Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (187)

Search Parameters:
Keywords = mid-infrared sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7144 KiB  
Article
A Study of NOAA-20 VIIRS Band M1 (0.41 µm) Striping over Clear-Sky Ocean
by Wenhui Wang, Changyong Cao, Slawomir Blonski and Xi Shao
Remote Sens. 2025, 17(1), 74; https://doi.org/10.3390/rs17010074 (registering DOI) - 28 Dec 2024
Viewed by 197
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the National Oceanic and Atmospheric Administration-20 (NOAA-20) satellite was launched on 18 November 2017. The on-orbit calibration of the NOAA-20 VIIRS visible and near-infrared (VisNIR) bands has been very stable over time. However, NOAA-20 operational [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the National Oceanic and Atmospheric Administration-20 (NOAA-20) satellite was launched on 18 November 2017. The on-orbit calibration of the NOAA-20 VIIRS visible and near-infrared (VisNIR) bands has been very stable over time. However, NOAA-20 operational M1 (a dual gain band with a center wavelength of 0.41 µm) sensor data records (SDR) have exhibited persistent scene-dependent striping over clear-sky ocean (high gain, low radiance) since the beginning of the mission, different from other VisNIR bands. This paper studies the root causes of the striping in the operational NOAA-20 M1 SDRs. Two potential factors were analyzed: (1) polarization effect-induced striping over clear-sky ocean and (2) imperfect on-orbit radiometric calibration-induced striping. NOAA-20 M1 is more sensitive to the polarized lights compared to other NOAA-20 short-wavelength bands and the similar bands on the Suomi NPP and NOAA-21 VIIRS, with detector and scan angle-dependent polarization sensitivity up to ~6.4%. The VIIRS M1 top of atmosphere radiance is dominated by Rayleigh scattering over clear-sky ocean and can be up to ~70% polarized. In this study, the impact of the polarization effect on M1 striping was investigated using radiative transfer simulation and a polarization correction method similar to that developed by the NOAA ocean color team. Our results indicate that the prelaunch-measured polarization sensitivity and the polarization correction method work well and can effectively reduce striping over clear-sky ocean scenes by up to ~2% at near nadir zones. Moreover, no significant change in NOAA-20 M1 polarization sensitivity was observed based on the data analyzed in this study. After the correction of the polarization effect, residual M1 striping over clear-sky ocean suggests that there exists half-angle mirror (HAM)-side and detector-dependent striping, which may be caused by on-orbit radiometric calibration errors. HAM-side and detector-dependent striping correction factors were analyzed using deep convective cloud (DCC) observations (low gain, high radiances) and verified over the homogeneous Libya-4 desert site (low gain, mid-level radiance); neither are significantly affected by the polarization effect. The imperfect on-orbit radiometric calibration-induced striping in the NOAA operational M1 SDR has been relatively stable over time. After the correction of the polarization effect, the DCC-based striping correction factors can further reduce striping over clear-sky ocean scenes by ~0.5%. The polarization correction method used in this study is only effective over clear-sky ocean scenes that are dominated by the Rayleigh scattering radiance. The DCC-based striping correction factors work well at all radiance levels; therefore, they can be deployed operationally to improve the quality of NOAA-20 M1 SDRs. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

34 pages, 10549 KiB  
Review
Multi-Sensor Precipitation Estimation from Space: Data Sources, Methods and Validation
by Ruifang Guo, Xingwang Fan, Han Zhou and Yuanbo Liu
Remote Sens. 2024, 16(24), 4753; https://doi.org/10.3390/rs16244753 - 20 Dec 2024
Viewed by 414
Abstract
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation [...] Read more.
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation data generation by integrating infrared and microwave observations. Among others, Global Precipitation Measurement (GPM) plays a crucial role in providing invaluable data sources for MPE by utilizing passive microwave sensors and geostationary infrared sensors. MPE represents the current state-of-the-art approach for generating high-quality, high-resolution global satellite precipitation products (SPPs), employing various methods such as cloud motion analysis, probability matching, adjustment ratios, regression techniques, neural networks, and weighted averaging. International collaborations, such as the International Precipitation Working Group and the Precipitation Virtual Constellation, have significantly contributed to enhancing our understanding of the uncertainties associated with MPEs and their corresponding SPPs. It has been observed that SPPs exhibit higher reliability over tropical oceans compared to mid- and high-latitudes, particularly during cold seasons or in regions with complex terrains. To further advance MPE research, future efforts should focus on improving accuracy for extremely low- and high-precipitation events, solid precipitation measurements, as well as orographic precipitation estimation. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Figure 1

19 pages, 2484 KiB  
Article
A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers
by Dalyn McCauley, Sadie Keller, Kody Transue, Nik Wiman and Lloyd Nackley
Sensors 2024, 24(23), 7764; https://doi.org/10.3390/s24237764 - 4 Dec 2024
Viewed by 606
Abstract
Incorporating data-driven technologies into agriculture presents a promising approach to optimizing crop production, especially in regions dependent on irrigation, where escalating heat waves and droughts driven by climate change pose increasing challenges. Recent advancements in sensor technology have introduced diverse methods for assessing [...] Read more.
Incorporating data-driven technologies into agriculture presents a promising approach to optimizing crop production, especially in regions dependent on irrigation, where escalating heat waves and droughts driven by climate change pose increasing challenges. Recent advancements in sensor technology have introduced diverse methods for assessing irrigation needs, including meteorological sensors for calculating reference evapotranspiration, belowground sensors for measuring plant available water, and plant sensors for direct water status measurements. Among these, infrared thermometry stands out as a non-destructive remote sensing method for monitoring transpiration, with significant potential for integration into drone- or satellite-based models. This study applies infrared thermometry to develop a crop water stress index (CWSI) model for European hazelnuts (Corylus avellana), a key crop in Oregon, the leading hazelnut-producing state in the United States. Utilizing low-cost, open-source infrared thermometers and data loggers, we aim to provide hazelnut farmers with a practical tool for improving irrigation efficiency and enhancing yields. The CWSI model was validated against plant water status metrics such as stem water potential and gas exchange measurements. Our results show that when stem water potential is below −6 bar, the CWSI remains under 0.2, indicating low plant stress, with corresponding leaf conductance rates ranging between 0.1 and 0.4 mol m2 s−1. Additionally, un-irrigated hazelnuts were stressed (CWSI > 0.2) from mid-July through the end of the season, while irrigated plants remained unstressed. The findings suggest that farmers can adopt a leaf conductance threshold of 0.2 mol m2 s−1 or a water potential threshold of −6 bar for irrigation management. This research introduces a new CWSI model for hazelnuts and highlights the potential of low-cost technology to improve agricultural monitoring and decision-making. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2024)
Show Figures

Figure 1

10 pages, 4180 KiB  
Proceeding Paper
The Influence of MIM Metamaterial Absorbers on the Thermal and Electro-Optical Characteristics of Uncooled CMOS-SOI-MEMS Infrared Sensors
by Moshe Avraham, Mikhail Klinov and Yael Nemirovsky
Eng. Proc. 2024, 82(1), 11; https://doi.org/10.3390/ecsa-11-20442 - 25 Nov 2024
Viewed by 70
Abstract
Uncooled infrared (IR) sensors, including bolometers, thermopiles, and pyroelectrics, have traditionally dominated the market. Nevertheless, a new innovative technology, dubbed the TMOS sensor, has emerged. It is based on CMOS-SOI-MEMS (complementary-metal-oxide-semiconductor silicon-on-insulator micro-electromechanical systems) fabrication. This pioneering technology utilizes a suspended, micro-machined, thermally [...] Read more.
Uncooled infrared (IR) sensors, including bolometers, thermopiles, and pyroelectrics, have traditionally dominated the market. Nevertheless, a new innovative technology, dubbed the TMOS sensor, has emerged. It is based on CMOS-SOI-MEMS (complementary-metal-oxide-semiconductor silicon-on-insulator micro-electromechanical systems) fabrication. This pioneering technology utilizes a suspended, micro-machined, thermally insulated transistor to directly convert absorbed infrared radiation into an electrical signal. The miniaturization of IR sensors, including the TMOS, is crucial for seamless integration into wearable and mobile technologies. However, this presents a significant challenge: balancing size reduction with sensor sensitivity. Smaller sensor footprints can often lead to decreased signal capture and, consequently, diminished performance. Metamaterial advancements offer a promising solution to this challenge. These engineered materials exhibit unique electromagnetic properties that can potentially boost sensor sensitivity while enabling miniaturization. The strategic integration of metamaterials into sensor design offers a pathway towards compact, high-sensitivity IR systems with diverse applications. This study explores the impact of electro-optical metal-insulator-metal (MIM) metamaterial absorbers on the thermal and electro-optical characteristics of CMOS-SOI-MEMS sensors in the mid-IR region. We target the key thermal properties critical to IR sensor performance: thermal conductance (Gth), thermal capacitance (Cth), and thermal time constant (τth). This study shows how material selection, layer thickness, and metamaterial geometry fill-factor affect the sensor’s thermal performance. An analytical thermal model is employed alongside 3D finite element software for precise numerical simulations. Full article
Show Figures

Figure 1

13 pages, 2132 KiB  
Article
Design and Simulation of High-Performance D-Type Dual-Mode PCF-SPR Refractive Index Sensor Coated with Au-TiO2 Layer
by Xin Ding, Qiao Lin, Mengjie Wang, Shen Liu, Weiguan Zhang, Nan Chen and Yiping Wang
Sensors 2024, 24(18), 6118; https://doi.org/10.3390/s24186118 - 22 Sep 2024
Cited by 1 | Viewed by 1031
Abstract
A novel surface plasmon resonance (SPR) refractive index (RI) sensor based on the D-type dual-mode photonic crystal fiber (PCF) is proposed. The sensor employs a side-polished few-mode PCF that facilitates the transmission of the fundamental and second-order modes, with an integrated microfluidic channel [...] Read more.
A novel surface plasmon resonance (SPR) refractive index (RI) sensor based on the D-type dual-mode photonic crystal fiber (PCF) is proposed. The sensor employs a side-polished few-mode PCF that facilitates the transmission of the fundamental and second-order modes, with an integrated microfluidic channel positioned directly above the fiber core. This design minimizes the distance to the analyte and maximizes the interaction between the optical field and the analyte, thereby enhancing the SPR effect and resonance loss for improved sensing performance. Au-TiO2 dual-layer material was coated on the surface of a microfluidic channel to enhance the penetration depth of the core evanescent field and tune the resonance wavelength to the near-infrared band, meeting the special needs of chemical and biomedical detection fields. The finite element method was utilized to systematically investigate the coupling characteristics between various modes and surface plasmon polariton (SPP) modes, as well as the impact of structural parameters on the sensor performance. The results indicate that the LP11b_y mode exhibits greater wavelength sensitivity than the HE11_y mode, with a maximum sensitivity of 33,000 nm/RIU and an average sensitivity of 8272.7 nm/RIU in the RI sensing range of 1.25–1.36, which is higher than the maximum sensitivity of 16,000 nm/RIU and average sensitivity of 5666.7 nm/RIU for the HE11b_y mode. It is believed that the proposed PCF-SPR sensor features both high sensitivity and high resolution, which will become a critical device for wide RI detection in mid-infrared fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

23 pages, 23664 KiB  
Article
Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time
by Dong-Ho Lee and Jong-Hwa Park
Remote Sens. 2024, 16(18), 3455; https://doi.org/10.3390/rs16183455 - 18 Sep 2024
Cited by 1 | Viewed by 1198
Abstract
The accurate and timely prediction of Napa cabbage fresh weight is essential for optimizing harvest timing, crop management, and supply chain logistics, which ultimately contributes to food security and price stabilization. Traditional manual sampling methods are labor-intensive and lack precision. This study introduces [...] Read more.
The accurate and timely prediction of Napa cabbage fresh weight is essential for optimizing harvest timing, crop management, and supply chain logistics, which ultimately contributes to food security and price stabilization. Traditional manual sampling methods are labor-intensive and lack precision. This study introduces an artificial intelligence (AI)-powered model that utilizes unmanned aerial systems (UAS)-based multi-sensor data to predict Napa cabbage fresh weight. The model was developed using high-resolution RGB, multispectral (MSP), and thermal infrared (TIR) imagery collected throughout the 2020 growing season. The imagery was used to extract various vegetation indices, crop features (vegetation fraction, crop height model), and a water stress indicator (CWSI). The deep neural network (DNN) model consistently outperformed support vector machine (SVM) and random forest (RF) models, achieving the highest accuracy (R2 = 0.82, RMSE = 0.47 kg) during the mid-to-late rosette growth stage (35–42 days after planting, DAP). The model’s accuracy improved with cabbage maturity, emphasizing the importance of the heading stage for fresh weight estimation. The model slightly underestimated the weight of Napa cabbages exceeding 5 kg, potentially due to limited samples and saturation effects of vegetation indices. The overall error rate was less than 5%, demonstrating the feasibility of this approach. Spatial analysis further revealed that the model accurately captured variability in Napa cabbage growth across different soil types and irrigation conditions, particularly reflecting the positive impact of drip irrigation. This study highlights the potential of UAS-based multi-sensor data and AI for accurate and non-invasive prediction of Napa cabbage fresh weight, providing a valuable tool for optimizing harvest timing and crop management. Future research should focus on refining the model for specific weight ranges and diverse environmental conditions, and extending its application to other crops. Full article
Show Figures

Graphical abstract

14 pages, 6094 KiB  
Article
An Evaluation of Multi-Channel Sensors and Density Estimation Learning for Detecting Fire Blight Disease in Pear Orchards
by Matthew Veres, Cole Tarry, Kristy Grigg-McGuffin, Wendy McFadden-Smith and Medhat Moussa
Sensors 2024, 24(16), 5387; https://doi.org/10.3390/s24165387 - 21 Aug 2024
Viewed by 785
Abstract
Fire blight is an infectious disease found in apple and pear orchards. While managing the disease is critical to maintaining orchard health, identifying symptoms early is a challenging task which requires trained expert personnel. This paper presents an inspection technique that targets individual [...] Read more.
Fire blight is an infectious disease found in apple and pear orchards. While managing the disease is critical to maintaining orchard health, identifying symptoms early is a challenging task which requires trained expert personnel. This paper presents an inspection technique that targets individual symptoms via deep learning and density estimation. We evaluate the effects of including multi-spectral sensors in the model’s pipeline. Results show that adding near infrared (NIR) channels can help improve prediction performance and that density estimation can detect possible symptoms when severity is in the mid-high range. Full article
(This article belongs to the Special Issue Deep Learning for Computer Vision and Image Processing Sensors)
Show Figures

Figure 1

18 pages, 11424 KiB  
Article
High-Sensitivity Refractive Index Sensor with Dual-Channel Based on Surface Plasmon Resonance Photonic Crystal Fiber
by Fengmin Wang, Yong Wei and Yanhong Han
Sensors 2024, 24(15), 5050; https://doi.org/10.3390/s24155050 - 4 Aug 2024
Cited by 1 | Viewed by 1304
Abstract
In order to achieve a high-precision synchronous detection of two different refractive index (RI) analytes, a D-type surface plasmon resonance (SPR) photonic crystal fiber (PCF) RI sensor based on two channels is designed in this paper. The sensor uses a D-shaped planar region [...] Read more.
In order to achieve a high-precision synchronous detection of two different refractive index (RI) analytes, a D-type surface plasmon resonance (SPR) photonic crystal fiber (PCF) RI sensor based on two channels is designed in this paper. The sensor uses a D-shaped planar region of the PCF and a large circular air hole below the core as the sensing channels. Surface plasmon resonance is induced by applying a coating of gold film on the surface. The full-vector finite-element method (FEM) is used to optimize the structural parameters of the optical fiber, and the sensing characteristics are studied, including wavelength sensitivity, RI resolution, full width at half maximum (FWHM), figure of merit (FOM), and signal-to-noise ratio (SNR). The results show that the channel 1 (Ch 1) can achieve RI detection of 1.36–1.39 in the wavelength range of 1500–2600 nm, and the channel 2 (Ch 2) can achieve RI detection of 1.46–1.57 in the wavelength range of 2100–3000 nm. The two sensing channels can detect independently or simultaneously measure two analytes with different RIs. The maximum wavelength sensitivity of the sensor can reach 30,000 nm/RIU in Channel 1 and 9900 nm/RIU in Channel 2. The RI resolutions of the two channels are 3.54 × 10−6 RIU and 10.88 × 10−6 RIU, respectively. Therefore, the sensor realizes dual-channel high- and low-RI synchronous detection in the ultra-long wavelength band from near-infrared to mid-infrared and achieves an ultra-wide RI detection range and ultra-high wavelength sensitivity. The sensor has a wide application prospect in the fields of chemical detection, biomedical sensing, and water environment monitoring. Full article
(This article belongs to the Collection Optical Fiber Sensors)
Show Figures

Figure 1

13 pages, 16433 KiB  
Communication
High-Precision Low-Cost Mid-Infrared Photoacoustic Gas Sensor Using Aspherical Beam Shaping for Rapidly Measuring Greenhouse Gases
by Qingping Hu, Yan Ai, Chaotan Sima, Yu Sun, Zhiyu Feng, Tailin Li, Chen Tong, Xiaohong Cao, Wenzhe Wang, Runze Fan, Yufeng Pan and Ping Lu
Photonics 2024, 11(7), 590; https://doi.org/10.3390/photonics11070590 - 25 Jun 2024
Cited by 1 | Viewed by 2810
Abstract
A high-precision low-cost mid-infrared photoacoustic sensor for greenhouse composite gases based on aspherical beam shaping is proposed and demonstrated. The assembled optical source module and luminous characteristics of infrared source are innovatively investigated and analyzed with aspherical beam shaping. The proposed aspherical-beam-shaping-technique could [...] Read more.
A high-precision low-cost mid-infrared photoacoustic sensor for greenhouse composite gases based on aspherical beam shaping is proposed and demonstrated. The assembled optical source module and luminous characteristics of infrared source are innovatively investigated and analyzed with aspherical beam shaping. The proposed aspherical-beam-shaping-technique could effectively reduce optical loss and enhance system sensitivity, achieving an effective power utilization ratio of a radiation source of 91% and sidewall noise ratio of 8.9%. Experiments verify the 1.7 times improvement in responsivity and 50% enhancement in minimum detection limit (MDL) on average. In terms of comprehensive greenhouse gas composites and with short integration time of 1 s, MDLs of CO2, CH4, N2O, NF3, SF6, PFC-14, and HFC-134a are 73 ppb, 267 ppb, 72 ppb, 81 ppb, 14 ppb, 9 ppb and 115 ppb, respectively. Furthermore, a 48 h continuous monitoring of H2O, CO2 and CH4 in the atmosphere is conducted and verifies the performance of the gas sensor. The developed sensor allows for the rapid route of low-cost and high-precision detection of multiple greenhouse gases. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 3481 KiB  
Article
Enhanced Tunability of Dual-Band Chiral Metasurface in the Mid-Infrared Range via Slotted Nanocircuit Design
by Shengyi Wang, Hanzhuo Kuang, Wenjie Li, Yanni Wang, Hao Luo, Chengjun Li, Hua Ge, Qiu Wang and Bowen Jia
Nanomaterials 2024, 14(11), 979; https://doi.org/10.3390/nano14110979 - 5 Jun 2024
Viewed by 1226
Abstract
Multi-band circular dichroism (CD) response and tunability on the chiral metasurface are crucial for this device’s applications in sensing and detection. This work proposes a dual-band CD Au-CaF2-Au dimer elliptical metasurface absorber, where chiroptical sensing is realized by breaking the geometric [...] Read more.
Multi-band circular dichroism (CD) response and tunability on the chiral metasurface are crucial for this device’s applications in sensing and detection. This work proposes a dual-band CD Au-CaF2-Au dimer elliptical metasurface absorber, where chiroptical sensing is realized by breaking the geometric symmetry between two ellipses. The proposed metasurface can achieve high CD values of 0.8 and −0.74 for the dual-band within the 3–5 μm region, and the CD values can be manipulated by independently adjusting the geometric parameters of the metasurface. Furthermore, a slotted nanocircuit is introduced onto the metasurface to enhance its tunability by manipulating the geometry parameter in the design process, and the related mechanism is explained using an equivalent circuit model. The simulation of the sensing model revealed that the slotted nanocircuit enhances the sensor’s tunability and significantly improves its bandwidth and sensitivity, achieving peak enhancements at approximately 753 nm and 1311 nm/RIU, respectively. Due to the strong dual-band positive (and negative) responses of the CD values, flexible wavelength tunability, and nonlinear sensitivity enhancement, this design provides a new approach for the development and application of mid-infrared chiroptical devices. Full article
(This article belongs to the Special Issue Optical Composites, Nanophotonics and Metamaterials)
Show Figures

Figure 1

11 pages, 2098 KiB  
Article
Enhancing Multi-Spectral Fingerprint Sensing for Trace Explosive Molecules with All-Silicon Metasurfaces
by Jie Lin, Ying Xue, Weijin Wang, Mingjun Sun, Shengnan Shi, Shan Zhang and Yanpeng Shi
Nanomaterials 2024, 14(9), 738; https://doi.org/10.3390/nano14090738 - 23 Apr 2024
Cited by 2 | Viewed by 1440
Abstract
Spectroscopy is a powerful tool to identify the specific fingerprints of analytes in a label-free way. However, conventional sensing methods face unavoidable barriers in analyzing trace-amount target molecules due to the difficulties of enhancing the broadband molecular absorption. Here, we propose a sensing [...] Read more.
Spectroscopy is a powerful tool to identify the specific fingerprints of analytes in a label-free way. However, conventional sensing methods face unavoidable barriers in analyzing trace-amount target molecules due to the difficulties of enhancing the broadband molecular absorption. Here, we propose a sensing scheme to achieve strong fingerprint absorption based on the angular-scanning strategy on an all-silicon metasurface. By integrating the mid-infrared and terahertz sensing units into a single metasurface, the sensor can efficiently identify 2,4-DNT with high sensitivity. The results reveal that the fingerprint peak in the enhanced fingerprint spectrum is formed by the linked envelope. It exhibits a significant enhancement factor exceeding 64-fold in the terahertz region and more than 55-fold in the mid-infrared region. Particularly, the corresponding identification limit of 2,4-DNT is 1.32 µg cm−2, respectively. Our study will provide a novel research idea in identifying trace-amount explosives and advance practical applications of absorption spectroscopy enhancement identification in civil and military security industries. Full article
(This article belongs to the Special Issue Nanomaterials for Terahertz Technology Applications)
Show Figures

Figure 1

12 pages, 3365 KiB  
Article
Bias-Tunable Quantum Well Infrared Photodetector
by Gyana Biswal, Michael Yakimov, Vadim Tokranov, Kimberly Sablon, Sergey Tulyakov, Vladimir Mitin and Serge Oktyabrsky
Nanomaterials 2024, 14(6), 548; https://doi.org/10.3390/nano14060548 - 20 Mar 2024
Cited by 1 | Viewed by 1593
Abstract
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and [...] Read more.
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity. The design rules are obtained by calculating the electronic transition energies for symmetric and antisymmetric double-QW states using a Schrödinger–Poisson solver. The sensor is grown and characterized aiming detection in mid-wave (~5 µm) to long-wave IR (~8 µm) spectral ranges. The structure is grown using molecular beam epitaxy (MBE) and contains 25 periods of coupled double GaAs QWs and Al0.38Ga0.62As barriers. One of the QWs in the pair is modulation-doped to provide asymmetry in potential. The QWIPs are tested with blackbody radiation and FTIR down to 77 K. As a result, the ratio of the responsivities of the two bands at about 5.5 and 8 µm is controlled over an order of magnitude demonstrating tunability between MWIR and LWIR spectral regions. Separate experiments using parameterized image transformations of wideband LWIR imagery are performed to lay the framework for utilizing tunable QWIP sensors in object recognition applications. Full article
(This article belongs to the Special Issue Graphene-Based Optoelectronic and Plasmonic Devices)
Show Figures

Figure 1

19 pages, 2830 KiB  
Review
Dielectric Waveguide-Based Sensors with Enhanced Evanescent Field: Unveiling the Dynamic Interaction with the Ambient Medium for Biosensing and Gas-Sensing Applications—A Review
by Muhammad A. Butt
Photonics 2024, 11(3), 198; https://doi.org/10.3390/photonics11030198 - 23 Feb 2024
Cited by 4 | Viewed by 2206
Abstract
Photonic sensors utilize light–matter interaction to detect physical parameters accurately and efficiently. They exploit the interaction between photons and matter, with light propagating through an optical waveguide, creating an evanescent field beyond its surface. This field interacts with the surrounding medium, enabling the [...] Read more.
Photonic sensors utilize light–matter interaction to detect physical parameters accurately and efficiently. They exploit the interaction between photons and matter, with light propagating through an optical waveguide, creating an evanescent field beyond its surface. This field interacts with the surrounding medium, enabling the sensitive detection of changes in the refractive index or nearby substances. By modulating light properties like intensity, wavelength, or phase, these sensors detect target substances or environmental changes. Advancements in this technology enhance sensitivity, selectivity, and miniaturization, making photonic sensors invaluable across industries. Their ability to facilitate sensitive, non-intrusive, and remote monitoring fosters the development of smart, connected systems. This overview delves into the material platforms and waveguide structures crucial for developing highly sensitive photonic devices tailored for gas and biosensing applications. It is emphasized that both the material platform and waveguide geometry significantly impact the sensitivity of these devices. For instance, utilizing a slot waveguide geometry on silicon-on-insulator substrates not only enhances sensitivity but also reduces the device’s footprint. This configuration proves particularly promising for applications in biosensing and gas sensing due to its superior performance characteristics. Full article
(This article belongs to the Special Issue Silicon Photonics Devices and Integrated Circuits)
Show Figures

Figure 1

14 pages, 4343 KiB  
Article
The Effect of Water Content on Engine Oil Monitoring Based on Physical and Chemical Indicators
by Fanhao Zhou, Kun Yang and Ling Wang
Sensors 2024, 24(4), 1289; https://doi.org/10.3390/s24041289 - 17 Feb 2024
Viewed by 1319
Abstract
Engine oil oxidation is one of the major reasons for oil aging which can result in variations in the physical and chemical properties of oil. Organic acids generated by oil oxidation can react with water to form inorganic acids and acidic substances (including [...] Read more.
Engine oil oxidation is one of the major reasons for oil aging which can result in variations in the physical and chemical properties of oil. Organic acids generated by oil oxidation can react with water to form inorganic acids and acidic substances (including organic and inorganic acids) that corrode engine parts, resulting in the generation of rust or damage to engine parts. This is one of the important reasons why oil should be regularly changed. One of the most commonly applied methods for judging the aging degree of engine oil is monitoring its acid number (AN). However, generally, the effect of oil water content on acid value measurement is not considered. When oils are used in engines, they are often contaminated by water due to condensation, which accelerates engine oil aging. Therefore, it is crucial to explore the water content effect on AN in the process of engine oil aging. In this research, a water content sensor was applied to characterize moisture content in oxidized oil samples. The sensor could also obtain oil sample electrical conductivity which corresponded to its dielectric constant. Using a mid-infrared spectrometer to measure oil sample AN at this point to obtain the variation in AN with oxidation time, oil sample AN was connected in series with the water content, dielectric constant and electrical conductivity. These parameters were monitored through sensors, and the effect of water content on AN was studied. Experimental results revealed that with the increase in oxidation time, the water content, electrical conductivity, dielectric constant increase and AN of oil were increased. At the same time, since the temperature had a greater effect on electrical conductivity, the application of an air-conditioned constant-temperature environment removed the effect of temperature change on electrical conductivity. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 3728 KiB  
Article
A Novel Biosensor for the Detection of Glucose Concentration Using the Dual-Peak Long Period Grating in the Near- to Mid-Infrared
by Namita Sahoo, Bing Sun, Yidong Tan, Kaiming Zhou and Lin Zhang
Sensors 2024, 24(4), 1247; https://doi.org/10.3390/s24041247 - 15 Feb 2024
Cited by 2 | Viewed by 1830
Abstract
In this article, we demonstrate an improved efficient fibre sensor with a high sensitivity to measure glucose concentrations in the physiological range of human beings, operating in a broad spectral bandwidth from the near- to mid-infrared. The sensor consists of a dual-peak long [...] Read more.
In this article, we demonstrate an improved efficient fibre sensor with a high sensitivity to measure glucose concentrations in the physiological range of human beings, operating in a broad spectral bandwidth from the near- to mid-infrared. The sensor consists of a dual-peak long period grating (DPLPG) with a period of 150 μm inscribed in an optical fibre with a diameter of 80 μm. The investigation of sensing for refractive index results in a sensitivity of ~−885.7 nm/refractive index unit (RIU) and ~2008.6 nm/RIU in the range of 1.30–1.44. The glucose measurement is achieved by the immobilisation of a layer of enzyme of glucose oxidase (GOD) onto the fibre surface for the selective enhancement of sensitivity for glucose. The sensor can measure glucose concentrations with a maximum sensitivity of −36.25 nm/(mg/mL) in the range of 0.1–3.0 mg/mL. To the best of our knowledge, this is the highest sensitivity ever achieved for a measurement of glucose with a long period grating-based sensor, indicating its potential for many applications including pharmaceutical, biomedical and food industries. Full article
(This article belongs to the Special Issue Fiber Grating Sensors and Applications)
Show Figures

Figure 1

Back to TopTop