Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = multi-plate clutch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8081 KiB  
Article
Study on Spline Stress of Separator Plates in a Wet Multi-Plate Clutch
by Biao Ma, Xiaobo Chen, Changsong Zheng, Liang Yu, Qin Zhao and Weichen Lu
Materials 2024, 17(12), 3039; https://doi.org/10.3390/ma17123039 - 20 Jun 2024
Viewed by 315
Abstract
The spline teeth fracture of separator plates in wet multi-plate clutches compromises driving safety and the vehicle’s lifespan. Tooth fracture is mainly caused by stress concentration at the tooth root and uneven circumferential load distribution. This paper considers parameters such as torque, teeth [...] Read more.
The spline teeth fracture of separator plates in wet multi-plate clutches compromises driving safety and the vehicle’s lifespan. Tooth fracture is mainly caused by stress concentration at the tooth root and uneven circumferential load distribution. This paper considers parameters such as torque, teeth count, tooth profile, and misalignment errors, establishing the corresponding finite element (FE) model to analyze the impact of the above-mentioned parameters on the strength of the separator plates. Analysis under even and biased load circumstances demonstrated that an optimum tooth count and profile can significantly increase the strength of the separator plates, offering advice for the optimized design of wet multi-plate clutch separator plates. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

27 pages, 6977 KiB  
Article
A Novel Continuously Variable Transmission with Circumferentially Arranged Disks (CAD CVT)
by Muhammad Bilal, Qidan Zhu, Shafiq R. Qureshi, Ahsan Elahi, Muhammad Kashif Nadeem and Sartaj Khan
Actuators 2024, 13(6), 208; https://doi.org/10.3390/act13060208 - 3 Jun 2024
Viewed by 374
Abstract
This paper presents a novel Continuous Variable Transmission (CVT) design. CVT is highly beneficial for actuators with rotary output as it can improve the energy efficiency of the actuators by providing an optimum transmission ratio. This property of CVT is highly beneficial for [...] Read more.
This paper presents a novel Continuous Variable Transmission (CVT) design. CVT is highly beneficial for actuators with rotary output as it can improve the energy efficiency of the actuators by providing an optimum transmission ratio. This property of CVT is highly beneficial for fossil-fuel-based vehicles, electric vehicles, wind turbines, industrial robots, etc. With the exception of Spherical CVT and DH CVT, all known CVTs like push belt CVTs, toroidal CVTs, Milner CVTs, etc., require additional gear sets and clutches for direction reversal and neutral gear ratio. However, Spherical CVT and DH CVT have low torque capacity due to a single traction point constraint. Foregoing in view, a new CVT named CAD CVT has been developed. The paper presents the design conception, the operating principle, the transmission ratio, the torque capacity, frictional losses, and experimental verification of the basic functionality by manufacturing a Proof of Concept (PoC). The proposed CVT is the only CVT capable of independent direction reversal and high torque capacity as it can transmit torque through multiple traction points. The new CVT will significantly impact high-torque applications in different engineering applications, especially land transport consisting of heavy vehicles like trucks, buses, and trailers. Full article
(This article belongs to the Section Actuators for Land Transport)
Show Figures

Figure 1

15 pages, 5573 KiB  
Article
A Study on Power Transmission Control for Applying MR Fluid Multi-Plate Clutch to Automobile Power Distribution Device
by Jin-Young Park, Jae-Hoon Jeon and Young-Choon Kim
Appl. Sci. 2024, 14(9), 3871; https://doi.org/10.3390/app14093871 - 30 Apr 2024
Viewed by 630
Abstract
The aim of this study is to design and manufacture a multi-plate clutch system that uses magnetorheological (MR) fluid control to allow for a variable power transmission ratio in power distribution systems. MR fluid is a smart material that enables presenting a solution [...] Read more.
The aim of this study is to design and manufacture a multi-plate clutch system that uses magnetorheological (MR) fluid control to allow for a variable power transmission ratio in power distribution systems. MR fluid is a smart material that enables presenting a solution to the shocks and power loss that occur due to mechanical problems in power distribution systems. As such, the longitudinal and lateral dynamic properties of 4WD (four-wheel drive) vehicles were examined and analyzed to develop an algorithm to control the front/rear power distribution according to the road surface state and driving conditions. To verify the algorithm, the CarSim vehicle dynamics simulation program was adopted to perform experiments to understand the vehicle’s dynamic performance improvements and turning stability via a HILS (Hardware in the Loop) system. In this study, an MR fluid, multi-plate clutch was used that combines a dry clutch and a wet clutch using the characteristics of the MR fluid. Such a clutch was designed to enable continuous and smooth torque transmission by utilizing the strengths of each of the dry and wet clutches. The CarSim vehicle dynamics program was used to conduct the experiments, which were conducted by linking to the manufactured MR fluid clutch experimental device. The experiments investigated the dynamic performance based on the power distribution ratio by performing longitudinal flat, inclined driving and lateral DLC (double lane change) driving. In summary, this study found that it is possible to perform power transmission by applying a current to an MR fluid and forming a magnetic field to change the flow properties of the fluid to control the torque transmission ratio that occurs in an MR fluid clutch. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

25 pages, 14119 KiB  
Article
Dynamic Analysis of Three-Rotor System with Hollow Shaft under Clutch Misalignment
by Guofang Nan, Haoyu Wang and Dengliang Yu
Aerospace 2024, 11(4), 319; https://doi.org/10.3390/aerospace11040319 - 19 Apr 2024
Viewed by 895
Abstract
Rotor system of aviation engines is often made of multiple rotors connected by the clutch. Due to manufacturing and assembly errors, there is a clutch misalignment, including the parallel misalignment and the angle misalignment. This misalignment produces additional torque in the operation of [...] Read more.
Rotor system of aviation engines is often made of multiple rotors connected by the clutch. Due to manufacturing and assembly errors, there is a clutch misalignment, including the parallel misalignment and the angle misalignment. This misalignment produces additional torque in the operation of the system, leading to an abnormal increase in its oscillation, which causes the rubbing between the stator and the rotor. The rub-collision poses great harm to the safety and stability of the aero-engine. The analytical model of the rotor system with misalignment and rubbing faults is established, and the influence of the rotational speed, the misalignment, and the rubbing on the nonlinear characteristics of the rotor is investigated. Considering the nonlinear Hertz contact force and bearing gap, the model of the inter-shaft bearing is built; the parallel and angle misalignments of clutch are taken into account to analyze the characteristic frequency of the faults. For raising the thrust-to-weight ratio of aviation engines, the hollow shaft is often adopted, and the effect of the wall thickness for the shaft on the nonlinear vibration of the system is also investigated. It is innovative to study the transfer mechanism from wall thickness to the nonlinear vibrational responses of the overall structure. The result indicates that, with the increase in the wall thickness of the shaft, the second critical rotating speed increases, while the first critical rotating speed is almost unchanged. The characteristic frequencies for the three-rotor system with coupling faults are obtained. Despite intuition, the parallel misalignment can inhibit rub-collision vibration to a certain extent. The research has important reference values for the fault recognition and structural optimization of the three-rotor system. Full article
Show Figures

Figure 1

25 pages, 8723 KiB  
Article
Experimental Investigation and Control of Driveline Torsional Vibrations during Clutch-to-Clutch Shifts of Electrified Vehicles
by Sooyoung Kim
Machines 2024, 12(4), 239; https://doi.org/10.3390/machines12040239 - 5 Apr 2024
Viewed by 764
Abstract
An electrified vehicle equipped with a stepped-ratio transmission and clutch(es) requires precise control of the clutch actuator(s) and power sources to achieve optimal gear shift performance, which is characterized by smooth and swift gear shifts. Owing to the absence of the smoothing effect [...] Read more.
An electrified vehicle equipped with a stepped-ratio transmission and clutch(es) requires precise control of the clutch actuator(s) and power sources to achieve optimal gear shift performance, which is characterized by smooth and swift gear shifts. Owing to the absence of the smoothing effect of torque converters, dual-clutch transmission (DCT) powertrains are prone to inducing abrupt shift shocks—particularly during rapid clutch-to-clutch shifts. Balancing the smoothness and speed of shifts is a significant challenge and was the key focus of this study. Multiple experiments and model-based analyses were conducted to investigate the tradeoff between smoothness and shift time during the clutch-to-clutch shifts of a parallel-type hybrid electric vehicle with a dry DCT. Additionally, the adverse effects of inaccurate power-source control on shift quality were experimentally investigated. The results revealed the primary physical factors in terms of control causing torsional driveline oscillations in clutch-to-clutch shifts. According to these observations, a detailed quantitative guide including how to generate reference trajectories for shift control is proposed, with the aim of reducing the driveline torsional vibrations without compromising the shift time. The effectiveness of the proposed control strategy was demonstrated through real-time experiments on an electrified powertrain with a DCT using a dedicated test bench. This study provides valuable insights for optimizing the shift performance of electrified vehicles—particularly for managing torsional vibrations during clutch-to-clutch shifts. Full article
(This article belongs to the Special Issue Advances in Vehicle Brake and Clutch Systems)
Show Figures

Figure 1

17 pages, 6806 KiB  
Article
A Fast Optimizing Method of Clutch–Clutch Shift Calibration Parameters
by Jinyu Lin, Huijun Yue, Xiaoxiao Wu, Lu Zhang, Zhenkun Dai and Haobo Jing
Electronics 2024, 13(5), 941; https://doi.org/10.3390/electronics13050941 - 29 Feb 2024
Viewed by 663
Abstract
Aiming at the drawbacks of the heavy workload and lengthy calibration cycle of transmission control unit (TCU) development, a fast optimizing and test method of clutch–clutch shift calibration parameters is developed based on the “V” development process. A controlled-object simulation model of a [...] Read more.
Aiming at the drawbacks of the heavy workload and lengthy calibration cycle of transmission control unit (TCU) development, a fast optimizing and test method of clutch–clutch shift calibration parameters is developed based on the “V” development process. A controlled-object simulation model of a six-speed automatic transmission (6AT) is established, and the shift calibration parameters and shift quality evaluation system are studied. Therefore, a model-in-the-loop (MIL) calibration platform for key calibration parameters and evaluation indicators in the shift process is constructed. By setting the optimization target of evaluation indicators, the initial calibration parameters’ ranges are reduced. Finally, the TCU is flashed with the optimized calibration parameters, and a hardware-in-the-loop (HIL) test system is built to verify the shift quality. The same shift quality verification test is carried out in the vehicle. The test results show that the application of the MIL simulation platform can enable the batch simulation analysis of eight key shift calibration parameters, gradually refine the initial rough interval, and ensure shift quality. The shift calibration parameters are cross-validated in multiple development links, and the dependence on vehicle calibration is greatly reduced. The development cycle is effectively shortened to less than 6 months. Full article
Show Figures

Figure 1

17 pages, 9089 KiB  
Article
Investigating Failure Modes and Performance Impacts of Wet Clutches in Automotive Limited Slip Differentials
by Thomas Schneider, Katharina Voelkel, Hermann Pflaum and Karsten Stahl
Lubricants 2024, 12(3), 70; https://doi.org/10.3390/lubricants12030070 - 23 Feb 2024
Viewed by 1096
Abstract
In the design of rear-axle locking differentials, the desired high locking effect is often achieved using wet multi-plate clutches. This study conducts an in-depth investigation into the spontaneous damage behavior of these clutches through a series of methodical experimental tests. It focuses on [...] Read more.
In the design of rear-axle locking differentials, the desired high locking effect is often achieved using wet multi-plate clutches. This study conducts an in-depth investigation into the spontaneous damage behavior of these clutches through a series of methodical experimental tests. It focuses on three different clutch variants, each equipped with organic friction linings—namely, paper-based, carbon composite, and woven carbon—and undertakes a comparative analysis of their respective damage typologies. The experimental analysis identifies and characterizes patterns of damage, notably the buckling of steel plates and the detachment of lining. Moreover, the study thoroughly examines and compares the friction and temperature behavior under the high load conditions applied to these three friction systems. Concurrent temperature measurements enable the establishment of robust temperature-based criteria for predicting and understanding damage behavior. Full article
Show Figures

Figure 1

16 pages, 8489 KiB  
Article
Study on Shifting Performance of Tractor Multi-Clutch under Different Engagement Rules
by Jingyun Zhang, Xiaohui Liu, Haijiang Wei, Mengnan Liu, Wenlong Huang and Xianghai Yan
Agriculture 2024, 14(2), 254; https://doi.org/10.3390/agriculture14020254 - 5 Feb 2024
Viewed by 1040
Abstract
When shifting gears around a tractor’s power shift transmission, it is necessary to coordinate the control of multiple clutches and formulate a reasonable clutch engagement law to ensure the reliability and power of the power system. This paper explores the impact of different [...] Read more.
When shifting gears around a tractor’s power shift transmission, it is necessary to coordinate the control of multiple clutches and formulate a reasonable clutch engagement law to ensure the reliability and power of the power system. This paper explores the impact of different clutch engagement patterns on shifting characteristics in a power-shift tractor with multiple clutches. Shifting performance is comprehensively evaluated using indicators such as shifting time, impact degree, slip energies, and transmission output torque. The aim is to enhance the quality of power shifting, operational efficiency, and the service life of the transmission system. This paper takes the YTO TX4A transmission system as the research object, analyzes its working principle, and establishes a mathematical model of a power shift transmission system under different clutch engagement rules. This model of power shift transmission is established based on Matlab2021/Simulink and the AMESim2021 software platform. A simulation analysis is carried out for four clutches working simultaneously in a tractor’s advance gear II and lift gear III. The simulation results indicate that switching rule C is superior to switching rule A and switching rule B. Compared with the engagement scheme in which the torque exchange overlap time for both sets of clutches is 0.3 s, the scheme with a torque exchange overlap time of 0.15 s indicated a shifting time increase of 0.2 s, a slip energy increase of 4%, and a minimum output torque of the transmission increase of 2%. In the scheme with a torque exchange overlap time of 0 s, the shifting time increased by 0.15 s, the slip energy decreased by 13.5%, and the minimum output torque of the transmission decreased by 17%. Through the study of shifting performance under three different clutch engagement patterns, it is concluded that, during the shift from forward gear II to gear III in the YTO TX4A transmission system, appropriately reducing the torque exchange overlap time for both sets of clutches and avoiding simultaneous torque exchange can reduce the complexity of clutch control. This leads to smoother, more powerful, and more comfortable power shifting, effectively prolonging the service life of the transmission system. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 697 KiB  
Article
Conservation Genetics of the Loggerhead Sea Turtle, Caretta caretta, from the Central Mediterranean: An Insight into the Species’ Reproductive Behaviour in Maltese Waters
by Adriana Vella and Noel Vella
Animals 2024, 14(1), 137; https://doi.org/10.3390/ani14010137 - 30 Dec 2023
Cited by 1 | Viewed by 1462
Abstract
Loggerhead sea turtle, Caretta caretta (Linnaeus, 1758), nestlings were investigated through specimens found dead either after hatching or unhatched (n = 120) from eight nests around the Maltese islands (Central Mediterranean). Molecular genetics was used to conduct maternity and paternity tests of [...] Read more.
Loggerhead sea turtle, Caretta caretta (Linnaeus, 1758), nestlings were investigated through specimens found dead either after hatching or unhatched (n = 120) from eight nests around the Maltese islands (Central Mediterranean). Molecular genetics was used to conduct maternity and paternity tests of the collected specimens utilizing expanded mitochondrial DNA sequences from the control region (858 bp) and 25 microsatellite loci (12 dinucleotide loci and 13 tetranucleotide loci). Mitochondrial data produced two haplotypes, CC-A2.1 and CC-A3.1, with the most common haplotype being present in seven nests. Microsatellite data revealed the identity of six different females that were involved in the deposition of the eggs in the eight turtle nests analysed. This confirms that two females laid multiple nests. Additionally, microsatellite data allowed for the determination of multiple paternity, with one clutch being sired by two fathers. These results are useful for monitoring the genetic diversity of loggerhead sea turtle nestlings and of the turtle mothers and fathers contributing to future turtle offspring, which rely on Maltese sandy beaches for their successful start to life. Effective conservation management benefits from merging scientific knowledge with effective measures at potential nesting sites to avoid losses of nestlings caused by human negligence. Full article
(This article belongs to the Special Issue Protecting Endangered Species)
Show Figures

Figure 1

19 pages, 4653 KiB  
Article
Two-Speed Transmission Structure and Optimization Design for Electric Vehicles
by Wonhyeong Jeong, Jaeoh Han, Taesu Kim, Jongseok Lee and Sehoon Oh
Machines 2024, 12(1), 9; https://doi.org/10.3390/machines12010009 - 22 Dec 2023
Viewed by 2573
Abstract
The trend in the global automotive industry is moving towards electric vehicles that do not emit exhaust gases and use eco-friendly fuel. Electric vehicles are more eco-friendly compared to internal combustion engine vehicles, as they emit less carbon dioxide and pollutants. Research and [...] Read more.
The trend in the global automotive industry is moving towards electric vehicles that do not emit exhaust gases and use eco-friendly fuel. Electric vehicles are more eco-friendly compared to internal combustion engine vehicles, as they emit less carbon dioxide and pollutants. Research and development are actively underway to produce new electric vehicle models in the rapidly growing electric car market. In this study, a 2-speed transmission for electric vehicles, applicable to 300 Nm-class electric cars, has been developed. The 2-speed transmission structure enables efficient energy use and utilizes a planetary gear set and wet multi-plate clutch, which are effective in the power transmission process. The 2-speed transmission developed through the research results of this paper has a compact structure optimized for electric vehicles. The design feasibility of the transmission was verified through performance tests of the prototype, contributing to fuel efficiency improvement and environmental enhancement. Full article
Show Figures

Figure 1

12 pages, 1498 KiB  
Article
Evaluation of Black Soldier Fly Hermetia illucens as Food for Pink-Spotted Lady Beetle Coleomegilla maculata
by Eric W. Riddick, Ryan C. Walker, Maria Guadalupe Rojas and Juan A. Morales-Ramos
Insects 2023, 14(12), 902; https://doi.org/10.3390/insects14120902 - 22 Nov 2023
Viewed by 1674
Abstract
The discovery of new and improved factitious and artificial diets is necessary for cost-effective rearing of predatory arthropods. This study evaluated Hermetia illucens black soldier fly (BSF) as a suitable alternative food source for rearing the predatory coccinellid Coleomegilla maculata (Cmac). The hypothesis [...] Read more.
The discovery of new and improved factitious and artificial diets is necessary for cost-effective rearing of predatory arthropods. This study evaluated Hermetia illucens black soldier fly (BSF) as a suitable alternative food source for rearing the predatory coccinellid Coleomegilla maculata (Cmac). The hypothesis that BSF larval powder was suitable food to support the growth, development, and reproduction of Cmac was tested in the laboratory. When compared to a standard in-house diet containing brine shrimp egg powder plus Chlorella vulgaris green algae and myristic acid (BSE+CM), the BSF and BSF+CM diets reduced immature growth and development. Immatures successfully reared to teneral adults were smaller when fed BSF or BSF+CM rather than BSE+CM. Combining BSF with a powdered artificial diet (AD), i.e., BSF+AD, did not improve predator growth or development, compared to Cmac reared on BSE+CM. Cmac oviposition responses, i.e., egg clutch production, to BSF vs. BSE+CM or BSF+AD vs. BSE+CM did not differ significantly. In conclusion, BSF has the potential to be food that supports Cmac oviposition behavior. Future research is necessary to discover an ideal mixture of BSF, BSE+CM, or AD that supports Cmac growth, development, and reproduction over multiple generations. Full article
(This article belongs to the Collection Science of Insect Rearing Systems)
Show Figures

Figure 1

19 pages, 8119 KiB  
Article
Design and Optimization of Low Impact Shift Control Strategy for Aviation Transmission Power System Based on Response Surface Methodology
by Jiangming Wu, Hongzhi Yan, Zhibin Zheng and Xiaokang Li
Appl. Sci. 2023, 13(22), 12115; https://doi.org/10.3390/app132212115 - 7 Nov 2023
Viewed by 864
Abstract
The utilization of a variable-speed power system significantly improves the forward flight speed and cruising range of the helicopter. Nevertheless, the shock of speed and torque during the shift process brings stability and safety problems that cannot be ignored. Thus, swift and stable [...] Read more.
The utilization of a variable-speed power system significantly improves the forward flight speed and cruising range of the helicopter. Nevertheless, the shock of speed and torque during the shift process brings stability and safety problems that cannot be ignored. Thus, swift and stable shift control is a key issue in the research on aviation power systems. This study focuses on the design and optimization of low-impact shift control strategies for a variable-speed power system, which involves multiple control variables, long adjustment times, and uncontrollable risks due to the nonsteady state. A comprehensive power system model that integrates the engine, a two-speed dual-clutch transmission system, and the main rotor was proposed. By selecting the engine fuel flow, friction clutch hydraulic pressure, and rotor pitch angle as input signals, regression fitting models between the input signals’ starting time points and speed or torque shock were obtained using Response Surface Methodology (RMS). The interaction effect of multiple time series was analyzed, and four kinds of low-impact nonlinear programming multi-objective optimized models for speed or torque are proposed. The results indicate that the P values of the RMS fitting models at upshift and downshift are less than 0.0001 and 0.05, respectively, which are highly significant and can effectively predict the shift dynamic response; under the optimized upshift and downshift control strategy, the speed and torque shock are reduced by 5–10%. Full article
Show Figures

Figure 1

13 pages, 2203 KiB  
Article
Decline and Extinction of the Italian Agile Frog Rana latastei from Core Areas of Its Range
by Gentile Francesco Ficetola, Raoul Manenti, Elia Lo Parrino, Martina Muraro, Benedetta Barzaghi, Valeria Messina, Simone Giachello, Andrea Melotto and Mattia Falaschi
Animals 2023, 13(20), 3187; https://doi.org/10.3390/ani13203187 - 12 Oct 2023
Viewed by 1171
Abstract
Detecting the trends of species and populations is fundamental to identifying taxa with high conservation priority. Unfortunately, long-term monitoring programs are challenging and often lacking. The Italian agile frog Rana latastei is endemic to Northern Italy and adjacent countries, is considered vulnerable by [...] Read more.
Detecting the trends of species and populations is fundamental to identifying taxa with high conservation priority. Unfortunately, long-term monitoring programs are challenging and often lacking. The Italian agile frog Rana latastei is endemic to Northern Italy and adjacent countries, is considered vulnerable by the IUCN, and is protected at the European level. However, quantitative estimates of its decline are extremely scarce. In this study, we document the trends in abundance and distribution of Rana latastei within Monza Park, which currently represents the area closer to the type locality of the species and holds unique genetic features. Wetlands within the park were monitored from 2000 to 2023; counts of egg clutches were taken as a measure of reproductive output and the abundance of breeding females. In 2000, the species occurred over a significant proportion of the park. Total abundance showed strong yearly variation but remained rather constant from 2000 to 2019. However, Rana latastei disappeared from the park around 2021 and was never detected in 2022–2023. The decline is probably related to the joint effect of multiple factors, including the conversion of breeding sites for farming, inappropriate water management, invasive alien species, and severe drought. The local extinction of Rana latastei occurred despite legal protection, highlighting the need for more effective and stringent tools for the conservation of European biodiversity. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

16 pages, 13276 KiB  
Article
A New Multi-Physics Coupled Method for the Temperature Field of Dry Clutch Assembly
by Jun Chen, Jiali Yu and Yubing Gong
Appl. Sci. 2023, 13(20), 11165; https://doi.org/10.3390/app132011165 - 11 Oct 2023
Cited by 1 | Viewed by 769
Abstract
The temperature field of the clutch assembly is critical for the clutch design and operation life. Current modeling methods of the temperature of the clutch assembly suffer from insufficient accuracy or a limited time scale for the complicated multi-physics coupling between the contact [...] Read more.
The temperature field of the clutch assembly is critical for the clutch design and operation life. Current modeling methods of the temperature of the clutch assembly suffer from insufficient accuracy or a limited time scale for the complicated multi-physics coupling between the contact force, friction-generated heat, heat transfer, and thermal deformation in the clutch assembly in harsh operation conditions. In order to improve the accuracy of temperature field simulation and achieve long-term time scale, a new approach to modeling the temperature is proposed based on CFD simulation and decoupling technology. Firstly, the flow-thermal bi-directional coupling method is employed to determine the convective boundary conditions between the clutch assembly and the ambient air, improving the model’s accuracy. Secondly, the thermal-solid decoupling method is then used to reduce the computational time. The temperature of the clutch assembly during the continuous engagement and disengagement process is performed using this approach and verified by the rig test. The results demonstrate that the temperature of the outer, middle, and inner diameters of the pressure plate by the model agrees well with that by the rig test. For the first engagement and disengagement processes, the proportion of simulated temperature deviations exceeding 5 °C from the measured data is only 3.03%. For the last engagement and disengagement process, while the maximum temperature of the clutch is above 350 °C, the maximum temperature deviation between simulation and measurement is 4.99%. It proves that the approach proposed for modeling the dry clutch assembly temperature field has high accuracy while achieving long-term time-scale simulation. Full article
Show Figures

Figure 1

25 pages, 7931 KiB  
Article
An Integrated Control Approach for Shifting Process of Single-Axis Parallel Hybrid Electric Vehicle with a Multi-Speed AMT Gearbox
by Cheng Huang and Changqing Du
Processes 2023, 11(9), 2710; https://doi.org/10.3390/pr11092710 - 11 Sep 2023
Viewed by 921
Abstract
When a single-axis parallel hybrid electric vehicle (HEV) equipped with a multi-speed AMT gearbox is in its shifting process, the superposition of dynamic characteristics of multiple power sources and the intervention and withdrawal of AMT transmissions can easily cause significant vehicle longitudinal jerk. [...] Read more.
When a single-axis parallel hybrid electric vehicle (HEV) equipped with a multi-speed AMT gearbox is in its shifting process, the superposition of dynamic characteristics of multiple power sources and the intervention and withdrawal of AMT transmissions can easily cause significant vehicle longitudinal jerk. To achieve rapid and smooth output changes during the shifting process, this paper proposes an integrated multi-stage robust shifting control method for a single-axis parallel hybrid electric vehicles with a multi-speed AMT gearbox. First, models of key driveline components are constructed, and the shifting process is divided into five stages to provide a clear description of the control problem. Subsequently, we reproduce an integrated multistage robust control method to achieve favorable switching performance and control robustness under external disturbances. We propose a data-driven model predictive control strategy based on additional constraints in the torque unloading and recovery phases. Simultaneously, we present a joint control algorithm that integrates the optimal control and disturbance suppression in the speed synchronization phase. In addition, we develop a sliding mode auto-disturbance rejection control algorithm to achieve accurate position tracking of the shift actuator in the pickup and engage phases. Finally, simulations and bench tests are carried out to verify the effectiveness of the robust control method under different driving conditions. The results demonstrate that the proposed control method can not only coordinate the torque across different power sources and clutch while minimizing vehicle longitudinal jerk, shift time, and friction work, but also provides apparent robustness to model uncertainties and external disturbance. Therefore, the proposed method may offer a theoretical reference for the actual vehicle controller during shifting. Full article
Show Figures

Figure 1

Back to TopTop