Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (318)

Search Parameters:
Keywords = multiscale normals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 48904 KiB  
Article
OCTNet: A Modified Multi-Scale Attention Feature Fusion Network with InceptionV3 for Retinal OCT Image Classification
by Irshad Khalil, Asif Mehmood, Hyunchul Kim and Jungsuk Kim
Mathematics 2024, 12(19), 3003; https://doi.org/10.3390/math12193003 - 26 Sep 2024
Viewed by 374
Abstract
Classification and identification of eye diseases using Optical Coherence Tomography (OCT) has been a challenging task and a trending research area in recent years. Accurate classification and detection of different diseases are crucial for effective care management and improving vision outcomes. Current detection [...] Read more.
Classification and identification of eye diseases using Optical Coherence Tomography (OCT) has been a challenging task and a trending research area in recent years. Accurate classification and detection of different diseases are crucial for effective care management and improving vision outcomes. Current detection methods fall into two main categories: traditional methods and deep learning-based approaches. Traditional approaches rely on machine learning for feature extraction, while deep learning methods utilize data-driven classification model training. In recent years, Deep Learning (DL) and Machine Learning (ML) algorithms have become essential tools, particularly in medical image classification, and are widely used to classify and identify various diseases. However, due to the high spatial similarities in OCT images, accurate classification remains a challenging task. In this paper, we introduce a novel model called “OCTNet” that integrates a deep learning model combining InceptionV3 with a modified multi-scale attention-based spatial attention block to enhance model performance. OCTNet employs an InceptionV3 backbone with a fusion of dual attention modules to construct the proposed architecture. The InceptionV3 model generates rich features from images, capturing both local and global aspects, which are then enhanced by utilizing the modified multi-scale spatial attention block, resulting in a significantly improved feature map. To evaluate the model’s performance, we utilized two state-of-the-art (SOTA) datasets that include images of normal cases, Choroidal Neovascularization (CNV), Drusen, and Diabetic Macular Edema (DME). Through experimentation and simulation, the proposed OCTNet improves the classification accuracy of the InceptionV3 model by 1.3%, yielding higher accuracy than other SOTA models. We also performed an ablation study to demonstrate the effectiveness of the proposed method. The model achieved an overall average accuracy of 99.50% and 99.65% with two different OCT datasets. Full article
Show Figures

Figure 1

13 pages, 17472 KiB  
Article
High-Resolution Daily PM2.5 Exposure Concentrations in South Korea Using CMAQ Data Assimilation with Surface Measurements and MAIAC AOD (2015–2021)
by Jin-Goo Kang, Ju-Yong Lee, Jeong-Beom Lee, Jun-Hyun Lim, Hui-Young Yun and Dae-Ryun Choi
Atmosphere 2024, 15(10), 1152; https://doi.org/10.3390/atmos15101152 - 26 Sep 2024
Viewed by 304
Abstract
Particulate matter (PM) in the atmosphere poses significant risks to both human health and the environment. Specifically, PM2.5, particulate matter with a diameter less than 2.5 micrometers, has been linked to increased rates of cardiovascular and respiratory diseases. In South Korea, concerns about [...] Read more.
Particulate matter (PM) in the atmosphere poses significant risks to both human health and the environment. Specifically, PM2.5, particulate matter with a diameter less than 2.5 micrometers, has been linked to increased rates of cardiovascular and respiratory diseases. In South Korea, concerns about PM2.5 exposure have grown due to its potential for causing premature death. This study aims to estimate high-resolution exposure concentrations of PM2.5 across South Korea from 2015 to 2021. We integrated data from the Community Multiscale Air Quality (CMAQ) model with surface air quality measurements, the Weather Research Forecast (WRF) model, the Normalized Difference Vegetation Index (NDVI), and the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Optical Depth (AOD) satellite data. These data, combined with multiple regression analyses, allowed for the correction of PM2.5 estimates, particularly in suburban areas where ground measurements are sparse. The simulated PM2.5 concentration showed strong correlations with observed values R (ranging from 0.88 to 0.94). Spatial distributions of annual PM2.5 showed a significant decrease in PM2.5 concentrations from 2015 to 2021, with some fluctuation due to the COVID-19 pandemic, such as in 2020. The study produced highly accurate daily average high-resolution PM2.5 exposure concentrations. Full article
(This article belongs to the Special Issue Novel Insights into Air Pollution over East Asia)
Show Figures

Figure 1

20 pages, 7562 KiB  
Article
Impact Load Localization Based on Multi-Scale Feature Fusion Convolutional Neural Network
by Shiji Wu, Xiufeng Huang, Rongwu Xu, Wenjing Yu and Guo Cheng
Sensors 2024, 24(18), 6060; https://doi.org/10.3390/s24186060 - 19 Sep 2024
Viewed by 417
Abstract
In order to achieve impact load localization of complex structures such as ships, this paper proposes a multi-scale feature fusion convolutional neural network (MSFF-CNN) method for impact load localization. An end-to-end machine learning model is used, where the raw vibration signals of impact [...] Read more.
In order to achieve impact load localization of complex structures such as ships, this paper proposes a multi-scale feature fusion convolutional neural network (MSFF-CNN) method for impact load localization. An end-to-end machine learning model is used, where the raw vibration signals of impact loads are directly fed into the network model to avoid the process of feature extraction. Automatic feature learning and feature concatenation of the signal are achieved through four independent convolutional layers, each using a different size of convolutional kernel. Data normalization and L2 regularization techniques are introduced to enhance the data and prevent overfitting. Classification and localization of impact loads are accomplished using a softmax classification layer. Validation experiments are carried out using a ship’s stern compartment model. Our results show that the classification and localization accuracy of the impact load sample group of MSFF-CNN reaches 94.29% compared with a traditional CNN. The method further improves the ability of the network to extract state features, takes local perception and global vision into account, effectively improves the classification ability of the model, and has good prospects for engineering applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 1677 KiB  
Article
CPINet: Towards A Novel Cross-Polarimetric Interaction Network for Dual-Polarized SAR Ship Classification
by Jinglu He, Ruiting Sun, Yingying Kong, Wenlong Chang, Chenglu Sun, Gaige Chen, Yinghua Li, Zhe Meng and Fuping Wang
Remote Sens. 2024, 16(18), 3479; https://doi.org/10.3390/rs16183479 - 19 Sep 2024
Viewed by 498
Abstract
With the rapid development of the modern world, it is imperative to achieve effective and efficient monitoring for territories of interest, especially for the broad ocean area. For surveillance of ship targets at sea, a common and powerful approach is to take advantage [...] Read more.
With the rapid development of the modern world, it is imperative to achieve effective and efficient monitoring for territories of interest, especially for the broad ocean area. For surveillance of ship targets at sea, a common and powerful approach is to take advantage of satellite synthetic aperture radar (SAR) systems. Currently, using satellite SAR images for ship classification is a challenging issue due to complex sea situations and the imaging variances of ships. Fortunately, the emergence of advanced satellite SAR sensors has shed much light on the SAR ship automatic target recognition (ATR) task, e.g., utilizing dual-polarization (dual-pol) information to boost the performance of SAR ship classification. Therefore, in this paper we have developed a novel cross-polarimetric interaction network (CPINet) to explore the abundant polarization information of dual-pol SAR images with the help of deep learning strategies, leading to an effective solution for high-performance ship classification. First, we establish a novel multiscale deep feature extraction framework to fully mine the characteristics of dual-pol SAR images in a coarse-to-fine manner. Second, to further leverage the complementary information of dual-pol SAR images, we propose a mixed-order squeeze–excitation (MO-SE) attention mechanism, in which the first- and second-order statistics of the deep features from one single-polarized SAR image are extracted to guide the learning of another polarized one. Then, the intermediate multiscale fused and MO-SE augmented dual-polarized deep feature maps are respectively aggregated by the factorized bilinear coding (FBC) pooling method. Meanwhile, the last multiscale fused deep feature maps for each single-polarized SAR image are also individually aggregated by the FBC. Finally, four kinds of highly discriminative deep representations are obtained for loss computation and category prediction. For better network training, the gradient normalization (GradNorm) method for multitask networks is extended to adaptively balance the contribution of each loss component. Extensive experiments on the three- and five-category dual-pol SAR ship classification dataset collected from the open and free OpenSARShip database demonstrate the superiority and robustness of CPINet compared with state-of-the-art methods for the dual-polarized SAR ship classification task. Full article
(This article belongs to the Special Issue SAR in Big Data Era III)
Show Figures

Figure 1

18 pages, 3667 KiB  
Article
An Improved Lightweight YOLOv8 Network for Early Small Flame Target Detection
by Hubin Du, Qiuyu Li, Ziqian Guan, Hengyuan Zhang and Yongtao Liu
Processes 2024, 12(9), 1978; https://doi.org/10.3390/pr12091978 - 13 Sep 2024
Viewed by 499
Abstract
The efficacy of early fire detection hinges on its swift response and precision, which allows for the issuance of timely alerts in the nascent stages of a fire, thereby minimizing losses and injuries. To enhance the precision and swiftness of identifying minute early [...] Read more.
The efficacy of early fire detection hinges on its swift response and precision, which allows for the issuance of timely alerts in the nascent stages of a fire, thereby minimizing losses and injuries. To enhance the precision and swiftness of identifying minute early flame targets, as well as the ease of deployment at the edge end, an optimized early flame target detection algorithm for YOLOv8 is proposed. The original feature fusion module, an FPN (feature pyramid network) of YOLOv8n, has been enhanced to become the BiFPN (bidirectional feature pyramid network) module. This modification enables the network to more efficiently and rapidly perform multi-scale fusion, thereby enhancing its capacity for integrating features across different scales. Secondly, the efficient multi-scale attention (EMA) mechanism is introduced to ensure the effective retention of information on each channel and reduce the computational overhead, thereby improving the model’s detection accuracy while reducing the number of model parameters. Subsequently, the NWD (normalized Wasserstein distance) loss function is employed as the bounding box loss function, which enhances the model’s regression performance and robustness. The experimental results demonstrate that the size of the enhanced model is 4.8 M, a reduction of 22.5% compared to the original YOLOv8n. Additionally, the mAP0.5 metric exhibits a 2.7% improvement over the original YOLOv8n, indicating a more robust detection capability and a more compact model size. This makes it an ideal candidate for deployment in edge devices. Full article
Show Figures

Figure 1

24 pages, 7323 KiB  
Article
AID-YOLO: An Efficient and Lightweight Network Method for Small Target Detector in Aerial Images
by Yuwen Li, Jiashuo Zheng, Shaokun Li, Chunxi Wang, Zimu Zhang and Xiujian Zhang
Electronics 2024, 13(17), 3564; https://doi.org/10.3390/electronics13173564 - 8 Sep 2024
Viewed by 635
Abstract
The progress of object detection technology is crucial for obtaining extensive scene information from aerial perspectives based on computer vision. However, aerial image detection presents many challenges, such as large image background sizes, small object sizes, and dense distributions. This research addresses the [...] Read more.
The progress of object detection technology is crucial for obtaining extensive scene information from aerial perspectives based on computer vision. However, aerial image detection presents many challenges, such as large image background sizes, small object sizes, and dense distributions. This research addresses the specific challenges relating to small object detection in aerial images and proposes an improved YOLOv8s-based detector named Aerial Images Detector-YOLO(AID-YOLO). Specifically, this study adopts the General Efficient Layer Aggregation Network (GELAN) from YOLOv9 as a reference and designs a four-branch skip-layer connection and split operation module Re-parameterization-Net with Cross-Stage Partial CSP and Efficient Layer Aggregation Networks (RepNCSPELAN4) to achieve a lightweight network while capturing richer feature information. To fuse multi-scale features and focus more on the target detection regions, a new multi-channel feature extraction module named Convolutional Block Attention Module with Two Convolutions Efficient Layer Aggregation Net-works (C2FCBAM) is designed in the neck part of the network. In addition, to reduce the sensitivity to position bias of small objects, a new function, Normalized Weighted Distance Complete Intersection over Union (NWD-CIoU_Loss) weight adaptive loss function, was designed in this study. We evaluate the proposed AID-YOLO method through ablation experiments and comparisons with other advanced models on the VEDAI (512, 1024) and DOTAv1.0 datasets. The results show that compared to the Yolov8s baseline model, AID-YOLO improves the [email protected] metric by 7.36% on the VEDAI dataset. Simultaneously, the parameters are reduced by 31.7%, achieving a good balance between accuracy and parameter quantity. The Average Precision (AP) for small objects has improved by 8.9% compared to the baseline model (YOLOv8s), making it one of the top performers among all compared models. Furthermore, the FPS metric is also well-suited for real-time detection in aerial image scenarios. The AID-YOLO method also demonstrates excellent performance on infrared images in the VEDAI1024 (IR) dataset, with a 2.9% improvement in the [email protected] metric. We further validate the superior detection and generalization performance of AID-YOLO in multi-modal and multi-task scenarios through comparisons with other methods on different resolution images, SODA-A and the DOTAv1.0 datasets. In summary, the results of this study confirm that the AID-YOLO method significantly improves model detection performance while maintaining a reduced number of parameters, making it applicable to practical engineering tasks in aerial image object detection. Full article
Show Figures

Figure 1

20 pages, 4845 KiB  
Article
FSNB-YOLOV8: Improvement of Object Detection Model for Surface Defects Inspection in Online Industrial Systems
by Jun Li, Jinglei Wu and Yanhua Shao
Appl. Sci. 2024, 14(17), 7913; https://doi.org/10.3390/app14177913 - 5 Sep 2024
Viewed by 465
Abstract
The current object detection algorithm based on CNN makes it difficult to effectively capture the characteristics of subtle defects in online industrial product packaging bags. These defects are often visually similar to the texture or background of normal product packaging bags, and the [...] Read more.
The current object detection algorithm based on CNN makes it difficult to effectively capture the characteristics of subtle defects in online industrial product packaging bags. These defects are often visually similar to the texture or background of normal product packaging bags, and the model cannot effectively distinguish them. In order to deal with these challenges, this paper optimizes and improves the network structure based on YOLOv8 to achieve accurate identification of defects. First, in order to solve the long-tail distribution problem of data, a fuzzy search data enhancement algorithm is introduced to effectively increase the number of samples. Secondly, a joint network of FasterNet and SPD-Conv is proposed to replace the original backbone network of YOLOv8, which effectively reduces the computing load and improves the accuracy of defect identification. In addition, in order to further improve the performance of multiscale feature fusion, a weighted bidirectional feature pyramid network (BiFPN) is introduced, which effectively enhances the model’s ability to detect defects at different scales through the fusion of deep information and shallow information. Finally, in order to reduce the sensitivity of the defect position deviation, the NWD loss function is used to optimize the positioning performance of the model better and reduce detection errors caused by position errors. Experimental results show that the FSNB_YOLOv8 model proposed in this paper can reach 98.8% mAP50 accuracy. This success not only verifies the effectiveness of the optimization and improvement of this article’s model but also provides an efficient and accurate solution for surface defect detection of industrial product packaging bags on artificial assembly systems. Full article
Show Figures

Figure 1

17 pages, 3620 KiB  
Article
Image Registration Algorithm for Stamping Process Monitoring Based on Improved Unsupervised Homography Estimation
by Yujie Zhang and Yinuo Du
Appl. Sci. 2024, 14(17), 7721; https://doi.org/10.3390/app14177721 - 2 Sep 2024
Viewed by 479
Abstract
Homography estimation is a crucial task in aligning template images with target images in stamping monitoring systems. To enhance the robustness and accuracy of homography estimation against random vibrations and lighting variations in stamping environments, this paper proposes an improved unsupervised homography estimation [...] Read more.
Homography estimation is a crucial task in aligning template images with target images in stamping monitoring systems. To enhance the robustness and accuracy of homography estimation against random vibrations and lighting variations in stamping environments, this paper proposes an improved unsupervised homography estimation model. The model takes as input the channel-stacked template and target images and outputs the estimated homography matrix. First, a specialized deformable convolution module and Group Normalization (GN) layer are introduced to expand the receptive field and enhance the model’s ability to learn rotational invariance when processing large, high-resolution images. Next, a multi-scale, multi-stage unsupervised homography estimation network structure is constructed to improve the accuracy of homography estimation by refining the estimation through multiple stages, thereby enhancing the model’s resistance to scale variations. Finally, stamping monitoring image data is incorporated into the training through data fusion, with data augmentation techniques applied to randomly introduce various levels of perturbation, brightness, contrast, and filtering to improve the model’s robustness to complex changes in the stamping environment, making it more suitable for monitoring applications in this specific industrial context. Compared to traditional methods, this approach provides better homography matrix estimation when handling images with low texture, significant lighting variations, or large viewpoint changes. Compared to other deep-learning-based homography estimation methods, it reduces estimation errors and performs better on stamping monitoring images, while also offering broader applicability. Full article
Show Figures

Figure 1

10 pages, 353 KiB  
Article
The Impact of the Weather Forecast Model on Improving AI-Based Power Generation Predictions through BiLSTM Networks
by Mindaugas Jankauskas, Artūras Serackis, Nerijus Paulauskas, Raimondas Pomarnacki and Van Khang Hyunh
Electronics 2024, 13(17), 3472; https://doi.org/10.3390/electronics13173472 - 1 Sep 2024
Viewed by 1201
Abstract
This study aims to comprehensively analyze five weather forecasting models obtained from the Open-Meteo historical data repository, with a specific emphasis on evaluating their impact in predicting wind power generation. Given the increasing focus on renewable energy, namely, wind power, accurate weather forecasting [...] Read more.
This study aims to comprehensively analyze five weather forecasting models obtained from the Open-Meteo historical data repository, with a specific emphasis on evaluating their impact in predicting wind power generation. Given the increasing focus on renewable energy, namely, wind power, accurate weather forecasting plays a crucial role in optimizing energy generation and ensuring the stability of the power system. The analysis conducted in this study incorporates a range of models, namely, ICOsahedral Nonhydrostatic (ICON), the Global Environmental Multiscale Model (GEM Global), Meteo France, the Global Forecast System (GSF Global), and the Best Match technique. The Best Match approach is a distinctive solution available from the weather forecast provider that combines the data from all available models to generate the most precise forecast for a particular area. The performance of these models was evaluated using various important metrics, including the mean squared error, the root mean squared error, the mean absolute error, the mean absolute percentage error, the coefficient of determination, and the normalized mean absolute error. The weather forecast model output was used as an essential input for the power generation prediction models during the evaluation process. This method was confirmed by comparing the predictions of these models with actual data on wind power generation. The ICON model, for example, outscored others with a root mean squared error of 1.7565, which is a tiny but essential improvement over Best Match, which had a root mean squared error of 1.7604. GEM Global and Gsf Global showed more dramatic changes, with root mean squared errors (RMSEs) of 2.0086 and 2.0242, respectively, indicating a loss in prediction accuracy of around 24% to 31% compared to ICON. Our findings reveal significant disparities in the precision of the various models used, and certain models exhibited significantly higher predictive precision. Full article
(This article belongs to the Special Issue Advances in Data-Driven Wind Turbine Condition Monitoring)
Show Figures

Figure 1

22 pages, 6340 KiB  
Article
Detecting Anomalies in Hydraulically Adjusted Servomotors Based on a Multi-Scale One-Dimensional Residual Neural Network and GA-SVDD
by Xukang Yang, Anqi Jiang, Wanlu Jiang, Yonghui Zhao, Enyu Tang and Zhiqian Qi
Machines 2024, 12(9), 599; https://doi.org/10.3390/machines12090599 - 28 Aug 2024
Viewed by 347
Abstract
A high-pressure hydraulically adjusted servomotor is an electromechanical–hydraulic integrated system centered on a servo valve that plays a crucial role in ensuring the safe and stable operation of steam turbines. To address the issues of difficult fault diagnoses and the low maintenance efficiency [...] Read more.
A high-pressure hydraulically adjusted servomotor is an electromechanical–hydraulic integrated system centered on a servo valve that plays a crucial role in ensuring the safe and stable operation of steam turbines. To address the issues of difficult fault diagnoses and the low maintenance efficiency of adjusted hydraulic servomotors, this study proposes a model for detecting abnormalities of hydraulically adjusted servomotors. This model uses a multi-scale one-dimensional residual neural network (M1D_ResNet) for feature extraction and a genetic algorithm (GA)-optimized support vector data description (SVDD). Firstly, the multi-scale features of the vibration signals of the hydraulically adjusted servomotor were extracted and fused using one-dimensional convolutional blocks with three different scales to construct a multi-scale one-dimensional residual neural network binary classification model capable of recognizing normal and abnormal states. Then, this model was used as a feature extractor to create a feature set of normal data. Finally, an abnormal detection model for the hydraulically adjusted servomotor was constructed by optimizing the support vector data domain based on this feature set using a genetic algorithm. The proposed method was experimentally validated on a hydraulically adjusted servomotor dataset. The results showed that, compared with the traditional single-scale one-dimensional residual neural network, the multi-scale feature vectors fused by the multi-scale one-dimensional convolutional neural network contained richer state-sensitive information, effectively improving the performance of detecting abnormalities in the hydraulically adjusted servomotor. Full article
Show Figures

Figure 1

21 pages, 11293 KiB  
Article
DFS-DETR: Detailed-Feature-Sensitive Detector for Small Object Detection in Aerial Images Using Transformer
by Xinyu Cao, Hanwei Wang, Xiong Wang and Bin Hu
Electronics 2024, 13(17), 3404; https://doi.org/10.3390/electronics13173404 - 27 Aug 2024
Viewed by 804
Abstract
Object detection in aerial images plays a crucial role across diverse domains such as agriculture, environmental monitoring, and security. Aerial images present several challenges, including dense small objects, intricate backgrounds, and occlusions, necessitating robust detection algorithms. This paper addresses the critical need for [...] Read more.
Object detection in aerial images plays a crucial role across diverse domains such as agriculture, environmental monitoring, and security. Aerial images present several challenges, including dense small objects, intricate backgrounds, and occlusions, necessitating robust detection algorithms. This paper addresses the critical need for accurate and efficient object detection in aerial images using a Transformer-based approach enhanced with specialized methodologies, termed DFS-DETR. The core framework leverages RT-DETR-R18, integrating the Cross Stage Partial Reparam Dilation-wise Residual Module (CSP-RDRM) to optimize feature extraction. Additionally, the introduction of the Detail-Sensitive Pyramid Network (DSPN) enhances sensitivity to local features, complemented by the Dynamic Scale Sequence Feature-Fusion Module (DSSFFM) for comprehensive multi-scale information integration. Moreover, Multi-Attention Add (MAA) is utilized to refine feature processing, which enhances the model’s capacity for understanding and representation by integrating various attention mechanisms. To improve bounding box regression, the model employs MPDIoU with normalized Wasserstein distance, which accelerates convergence. Evaluation across the VisDrone2019, AI-TOD, and NWPU VHR-10 datasets demonstrates significant improvements in the mean average precision (mAP) values: 24.1%, 24.0%, and 65.0%, respectively, surpassing RT-DETR-R18 by 2.3%, 4.8%, and 7.0%, respectively. Furthermore, the proposed method achieves real-time inference speeds. This approach can be deployed on drones to perform real-time ground detection. Full article
Show Figures

Figure 1

18 pages, 5592 KiB  
Article
Three-Dimensional Point Cloud Stitching Method in Infrared Images of High-Voltage Cables
by Guang Yu, Yan Huang and Yujia Cheng
Coatings 2024, 14(9), 1079; https://doi.org/10.3390/coatings14091079 - 23 Aug 2024
Viewed by 509
Abstract
High-voltage power cables are crucial to the normal operation of all electrical equipment. The insulation surrounding these cables is subject to faults. The traditional methods for detecting cable insulation characteristics primarily focus on breakdown performance tests. However, the measurement precision is low, the [...] Read more.
High-voltage power cables are crucial to the normal operation of all electrical equipment. The insulation surrounding these cables is subject to faults. The traditional methods for detecting cable insulation characteristics primarily focus on breakdown performance tests. However, the measurement precision is low, the risk coefficient is high, and the test cost is high. Additionally, it is difficult to precisely pinpoint high-voltage cable faults. Therefore, in this study, a method for inspecting high-voltage cable faults using infrared stereoscopic vision is proposed. This method enables non-contact remote safety measurements to be conducted. For a limited lens angle in an infrared camera, an area matching stitching method that incorporates feature point matching is developed. The key technologies for three-dimensional (3D) point cloud stitching include feature point extraction and image matching. To address the problem of the Harris algorithm not having scale invariance, Gaussian multi-scale transform parameters were added to the algorithm. During the matching process, a random sampling consistency algorithm is used to eliminate incorrect pairs of matching points. Subsequently, a 3D point cloud stitching experiment on infrared cable images was conducted. The feasibility of the stitching algorithm was verified through qualitative and quantitative analyses of the experimental results. Based on the mechanism by which thermal breakdowns occur, a method for detecting anomalous temperatures in cables is developed based on infrared stereoscopic vision. In this manuscript, the infrared technique, 3D point cloud stitching, and cables inspection are combined for the first time. The detection precision is high, which contributes to the development of high-voltage electrical equipment nondestructive testing. Full article
Show Figures

Figure 1

19 pages, 1708 KiB  
Article
No-Reference Image Quality Assessment Combining Swin-Transformer and Natural Scene Statistics
by Yuxuan Yang, Zhichun Lei and Changlu Li
Sensors 2024, 24(16), 5221; https://doi.org/10.3390/s24165221 - 12 Aug 2024
Viewed by 718
Abstract
No-reference image quality assessment aims to evaluate image quality based on human subjective perceptions. Current methods face challenges with insufficient ability to focus on global and local information simultaneously and information loss due to image resizing. To address these issues, we propose a [...] Read more.
No-reference image quality assessment aims to evaluate image quality based on human subjective perceptions. Current methods face challenges with insufficient ability to focus on global and local information simultaneously and information loss due to image resizing. To address these issues, we propose a model that combines Swin-Transformer and natural scene statistics. The model utilizes Swin-Transformer to extract multi-scale features and incorporates a feature enhancement module and deformable convolution to improve feature representation, adapting better to structural variations in images, apply dual-branch attention to focus on key areas, and align the assessment more closely with human visual perception. The Natural Scene Statistics compensates information loss caused by image resizing. Additionally, we use a normalized loss function to accelerate model convergence and enhance stability. We evaluate our model on six standard image quality assessment datasets (both synthetic and authentic), and show that our model achieves advanced results across multiple datasets. Compared to the advanced DACNN method, our model achieved Spearman rank correlation coefficients of 0.922 and 0.923 on the KADID and KonIQ datasets, respectively, representing improvements of 1.9% and 2.4% over this method. It demonstrated outstanding performance in handling both synthetic and authentic scenes. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 7671 KiB  
Article
Multiscale Tea Disease Detection with Channel–Spatial Attention
by Yange Sun, Mingyi Jiang, Huaping Guo, Li Zhang, Jianfeng Yao, Fei Wu and Gaowei Wu
Sustainability 2024, 16(16), 6859; https://doi.org/10.3390/su16166859 - 9 Aug 2024
Viewed by 496
Abstract
Tea disease detection is crucial for improving the agricultural circular economy. Deep learning-based methods have been widely applied to this task, and the main idea of these methods is to extract multiscale coarse features of diseases using the backbone network and fuse these [...] Read more.
Tea disease detection is crucial for improving the agricultural circular economy. Deep learning-based methods have been widely applied to this task, and the main idea of these methods is to extract multiscale coarse features of diseases using the backbone network and fuse these features through the neck for accurate disease detection. This paper proposes a novel tea disease detection method that enhances feature expression of the backbone network and the feature fusion capability of the neck: (1) constructing an inverted residual self-attention module as a backbone plugin to capture the long-distance dependencies of disease spots on the leaves; and (2) developing a channel–spatial attention module with residual connection in the neck network to enhance the contextual semantic information of fused features in disease images and eliminate complex background noise. For the second step, the proposed channel–spatial attention module uses Residual Channel Attention (RCA) to enhance inter-channel interactions, facilitating discrimination between disease spots and normal leaf regions, and employs spatial attention (SA) to enhance essential areas of tea diseases. Experimental results demonstrate that the proposed method achieved accuracy and mAP scores of 92.9% and 94.6%, respectively. In particular, this method demonstrated improvements of 6.4% in accuracy and 6.2% in mAP compared to the SSD model. Full article
Show Figures

Figure 1

23 pages, 7312 KiB  
Article
LARS: Remote Sensing Small Object Detection Network Based on Adaptive Channel Attention and Large Kernel Adaptation
by Yuanyuan Li, Yajun Yang, Yiyao An, Yudong Sun and Zhiqin Zhu
Remote Sens. 2024, 16(16), 2906; https://doi.org/10.3390/rs16162906 - 8 Aug 2024
Viewed by 763
Abstract
In the field of object detection, small object detection in remote sensing images is an important and challenging task. Due to limitations in size and resolution, most existing methods often suffer from localization blurring. To address the above problem, this paper proposes a [...] Read more.
In the field of object detection, small object detection in remote sensing images is an important and challenging task. Due to limitations in size and resolution, most existing methods often suffer from localization blurring. To address the above problem, this paper proposes a remote sensing small object detection network based on adaptive channel attention and large kernel adaptation. This approach aims to enhance multi-channel information mining and multi-scale feature extraction to alleviate the problem of localization blurring. To enhance the model’s focus on the features of small objects in remote sensing at varying scales, this paper introduces an adaptive channel attention block. This block applies adaptive attention weighting based on the input feature dimensions, guiding the model to better focus on local information. To mitigate the loss of local information by large kernel convolutions, a large kernel adaptive block is designed. The block dynamically adjusts the surrounding spatial receptive field based on the context around the detection area, improving the model’s ability to extract information around remote sensing small objects. To address the recognition confusion during the sample classification process, a layer batch normalization method is proposed. This method enhances the consistency analysis capabilities of adaptive learning, thereby reducing the decline in the model’s classification accuracy caused by sample misclassification. Experiments on the DOTA-v2.0, SODA-A and VisDrone datasets show that the proposed method achieves state-of-the-art performance. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing Image Processing Technology)
Show Figures

Figure 1

Back to TopTop