflected in the following aspects: the azimuth DBF simultaneously suppresses azimuth and range ambiguity, the influence of height fluctuations on the ability to suppress range ambiguity is weakened, the use of elevation nulling DBF further enhances the level of range ambiguity suppression, and different range sub-regions can adopt different range resolutions and working modes. The feasibility of this scheme is verified through theoretical analysis and simulation. Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Data Processing and Application)
Show Figures

Figure 1

16 pages, 3433 KiB  
Communication
Metal Ion Microwave-Assisted Depolymerization of Poly(Ethylene Terephthalate): A Zinc Salts-Based Deep Eutectic Solvent as Case Study
by Cosimo Ricci, Lorenzo Gontrani, Elvira Maria Bauer, Giorgia Ciufolini, Angelo Lembo, Lorenzo Casoli and Marilena Carbone
Crystals 2024, 14(6), 567; https://doi.org/10.3390/cryst14060567 - 19 Jun 2024
Viewed by 549
Abstract
In this study, a new and very quick method to depolymerize PET plastics is reported. The depolymerization experiments were conducted using a type-IV deep eutectic solvent containing ZnCl2 and urea, and a microwave oven as reactor. Different combinations of power and reaction [...] Read more.
In this study, a new and very quick method to depolymerize PET plastics is reported. The depolymerization experiments were conducted using a type-IV deep eutectic solvent containing ZnCl2 and urea, and a microwave oven as reactor. Different combinations of power and reaction times were employed while keeping the total energy constant. Successful conversions were obtained carrying out the process at 180 W for 2 min and 360 W for 1 min, whereas at higher powers and shorter times, an inclusion likely occurs of some solvent into the structure of the recovered PET flakes, as suggested by the porosity of the flakes, imaged by SEM microscopy. The flakes increase their crystalline character during the treatment, as indicated by the appearance of narrow diffraction peaks in the XRD patterns, at variance with the broad signals observed in the case of the pristine amorphous polymer. The NMR analysis of the supernatant liquid above the partially solubilized PET shows the presence of terephthalic acid peaks. The infrared spectra of the solid powder achieved upon the acidic treatment of the extract reveal the presence of C=O stretching peaks and the absence of typical CH2 wagging absorptions that satisfactorily comply with the presence of terephthalic acid. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

23 pages, 9509 KiB  
Article
Two-Dimensional Autofocus for Ultra-High-Resolution Squint Spotlight Airborne SAR Based on Improved Spectrum Modification
by Min Chen, Xiaolan Qiu, Yao Cheng, Mingyang Shang, Ruoming Li and Wangzhe Li
Remote Sens. 2024, 16(12), 2158; https://doi.org/10.3390/rs16122158 - 14 Jun 2024
Viewed by 358
Abstract
For ultra-high-resolution (UHR) squint spotlight airborne synthetic aperture radar (SAR), the severe range-azimuth coupling caused by squint mode and the spatial and frequency dependence of the motion error brought by ultra-wide bandwidth both make it difficult to obtain satisfactory imaging results. Although some [...] Read more.
For ultra-high-resolution (UHR) squint spotlight airborne synthetic aperture radar (SAR), the severe range-azimuth coupling caused by squint mode and the spatial and frequency dependence of the motion error brought by ultra-wide bandwidth both make it difficult to obtain satisfactory imaging results. Although some autofocus methods for squint airborne SAR have been presented in the published literature, their practical applicability in UHR situations remains limited. In this article, a new 2D wavenumber domain autofocus method combined with the Omega-K algorithm dedicated to UHR squint spotlight airborne SAR is proposed. First, we analyze the dependence of range envelope shift error (RESE) and range defocus on the squint angle and then propose a new spectrum modification strategy, after which the spectrum transforms into a quasi-side-looking one. The accuracy of estimation and compensation can be improved significantly in this way. Then, the 2D phase error can be calculated with the 1D estimated error by the mapping relationship, and after that the 2D compensation is performed in the wavenumber domain. Furthermore, the image-blocking technique and range-dependent motion error compensation method are embedded to accommodate the spatial-variant motion error for UHR cases. Simulations are carried out to verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

27 pages, 2947 KiB  
Article
Real-Time Synthetic Aperture Radar Imaging with Random Sampling Employing Scattered Power Mapping
by Romina Kazemivala and Natalia K. Nikolova
Sensors 2024, 24(12), 3849; https://doi.org/10.3390/s24123849 - 14 Jun 2024
Viewed by 390
Abstract
A novel image-reconstruction method is proposed for the processing of data acquired at random spatial positions. The images are reconstructed and updated in real time concurrently with the measurements to produce an evolving image, the quality of which is continuously improving and converging [...] Read more.
A novel image-reconstruction method is proposed for the processing of data acquired at random spatial positions. The images are reconstructed and updated in real time concurrently with the measurements to produce an evolving image, the quality of which is continuously improving and converging as the number of data points increases with the stream of additional measurements. It is shown that the images converge to those obtained with data acquired on a uniformly sampled surface, where the sampling density satisfies the Nyquist limit. The image reconstruction employs a new formulation of the method of scattered power mapping (SPM), which first maps the data into a three-dimensional (3D) preliminary image of the target on a uniform spatial grid, followed by fast Fourier space image deconvolution that provides the high-quality 3D image. Full article
Show Figures

Figure 1

21 pages, 3098 KiB  
Article
MFPANet: Multi-Scale Feature Perception and Aggregation Network for High-Resolution Snow Depth Estimation
by Liling Zhao, Junyu Chen, Muhammad Shahzad, Min Xia and Haifeng Lin
Remote Sens. 2024, 16(12), 2087; https://doi.org/10.3390/rs16122087 - 9 Jun 2024
Viewed by 444
Abstract
Accurate snow depth estimation is of significant importance, particularly for preventing avalanche disasters and predicting flood seasons. The predominant approaches for such snow depth estimation, based on deep learning methods, typically rely on passive microwave remote sensing data. However, due to the low [...] Read more.
Accurate snow depth estimation is of significant importance, particularly for preventing avalanche disasters and predicting flood seasons. The predominant approaches for such snow depth estimation, based on deep learning methods, typically rely on passive microwave remote sensing data. However, due to the low resolution of passive microwave remote sensing data, it often results in low-accuracy outcomes, posing considerable limitations in application. To further improve the accuracy of snow depth estimation, in this paper, we used active microwave remote sensing data. We fused multi-spectral optical satellite images, synthetic aperture radar (SAR) images and land cover distribution images to generate a snow remote sensing dataset (SRSD). It is a first-of-its-kind dataset that includes active microwave remote sensing images in high-latitude regions of Asia. Using these novel data, we proposed a multi-scale feature perception and aggregation neural network (MFPANet) that focuses on improving feature extraction from multi-source images. Our systematic analysis reveals that the proposed approach is not only robust but also achieves high accuracy in snow depth estimation compared to existing state-of-the-art methods, with RMSE of 0.360 and with MAE of 0.128. Finally, we selected several representative areas in our study region and applied our method to map snow depth distribution, demonstrating its broad application prospects. Full article
(This article belongs to the Special Issue Monitoring Cold-Region Water Cycles Using Remote Sensing Big Data)
Show Figures

Figure 1

15 pages, 12660 KiB  
Article
Contactless X-Band Detection of Steel Bars in Cement: A Preliminary Numerical and Experimental Analysis
by Adriana Brancaccio and Simone Palladino
Remote Sens. 2024, 16(11), 2037; https://doi.org/10.3390/rs16112037 - 6 Jun 2024
Viewed by 427
Abstract
This work presents preliminary experimental results for advancing non-destructive testing methods for detecting steel bars in cement via contactless investigations in the X-band spectrum. This study reveals the field’s penetration into cement, extracting insights into embedded bars through scattered data. Applying a quasi-quadratic [...] Read more.
This work presents preliminary experimental results for advancing non-destructive testing methods for detecting steel bars in cement via contactless investigations in the X-band spectrum. This study reveals the field’s penetration into cement, extracting insights into embedded bars through scattered data. Applying a quasi-quadratic inverse scattering technique to numerically simulated data yields promising results, confirming the effectiveness and reliability of the proposed approach. In this realm, using a higher frequency allows for the use of lighter equipment and smaller antennas. Identified areas for improvement include accounting for antenna behavior and establishing the undeformed target morphology and precise orientation. Transitioning from powder-based and sand specimens to real, solid, reinforced concrete structures is expected to alleviate laboratory challenges. Although accurately determining concrete properties such as its relative permittivity and conductivity is essential, it remains beyond the scope of this study. Finally, overcoming these challenges could significantly enhance non-invasive testing, improving structural health monitoring and disaster prevention. Full article
Show Figures

Figure 1

20 pages, 7017 KiB  
Article
Inter-Comparison of SST Products from iQuam, AMSR2/GCOM-W1, and MWRI/FY-3D
by Yili Zhao, Ping Liu and Wu Zhou
Remote Sens. 2024, 16(11), 2034; https://doi.org/10.3390/rs16112034 - 6 Jun 2024
Viewed by 473
Abstract
Evaluating sea surface temperature (SST) products is essential before their application in marine environmental monitoring and related studies. SSTs from the in situ SST Quality Monitor (iQuam) system, Advanced Microwave Scanning Radiometer 2 (AMSR2) aboard the Global Change Observation Mission 1st-Water, and the [...] Read more.
Evaluating sea surface temperature (SST) products is essential before their application in marine environmental monitoring and related studies. SSTs from the in situ SST Quality Monitor (iQuam) system, Advanced Microwave Scanning Radiometer 2 (AMSR2) aboard the Global Change Observation Mission 1st-Water, and the Microwave Radiation Imager (MWRI) aboard the Chinese Fengyun-3D satellite are intercompared utilizing extended triple collocation (ETC) and direct comparison methods. Additionally, error characteristic variations with respect to time, latitude, SST, sea surface wind speed, columnar water vapor, and columnar cloud liquid water are analyzed comprehensively. In contrast to the prevailing focus on SST validation accuracy, the random errors and the capability to detect SST variations are also evaluated in this study. The result of ETC analysis indicates that iQuam SST from ships exhibits the highest random error, above 0.83 °C, whereas tropical mooring SST displays the lowest random error, below 0.28 °C. SST measurements from drifters, tropical moorings, Argo floats, and high-resolution drifters, which possess random errors of less than 0.35 °C, are recommended for validating remotely sensed SST. The ability of iQuam, AMSR2, and MWRI to detect SST variations diminishes significantly in ocean areas between 0°N and 20°N latitude and latitudes greater than 50°N and 50°S. AMSR2 and iQuam demonstrate similar random errors and capabilities for detecting SST variations, whereas MWRI shows a high random error and weak capability. In comparison to iQuam SST, AMSR2 exhibits a root-mean-square error (RMSE) of about 0.51 °C with a bias of −0.05 °C, while MWRI shows an RMSE of about 1.26 °C with a bias of −0.14 °C. Full article
Show Figures

Figure 1

15 pages, 6663 KiB  
Article
Radio Frequency Interference Mitigation in Data and Image Bi-Domains for an Aperture Synthesis Radiometer
by Juan Zhang, Hong Li, Yinan Li, Lehui Zhuang and Haofeng Dou
Remote Sens. 2024, 16(11), 2013; https://doi.org/10.3390/rs16112013 - 3 Jun 2024
Viewed by 205
Abstract
For synthetic aperture microwave radiometers, the problem of Radio Frequency Interference (RFI) is becoming more and more serious, which affects both the scientific retrieval of remote sensing data and the imaging quality of brightness temperature (BT) images. In the visibility data domain, the [...] Read more.
For synthetic aperture microwave radiometers, the problem of Radio Frequency Interference (RFI) is becoming more and more serious, which affects both the scientific retrieval of remote sensing data and the imaging quality of brightness temperature (BT) images. In the visibility data domain, the array factor synthesis algorithm is commonly employed to mitigate RFI sources and their Gibbs trailing. In the BT image domain, the CLEAN algorithm is typical applied to mitigate RFI sources and their Gibbs trailing. However, the array factor synthesis algorithm can result in anomalous BT points near the “zero trap” region, and the CLEAN algorithm will miss some BT points below a certain threshold. In this paper, a Bi-domain combined mitigation algorithm is proposed to mitigate RFI sources and their Gibbs trailing. Following initial mitigation in the visibility data domain, dual thresholds are applied to normalize anomalous BT points near the “zero trap” region, thereby enhancing imaging quality. The effectiveness of the Bi-domain combined mitigation algorithm is verified by using both measured data from SMOS L1A and simulated data. The experimental results demonstrate that the Bi-domain combined mitigation algorithm is superior to the array factor synthesis algorithm and the CLEAN algorithm in mitigating RFI sources and their Gibbs trailing. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

14 pages, 4059 KiB  
Article
Experimental Study on Microwave Drying Aluminum Hydroxide
by Xuemei Zheng, Fuqin Yuan, Aiyuan Ma and Shihong Tian
Coatings 2024, 14(6), 687; https://doi.org/10.3390/coatings14060687 - 1 Jun 2024
Viewed by 398
Abstract
The aluminum hydroxide produced by the Bayer process contains a large amount of water which leads to the consumption of a large amount of heat for moisture removal in the calcination process, resulting in an increased energy consumption. The effects of temperature and [...] Read more.
The aluminum hydroxide produced by the Bayer process contains a large amount of water which leads to the consumption of a large amount of heat for moisture removal in the calcination process, resulting in an increased energy consumption. The effects of temperature and microwave power on the dehydration ratio and the dry matter ratio of aluminum hydroxide were investigated. The characteristics of temperature variation during drying were discussed. X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle size, Fourier transform infrared (FTIR) spectroscopy, and dielectric property analyses were made to characterize the dried materials. The analysis results showed that within the range of bench-scale experimental parameters, the dehydration ratio was higher and the proportion of dry matter was lower at a higher final temperature. Within the range of pilot-scale experimental parameters, the dehydration ratio increased with the increasing microwave power from 500 W to 1500 W. XRD spectra revealed that when the final temperature exceeded 220 °C, a part of the aluminum hydroxide underwent a low-temperature phase transition to boehmite. The SEM images and a particle size analysis showed that there was no significant difference between the morphologies of the powder obtained by microwave drying and conventional drying methods. The powder obtained by both processes had an average particle size of around 80 μm. The dielectric constant and the dielectric loss of the dried material decreased greatly. Full article
Show Figures

Figure 1

Back to TopTop