Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = milk vetch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1039 KiB  
Article
Effect of Chinese Milk Vetch on Zinc Content and Zinc Absorption of Rice in Purple Tidal Mud Soil
by Zengping Yang, Zhongxiu Rao, Hailu Li, Zedong Long, Xianjun Zeng and Jian Xie
Agronomy 2024, 14(9), 1997; https://doi.org/10.3390/agronomy14091997 - 2 Sep 2024
Viewed by 252
Abstract
Rice is a staple food crop that feeds billions globally. Addressing Zn deficiency in rice is crucial for improving nutrition and food security. Zn deficiency in rice is a widespread issue, especially in purple tidal mud substrates, which often exhibit low Zn availability. [...] Read more.
Rice is a staple food crop that feeds billions globally. Addressing Zn deficiency in rice is crucial for improving nutrition and food security. Zn deficiency in rice is a widespread issue, especially in purple tidal mud substrates, which often exhibit low Zn availability. The objective of this two-year pot study was to explore the relationship between Zn content, yield components, and Zn absorption in rice grown in purple tidal mud substrate with varying amounts of Chinese milk vetch (Astragalus sinicus L.) incorporation. The experimental design consisted of seven treatments: an unfertilized control, a Chinese milk vetch control, a chemical fertilizer control, and four treatment variations incorporating Chinese milk vetch alongside chemical fertilizer applications. The results indicated that planting and applying Chinese milk vetch improved the grain yield of rice in purple tidal mud substrate, and the yield increased with higher levels of Chinese milk vetch applied. The increased grain yield resulted in higher Zn absorption in rice grains. The application of Chinese milk vetch, both solely and in combination with chemical fertilizers, had varying effects on zinc uptake and grain zinc formation efficiency in early and late rice, with the control and low-level Chinese milk vetch treatments generally exhibiting the highest performance across the two-year period. By introducing Chinese milkvetch following the use of chemical fertilizers, the Zn content in rice grains increased starting from the second year. The treatment with Chinese milkvetch applied at a rate of 2.25 t/hm2 showed the best results in increasing the Zn content in rice grains. The increase in Zn content and Zn uptake by the rice plants gave rise to a lowering of the DTPA-extractable Zn content in the purple tidal mud substrate. Sole Chinese milk vetch application and using Chinese milk vetch following chemical fertilizer application both increased Zn content extracted by DTPA in purple tidal mud substrate. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 1318 KiB  
Article
Effect of Co-Application of Chinese Milk Vetch and Iron-Modified Biochar on Rice in Antimony-Polluted Soil
by Yejie Hu, Xinglong Xiang, Wenjie Jiang, Guiyuan Meng, Jing Zhou, Zhenzhen Guo, Jinxiu Zhou, Haiying Tang, Jianqun Miao and Kareem Morsy
Agronomy 2024, 14(9), 1887; https://doi.org/10.3390/agronomy14091887 - 23 Aug 2024
Viewed by 416
Abstract
Antimony (Sb) toxicity is a serious concern across the globe due to its hazardous impacts on plants and living organisms. The co-application of Chinese milk vetch (CMV) and biochar (BC) is a common agricultural practice, however, the effects of combined CMV and BC [...] Read more.
Antimony (Sb) toxicity is a serious concern across the globe due to its hazardous impacts on plants and living organisms. The co-application of Chinese milk vetch (CMV) and biochar (BC) is a common agricultural practice, however, the effects of combined CMV and BC in mitigating Sb toxicity and bio-availability remain unclear. Therefore, this study investigated the impacts of CMV, rape straw biochar (RBC), and iron-modified biochar (FMB) and their combinations on rice productivity, physiological, and biochemical functioning of rice and Sb availability. Antimony toxicity caused a marked reduction in rice growth and productivity by decreasing chlorophyll, and anthocyanin synthesis, leaf water contents, osmolyte synthesis and antioxidant activities while, increasing hydrogen peroxide (H2O2), electrolyte leakage (EL), and malondialdehyde (MDA) production and Sb accumulation. Co-application of CMV and FMB increased biomass (29.50%) and grain yield (51.07%) of rice by increasing chlorophyll, and anthocyanin synthesis, leaf water contents, osmolyte synthesis, antioxidant activities, and decreasing production of H2O2, EL, and MDA and Sb accumulation in roots (90.41%) and shoots (96.38%). Furthermore, the combined addition of CMV and FMB also reduced the soil available Sb by 75.57% which resulted in less accumulation of Sb in plant parts and improved growth and yield. Given these facts, these findings indicate that co-application of CMV and FMB is a promising approach to remediate Sb-polluted soils and improve sustainable and safer rice productivity. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

0 pages, 3176 KiB  
Article
Systematic Analysis of the Effects of Different Green Manure Crop Rotations on Soil Nutrient Dynamics and Bacterial Community Structure in the Taihu Lake Region, Jiangsu
by Huiyan Wang, Liang Zhong, Junhai Liu, Xiaoyu Liu, Wei Xue, Xinbao Liu, He Yang, Yixin Shen, Jianlong Li and Zhengguo Sun
Agriculture 2024, 14(7), 1017; https://doi.org/10.3390/agriculture14071017 - 27 Jun 2024
Viewed by 722
Abstract
In the traditional farming systems, the excessive application of chemical fertilizers to boost crop yields has resulted in a range of issues, such as soil quality degradation, soil structure deterioration, and pollution of the farmland ecological environment. Green manure, as a high-quality biological [...] Read more.
In the traditional farming systems, the excessive application of chemical fertilizers to boost crop yields has resulted in a range of issues, such as soil quality degradation, soil structure deterioration, and pollution of the farmland ecological environment. Green manure, as a high-quality biological fertilizer source with rich nutrient content, is of great significance for enhancing the soil quality and establishing a healthy farmland ecosystem. However, there are few studies on the effects of different green manures on the soil nutrient levels, enzyme activities, and soil bacterial community composition in the rice–wheat rotation areas in southern China. Thus, we planted Chinese milk vetch (MV; Astragalus sinicus L.), light leaf vetch (LV; Vicia villosa var.), common vetch (CV; Vicia sativa L.), crimson clover (CC; Trifolium incarnatum L.), Italian ryegrass (RG; Lolium multiflorum L.), and winter fields without any crops as a control in the Taihu Lake area of Jiangsu. The soil samples collected after tilling and returning the green manure to the field during the bloom period were used to analyze the effects of the different green manures on the soil nutrient content, enzyme activity, and the structural composition of the bacterial community. This analysis was conducted using chemical methods and high-throughput sequencing technology. The results showed that the green manure returned to the field increased the soil pH, soil organic matter (SOM), alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), available potassium (AK), sucrose (SC), urease (UE), and neutral phosphatase (NEP) contents compared to the control. They increased by 1.55% to 10.06%, 0.26% to 9.31%, 20.95% to 28.42%, 20.66% to 57.79%, 12.38% to 37.94%, 3.11% to 58.19%, 6.49% to 32.99%, and 50.0% to 80.36%, respectively. In addition, the green manure field increased the relative abundance of the genera Proteobacteria and Haliangium while decreasing the relative abundance of Gemmatimonadetes, Chloroflexi, SBR1031, and Anaeromyxobacter in the soil bacteria. Both the number of ASVs (amplicon sequence variants) and α-diversity of the soil bacterial communities were higher compared to the control, and the β-diversity varied significantly among the treatments. Alkali-hydrolyzed nitrogen and neutral phosphatase had the greatest influence on the soil bacterial community diversity, with alkali-hydrolyzed nitrogen being the primary soil factor affecting the soil bacterial community composition. Meanwhile, the results of the principal component analysis showed that the MV treatment had the most significant impact on soil improvement. Our study provides significant insights into the sustainable management of the soil quality in rice–wheat rotations. It identifies MV as the best choice among the green manure crops for improving the soil quality, offering innovative solutions for reducing chemical fertilizer dependence and promoting ecological sustainability. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

13 pages, 4563 KiB  
Article
Biomass Estimation of Milk Vetch Using UAV Hyperspectral Imagery and Machine Learning
by Hao Hu, Hongkui Zhou, Kai Cao, Weidong Lou, Guangzhi Zhang, Qing Gu and Jianhong Wang
Remote Sens. 2024, 16(12), 2183; https://doi.org/10.3390/rs16122183 - 16 Jun 2024
Cited by 1 | Viewed by 796
Abstract
Milk vetch (Astragalus sinicus L.) is a winter-growing plant that can enhance soil fertility and provide essential nutrients for subsequent season crops. The fertilizing capacity of milk vetch is closely related to its above-ground biomass. Compared to the manual measurement methods of [...] Read more.
Milk vetch (Astragalus sinicus L.) is a winter-growing plant that can enhance soil fertility and provide essential nutrients for subsequent season crops. The fertilizing capacity of milk vetch is closely related to its above-ground biomass. Compared to the manual measurement methods of milk vetch biomass, remote sensing-based estimation methods have the advantages of rapid, noninvasive, and large-scale measurement. However, few studies have been conducted on remote sensing-based estimation of milk vetch biomass. To address this shortcoming, this study proposes combining unmanned aerial vehicle (UAV)-based hyperspectral imagery and machine learning algorithms for accurate estimation of milk vetch biomass. Through the analysis of hyperspectral images and feature selection based on the Pearson correlation and principal component analysis, vegetation indices (VIs), including near-infrared reflectance (NIR), red-edge spectral transform index (RE), and difference vegetation index (DVI), are selected as estimation metrics of the model development process. Four machine learning methods, including random forest (RF), multiple linear regression (MLR), deep neural network (DNN), and support vector machine (SVM), are used to construct the biomass models. The results show that the RF estimation model exhibits the highest coefficient of determination (R2) of 0.950 and the lowest relative root-mean-squared error (RRMSE) of 14.86% among all the models. Notably, the DNN model demonstrates promising performance on the test set, with the R2 and RRMSE values slightly superior and inferior to those of the RF, respectively. The proposed method based on UAV imagery and machine learning can provide an accurate and reliable large-scale estimation of milk vetch biomass. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Figure 1

19 pages, 1252 KiB  
Article
Effects of Returning Green Manure-Chinese Milk Vetch on the Availability and Transformation of Zinc in Purple Tidal Mud Soil under Rice Cultivation
by Zengping Yang, Zhongxiu Rao, Hailu Li, Xianjun Zeng and Jian Xie
Agronomy 2024, 14(6), 1126; https://doi.org/10.3390/agronomy14061126 - 24 May 2024
Cited by 1 | Viewed by 564
Abstract
This study aimed to investigate the impact of different levels of Chinese milk vetch (Astragalus sinicus L.) incorporation on the availability and transformation of zinc in purple tidal mud soil under rice cultivation. A two-year pot experiment was conducted, comprising seven treatments: [...] Read more.
This study aimed to investigate the impact of different levels of Chinese milk vetch (Astragalus sinicus L.) incorporation on the availability and transformation of zinc in purple tidal mud soil under rice cultivation. A two-year pot experiment was conducted, comprising seven treatments: a control group without fertilizer, a control group with Chinese milk vetch application, a control group with chemical fertilizer application, and four treatment groups with varying levels of Chinese milk vetch application following chemical fertilizer application. Results showed that Chinese milk vetch application increased the content of available zinc (DTPA-Zn) in purple tidal mud soil. Sole application of Chinese milk vetch ultimately enhanced the transfer factor of zinc in purple tidal mud soil and reduced the distribution index. However, applying Chinese milk vetch after chemical fertilizer application ultimately decreased the transfer factor of zinc and increased the distribution index. Furthermore, sole application of Chinese milk vetch facilitated the conversion of zinc in purple tidal mud soil into available forms, while applying it after chemical fertilizer application promoted the transformation of zinc into ineffective forms, with a greater conversion observed at higher levels of Chinese milk vetch application. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 2235 KiB  
Article
Increased Soil Soluble Nitrogen Stocks and Decreased Nitrogen Leaching Loss in Rice Paddy Soil by Replacing Nitrogen Fertilizer with Chinese Milk Vetch
by Jing Yang, Wenqi Guo, Chengsen Zhao, Biqing Zhou, Wenhao Yang, Shihe Xing and Fenghua Ding
Agronomy 2024, 14(4), 715; https://doi.org/10.3390/agronomy14040715 - 29 Mar 2024
Viewed by 931
Abstract
Reducing soil nitrogen leaching losses and improving nitrogen-use efficiency with effective fertilization management strategies are extremely important for sustainable agricultural development. A 2-year field study was executed with the same nitrogen input in a subtropical rice production system in Southeast China, using chemical [...] Read more.
Reducing soil nitrogen leaching losses and improving nitrogen-use efficiency with effective fertilization management strategies are extremely important for sustainable agricultural development. A 2-year field study was executed with the same nitrogen input in a subtropical rice production system in Southeast China, using chemical fertilizers as a control (CK), to study the influences of different application amounts of Chinese milk vetch (CMV), i.e., 15,000 kg hm−2 (CL), 30,000 kg hm−2 (CM), and 45,000 kg hm−2 (CH), on soil soluble nitrogen stock and leaching risks in a clay paddy field. The results showed that the soil stocks of soluble inorganic nitrogen (SIN) and soluble organic nitrogen (SON) in a 0–60 cm soil profile under different application amounts of CMV significantly increased by 12.43–36.03% and 19.43–71.75% compared with CK, respectively, which was more favorable to soil SON accumulation. In the 2-year experiment, the total dissolved nitrogen leaching loss was 23.51–61.88 kg hm−2 under different application rates of CMV, of which 50.08–62.69% was leached by dissolved inorganic nitrogen (DIN), and 37.31–49.92% was leached by dissolved organic nitrogen (DON). CMV application improved soil properties (pH, SOM, and urease/protease), increased SIN and SON stocks, and decreased surface water DIN and DON concentrations, thereby reducing DIN and DON leaching. The leachings of DIN and DON in different application rates of CMV were reduced by 11.37–66.23% and 13.39–52.07% compared with the CK treatment, respectively. Conclusively, nitrogen leaching loss in paddy fields was severe, and the DIN and DON leaching loss in CMV treatments were lower than those in the control under the same nitrogen input. Thus, replacing nitrogen fertilizer with CMV under the same nitrogen input could reduce the risk of nitrogen nonpoint pollution in clay paddy fields. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

17 pages, 2826 KiB  
Article
Study on the Effects of Reducing Nitrogen Fertilizer: Stabilizing Yield and Carbon Sequestration by Synergistic Utilization of Chinese Milk Vetch and Rice Straw in Double-Cropping Rice Area
by Xue Xie, Yulin Liao, Yanhong Lu, Jianglin Zhang, Peng Li, Youyun Tang, Weidong Cao, Yajie Gao and Jun Nie
Agronomy 2024, 14(4), 675; https://doi.org/10.3390/agronomy14040675 - 26 Mar 2024
Viewed by 764
Abstract
The excessive application of chemical fertilizers in rice fields exacerbates soil degradation and poses a threat to food security. Achieving an increase in rice production and minimizing environmental costs are inevitable requirements for achieving sustainable rice production. The synergistic utilization of rice straw [...] Read more.
The excessive application of chemical fertilizers in rice fields exacerbates soil degradation and poses a threat to food security. Achieving an increase in rice production and minimizing environmental costs are inevitable requirements for achieving sustainable rice production. The synergistic utilization of rice straw (RS) and Chinese milk vetch (MV) is a sustainable measure to improve soil quality in Southern China. How this management strategy impacts agricultural productivity and soil carbon (C) sequestration under different fertilization conditions is unclear. Several treatments, including only chemical fertilizer (F), F + MV (FM), F + RS (FS), and F + MV + RS (FMS) under a standard rate of nitrogen (N100) and 40% reduced nitrogen (N60) levels were designed to explore changes in rice yields and soil organic carbon (SOC) concentrations, stocks, and soil labile organic C fractions (permanganate oxidizable C) during 2018–2020 in a double-rice-cropping system. The results show that the FMS treatment reduced soil bulk density to alleviate soil compaction and improved the soil carbon management index. The synergistic utilization of MV and RS replacing 40% of the chemical N fertilizer could still maintain the rice yield. Compared to the F treatment, the average annual grain yield was significantly increased by 9.82% and 5.84% in the FMS treatment; SOC concentration was increased by 16.05% and 19.98% on average (p < 0.05), and SOC stock was increased by 1.78 Mg C ha−1 and 2.37 Mg C ha−1 under the N60 and N100 levels, respectively. The random forest regression model and correlation analysis demonstrated that the inputs of chemical N, organic N and C, and appropriate C/N ratio promoted soil C accumulation. Furthermore, the structural equation model analysis exhibited that the C input affects the highly labile organic carbon (HLOC) and total labile organic carbon (LOC); the HLOC had a positive effect on SOC (p < 0.05). N input had a significant effect on LOC and yield. Our results suggest that the synergistic utilization of MV and RS plays an important role in ensuring stable grain production, improving soil C sequestration capacity, and maintaining soil environmental health in Southern China. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 1858 KiB  
Article
Soil Microbial Biomass and Bacterial Diversity Enhanced through Fallow Cover Cropping in Rice–Fish Coculture
by Shumei Cai, Sixin Xu, Deshan Zhang, Stefan Geisen and Haitao Zhu
Agronomy 2024, 14(3), 456; https://doi.org/10.3390/agronomy14030456 - 25 Feb 2024
Cited by 1 | Viewed by 1088
Abstract
Traditional rice production is often reliant on the unsustainable practice of utilizing intensive inputs in monoculture cropping systems. Alternatives fallow cover cropping and rice–fish coculture (RFC) offer promising solutions. However, the potential of fallow cover cropping in RFC remains underexplored, and its impact [...] Read more.
Traditional rice production is often reliant on the unsustainable practice of utilizing intensive inputs in monoculture cropping systems. Alternatives fallow cover cropping and rice–fish coculture (RFC) offer promising solutions. However, the potential of fallow cover cropping in RFC remains underexplored, and its impact on soil microbes is poorly understood. In this study, assessments of soil–plant–microbe interactions were conducted across three cover cropping systems: Chinese milk vetch (Astragalus sinicus L.) single cropping (CM), Rapeseed (Brassica napus L.) single cropping (RP), and a combination of Chinese milk vetch and rapeseed intercropping (CM_RP). These systems were evaluated with and without nitrogen (N) addition, encompassing both the RFC and rice monoculture (RMC) systems. The findings indicate a notable increase in soil microbial biomass nitrogen (MBN) with CM. Soil microbial biomass carbon (MBC), influenced more by N-fertilizer than crop species, decreased with N addition. In the RFC system, the soil bacterial co-occurrence network exhibited more connections, yet negative links increased. CM_RP displayed similarities to CM without N but shifted closer to RP with N addition. N addition in intercropping significantly increased the root–shoot ratio (R/S) of A. sinicus, associated with decreased aboveground biomass and total root length. Compared to RMC, RFC with N addition reduced the relative abundance of Anaerolineaceae in CM while increasing Bacillus and Pontibacter across cover cropping systems. Overall, with N addition, both RFC and RMC showed decreased soil bacterial diversity indices. Changes in soil bacterial diversity correlated significantly with soil MBC, MBN, and plant R/S. Continuous fallow cover cropping altered soil microbial biomass and affected cover crop biomass distribution, impacting bacterial composition in paddy soil. These results shed light on how bacterial communities respond to N addition and fallow cover cropping in RFC and RMC systems, offering insights for sustainable nutrient management in paddy systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

13 pages, 1310 KiB  
Article
Greenhouse Gas Emissions, Carbon Footprint, and Grain Yields of Rice-Based Cropping Systems in Eastern China
by Zhongze Hu, Hongjiang Liu, Yuefang Zhang, Ji Chen, Xian Wang, Daliu Yang, Jing Sheng, Liugen Chen and Jianchu Zheng
Agronomy 2024, 14(2), 395; https://doi.org/10.3390/agronomy14020395 - 18 Feb 2024
Viewed by 1465
Abstract
A multiple cropping system is beneficial for utilizing natural resources, while increasing the grain production and economic outputs. However, its impact on greenhouse gas emissions is unclear. The objective of this study was to evaluate the influence of rice-based cropping systems on methane [...] Read more.
A multiple cropping system is beneficial for utilizing natural resources, while increasing the grain production and economic outputs. However, its impact on greenhouse gas emissions is unclear. The objective of this study was to evaluate the influence of rice-based cropping systems on methane (CH4) and nitrous oxide (N2O) emissions, the carbon footprint (CF), grain yields, and net economic returns in eastern China. Four treatments were applied: rice–fallow (as a control), rice–milk vetch, rice–wheat, and rice–rapeseed. Methane and N2O emissions were measured every 7 days via static chamber and gas chromatography methods from the 2019 rice season to the 2021 non-rice season. The CF was calculated based on the life cycle assessment. The results showed that multiple cropping systems significantly increased the annual grain yield by 1.2–6.4 t ha−1 and the annual CH4 and N2O emissions by 38–101 kg CH4-C ha−1 and 0.58–1.06 kg N2O-N ha−1, respectively. The average annual net returns for rice–wheat and rice–rapeseed were 131–150% greater than those for rice–milk vetch and rice–fallow. The annual CFs increased in the following order: rice–wheat (19.2 t CO2-eq ha−1) > rice–rapeseed (16.6 t CO2-eq ha−1) > rice–milk vetch (13.9 t CO2-eq ha−1) > rice–fallow (11.5 t CO2-eq ha−1). The CH4 emissions contributed to the largest share of the CF (60.4–68.8%), followed by agricultural inputs (27.2–33.7%) and N2O emissions (2.9–5.9%). Moreover, nitrogen fertilizer accounted for 65.6–72.4% of the indirect greenhouse gas emissions from agricultural inputs. No significant difference in the CF per unit grain yield was observed between the four rice-based cropping systems. The CF per net return of rice–wheat and rice–rapeseed significantly decreased by 37–50% relative to that of rice–fallow and rice–milk vetch. These findings suggest the potential to optimize rice-based cropping systems for environmental sustainability and grain security. Full article
Show Figures

Figure 1

16 pages, 3250 KiB  
Article
Cadmium-Tolerant Bacterium Strain Cdb8-1 Contributed to the Remediation of Cadmium Pollution through Increasing the Growth and Cadmium Uptake of Chinese Milk Vetch (Astragalus sinicus L.) in Cadmium-Polluted Soils
by Bo Wang, Minghui Sun, Yuekai Wang, Tengyue Yan, Yuhang Li, Xinxin Wu, Youbao Wang and Weibing Zhuang
Plants 2024, 13(1), 76; https://doi.org/10.3390/plants13010076 - 26 Dec 2023
Cited by 1 | Viewed by 915
Abstract
Cadmium (Cd) pollution has attracted global attention because it not only jeopardizes soil microbial ecology and crop production, but also threatens human health. As of now, microbe-assisted phytoremediation has proven to be a promising approach for the revegetation of Cd-contaminated soil. Therefore, it [...] Read more.
Cadmium (Cd) pollution has attracted global attention because it not only jeopardizes soil microbial ecology and crop production, but also threatens human health. As of now, microbe-assisted phytoremediation has proven to be a promising approach for the revegetation of Cd-contaminated soil. Therefore, it is important to find such tolerant microorganisms. In the present study, we inoculated a bacteria strain tolerant to Cd, Cdb8-1, to Cd-contaminated soils and then explored the effects of Cdb8-1 inoculation on the performance of the Chinese milk vetch. The results showed plant height, root length, and fresh and dry weight of Chinese milk vetch grown in Cdb8-1-inoculated soils increased compared to the non-inoculated control group. The inoculation of Cd-contaminated soils with Cdb8-1 also enhanced their antioxidant defense system and decreased the H2O2 and malondialdehyde (MDA) contents, which alleviated the phytotoxicity of Cd. The inoculation of Cdb8-1 in Cd-contaminated soils attenuated the contents of total and available Cd in the soil and augmented the BCF and TF of Chinese milk vetch, indicating that the combined application of Cd-tolerant bacteria Cdb8-1 and Chinese milk vetch is a potential solution to Cd-contaminated soils. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

14 pages, 2222 KiB  
Article
Effects of Typical Cropping Patterns of Paddy-Upland Multiple Cropping Rotation on Rice Yield and Greenhouse Gas Emissions
by Haiying Tang, Yao Huang, Jiaxin Yuan, Muhammad Umair Hassan, Ning Liu and Binjuan Yang
Agronomy 2023, 13(9), 2384; https://doi.org/10.3390/agronomy13092384 - 14 Sep 2023
Cited by 3 | Viewed by 1288
Abstract
In response to the limitations of traditional double rice cropping models, this study constructed five typical rice planting models in the middle reaches of the Yangtze River, namely “Chinese milk vetch-early rice-late rice (CK/CRR), Chinese milk vetch—early rice—sweet potato || late soybean (CRI), [...] Read more.
In response to the limitations of traditional double rice cropping models, this study constructed five typical rice planting models in the middle reaches of the Yangtze River, namely “Chinese milk vetch-early rice-late rice (CK/CRR), Chinese milk vetch—early rice—sweet potato || late soybean (CRI), rapeseed—early rice—late rice (RRR), rapeseed—early rice—sweet potato || late soybean (RRI) and potato—early rice—late rice (PRR)” to study the annual emission characteristics of greenhouse gases under different planting models. The results showed the following: (1) From the perspective of total yield in two years, the CRI treatment reached its maximum, which was significantly higher than that of other treatments by 9.30~20.29% in 2019 (p < 0.05); in 2020, except for the treatment of RRI, it was significantly higher than other treatments by 20.46~30.23% (p < 0.05). (2) The cumulative emission of CH4 in the double rice treatment is generally higher than that in paddy-upland rotation treatment, while the cumulative emission of N2O in the paddy-upland rotation treatment is higher than that in the double rice treatment, but the total amount is much lower than the cumulative emission of CH4. Therefore, CH4 emissions from rice fields still occupy most of the GHGs. (3) The global warming potential (GWP) and greenhouse gas emission intensity (GHGI) of different planting patterns in rice fields in 2020 were higher than those in 2019, and the GWP and GHGI of double rice cropping treatment is higher than that of paddy-upland rotation treatments. During the two years, the GWP of CRR treatment reached its maximum and was significantly higher than that of other treatments by 48.28~448.90% and 34.43~278.33% (p < 0.05). The GHGI of CRR was significantly higher than that of CRI and RRI by 3.57~5.4 and 1.4~3.5 times (p < 0.05). Based on the comprehensive performance of greenhouse gas emissions over the two experimental years, RRI and CRI have shown good emission reduction effects, which can significantly reduce greenhouse gas emissions from paddy fields, are conducive to reducing global warming potential and greenhouse gas emission intensity and conform to the development trend of “carbon neutrality”. Therefore, considering high-yield, low-temperature chamber gas emissions, the Chinese milk vetch—early rice—sweet potato || late soybean model performs well and has the best comprehensive benefits. It is of great significance for optimizing the rice field planting mode in the middle reaches of the Yangtze River. Full article
Show Figures

Figure 1

18 pages, 5019 KiB  
Article
Investigating Variability in Viral Presence and Abundance across Soybean Seed Development Stages Using Transcriptome Analysis
by Hoseong Choi, Yeonhwa Jo, Hyunjung Chung, Soo Yeon Choi, Sang-Min Kim, Jin-Sung Hong, Bong Choon Lee and Won Kyong Cho
Plants 2023, 12(18), 3257; https://doi.org/10.3390/plants12183257 - 13 Sep 2023
Cited by 1 | Viewed by 1250
Abstract
Plant transcriptomes offer a valuable resource for studying viral communities (viromes). In this study, we explore how plant transcriptome data can be applied to virome research. We analyzed 40 soybean transcriptomes across different growth stages and identified six viruses: broad bean wilt virus [...] Read more.
Plant transcriptomes offer a valuable resource for studying viral communities (viromes). In this study, we explore how plant transcriptome data can be applied to virome research. We analyzed 40 soybean transcriptomes across different growth stages and identified six viruses: broad bean wilt virus 2 (BBWV2), brassica yellow virus (BrYV), beet western yellow virus (BWYV), cucumber mosaic virus (CMV), milk vetch dwarf virus (MDV), and soybean mosaic virus (SMV). SMV was the predominant virus in both Glycine max (GM) and Glycine soja (GS) cultivars. Our analysis confirmed its abundance in both, while BBWV2 and CMV were more prevalent in GS than GM. The viral proportions varied across developmental stages, peaking in open flowers. Comparing viral abundance measured by viral reads and fragments per kilobase of transcript per million (FPKM) values revealed insights. SMV showed similar FPKM values in GM and GS, but BBWV2 and CMV displayed higher FPKM proportions in GS. Notably, the differences in viral abundance between GM and GS were generally insignificant based on the FPKM values across developmental stages, except for the apical bud stage in four GM cultivars. We also detected MDV, a multi-segmented virus, in two GM samples, with variable proportions of its segments. In conclusion, our study demonstrates the potential of plant transcriptomes for virome research, highlighting their strengths and limitations. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

13 pages, 1521 KiB  
Article
Co-Incorporating Chinese Milk Vetch and Rice Straw Increases Rice Yield by Improving Nutrient Uptake during Rice Growth
by Tingting Ma, Guopeng Zhou, Jia Liu, Xiaofen Chen, Guilong Li, Wenjing Qin, Danna Chang and Xingjia Xiang
Sustainability 2023, 15(16), 12183; https://doi.org/10.3390/su151612183 - 9 Aug 2023
Viewed by 947
Abstract
In the past ten years, in paddy rice systems in southern China, the co-incorporation of Chinese milk vetch (MV) and rice straw (RS) has become a new and effective practice in which the advantages of the two species are combined to improve rice [...] Read more.
In the past ten years, in paddy rice systems in southern China, the co-incorporation of Chinese milk vetch (MV) and rice straw (RS) has become a new and effective practice in which the advantages of the two species are combined to improve rice yields. However, more studies are needed to better understand the mechanisms by which rice productivity is improved through this practice. In this study, a pot experiment was performed to investigate the effects of different residue management treatments on rice productivity and soil properties. Five treatments were tested: (i) CK (no residue and no chemical fertilizer); (ii) CF (chemical fertilizer); (iii) FM (CF with MV returning); (iv) FR (CF with RS returning); and (v) FMR (CF with a mixture of MV and RS returning). The results showed that the application of MV and/or RS returning improved grain yields by between 13.7% and 31.5%, compared with CF treatment alone. In addition, the application of MV significantly improved rice yield relative to RS returning. However, co-incorporation of MV and RS resulted in the highest yield productivity of all. FMR treatment significantly increased shoot biomass and shoot N, P, and K uptake, compared with FR treatment, at all three growth stages, and compared with FM treatment at the jointing and maturity stages. Moreover, FMR treatment significantly improved grain N, P, and K uptake, relative to FM and FR treatments. These results clearly demonstrated that co-incorporation management promotes nitrogen and phosphorus nutrient uptake at jointing and maturity stages of the rice growth process, compared to application of single residues alone, resulting in higher rice yields. Because incorporation of MV and/or RS increases the available nutrients in the soil and enhances nutrient uptake by the crop, wide-scale adoption of the co-incorporation of residues would significantly increase rice yields and improve soil fertility. Full article
Show Figures

Figure 1

19 pages, 4480 KiB  
Article
Evaluation of Methane Emission Reduction Potential of Water Management and Chinese Milk Vetch Planting in Hunan Paddy Rice Fields
by Zhiwei Zhang, Jianling Fan, Yunfan Wan, Jinming Wang, Yulin Liao, Yanhong Lu and Xiaobo Qin
Agronomy 2023, 13(7), 1799; https://doi.org/10.3390/agronomy13071799 - 5 Jul 2023
Viewed by 1806
Abstract
In order to explore the methane reduction potential with two scenarios of water management and Chinese Milk Vetch return, we calculated the methane emissions of Hunan Province rice fields in 2019 using the SECTOR tool based on Excel and released by the International [...] Read more.
In order to explore the methane reduction potential with two scenarios of water management and Chinese Milk Vetch return, we calculated the methane emissions of Hunan Province rice fields in 2019 using the SECTOR tool based on Excel and released by the International Rice Research Institute. Thus, we preliminarily established an agricultural carbon emissions monitoring, reporting, and verification (MRV) system. The results showed that: (1) There was significant spatial variation in methane emissions in Hunan rice fields, with higher emissions in both the south and north and lower emissions in the east and west. Late rice was the main contributor to methane emissions, and the cities of Changde, Hengyang, Yueyang, and Shaoyang were high-emission areas due to differences in rice planting types and areas. Compared with flooding (1275.75 Gg), optimized water management measures (mid-drainage and AWD irrigation) reduced methane emissions by 29~45% (905.79 and 701.66 Gg, respectively). (2) Under the same nitrogen input conditions, compared with a solely straw return (375.24 Gg), combining green manure with straw return could partially reduce methane emissions from Hunan super hybrid rice (327.63 Gg). Compared with the control fertilizers (404.28 Gg), the reduction rates of winter-planted Chinese Milk Vetch, the return of rice straw, and the incorporation of both Chinese Milk Vetch and straw were 7.19%, 13.01%, and 18.96%, respectively. Based on scientific accounting tools, a preliminary MRV system for rice field carbon emissions was established. Under the national demand for reducing fertilizer use and increasing efficiency, equal nitrogen organic amendments could effectively contribute to the development of green, low-carbon, and high-quality agriculture. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

16 pages, 10979 KiB  
Article
Optimizing the Incorporated Amount of Chinese Milk Vetch (Astragalus sinicus L.) to Improve Rice Productivity without Increasing CH4 and N2O Emissions
by Nannan Zhou, Tengfei Jiang, Jiajia Wang, Yujiao Chen, Wenbin Yang, Shan Tang, Shang Han and Ying Wang
Agronomy 2023, 13(6), 1636; https://doi.org/10.3390/agronomy13061636 - 19 Jun 2023
Cited by 2 | Viewed by 1613
Abstract
Chinese milk vetch (CMV) is a leguminous green manure that is commonly cultivated in paddy fields and can partially substitute synthetic nitrogen fertilizer. However, the impacts of incorporating CMV on CH4 and N2O emissions are still a subject of controversy. [...] Read more.
Chinese milk vetch (CMV) is a leguminous green manure that is commonly cultivated in paddy fields and can partially substitute synthetic nitrogen fertilizer. However, the impacts of incorporating CMV on CH4 and N2O emissions are still a subject of controversy. Therefore, we conducted a field experiment over three years to investigate emissions under different substitution ratios: urea only (CF); incorporating a traditional amount of CMV (MV); and with incorporation ratios of 1/3 (MV1/3), 2/3 (MV2/3), and 4/3 (MV4/3) of MV for partial urea substitution. Compared with CF, MV2/3, MV, and MV 4/3 resulted in increased yields. MV and MV4/3 reduced N2O emissions but increased CH4 emissions by 28.61% and 85.60% (2019), 32.38% and 103.19% (2020), and 28.86% and 102.98% (2021), respectively, resulting in an overall increase in total global warming potential (except for MV in 2021). MV2/3 exhibited a low greenhouse gas intensity value ranging from 0.46 to 0.47. Partial least-squares-path model results showed that CH4 and N2O emissions were influenced by substitution ratios, which indirectly regulated the gene abundances of mcrA and nosZ. Overall, the impact of CMV on CH4 and N2O emissions was determined by substitution ratios. MV2/3, which involved partial substitution of synthetic N fertilizer with 15.0 t ha−1 of CMV, resulted in improved rice productivity without increasing CH4 and N2O emissions, making it a recommended approach in the study area. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

Back to TopTop