Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = near-surface phenology observation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12771 KiB  
Article
Harmonized Landsat and Sentinel-2 Data with Google Earth Engine
by Elias Fernando Berra, Denise Cybis Fontana, Feng Yin and Fabio Marcelo Breunig
Remote Sens. 2024, 16(15), 2695; https://doi.org/10.3390/rs16152695 - 23 Jul 2024
Viewed by 376
Abstract
Continuous and dense time series of satellite remote sensing data are needed for several land monitoring applications, including vegetation phenology, in-season crop assessments, and improving land use and land cover classification. Supporting such applications at medium to high spatial resolution may be challenging [...] Read more.
Continuous and dense time series of satellite remote sensing data are needed for several land monitoring applications, including vegetation phenology, in-season crop assessments, and improving land use and land cover classification. Supporting such applications at medium to high spatial resolution may be challenging with a single optical satellite sensor, as the frequency of good-quality observations can be low. To optimize good-quality data availability, some studies propose harmonized databases. This work aims at developing an ‘all-in-one’ Google Earth Engine (GEE) web-based workflow to produce harmonized surface reflectance data from Landsat-7 (L7) ETM+, Landsat-8 (L8) OLI, and Sentinel-2 (S2) MSI top of atmosphere (TOA) reflectance data. Six major processing steps to generate a new source of near-daily Harmonized Landsat and Sentinel (HLS) reflectance observations at 30 m spatial resolution are proposed and described: band adjustment, atmospheric correction, cloud and cloud shadow masking, view and illumination angle adjustment, co-registration, and reprojection and resampling. The HLS is applied to six equivalent spectral bands, resulting in a surface nadir BRDF-adjusted reflectance (NBAR) time series gridded to a common pixel resolution, map projection, and spatial extent. The spectrally corresponding bands and derived Normalized Difference Vegetation Index (NDVI) were compared, and their sensor differences were quantified by regression analyses. Examples of HLS time series are presented for two potential applications: agricultural and forest phenology. The HLS product is also validated against ground measurements of NDVI, achieving very similar temporal trajectories and magnitude of values (R2 = 0.98). The workflow and script presented in this work may be useful for the scientific community aiming at taking advantage of multi-sensor harmonized time series of optical data. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

18 pages, 6527 KiB  
Review
Plugging the Gaps in the Global PhenoCam Monitoring of Forests—The Need for a PhenoCam Network across Indian Forests
by Karun Jose, Rajiv Kumar Chaturvedi, Chockalingam Jeganathan, Mukunda Dev Behera and Chandra Prakash Singh
Remote Sens. 2023, 15(24), 5642; https://doi.org/10.3390/rs15245642 - 6 Dec 2023
Viewed by 2537
Abstract
Our understanding of the impact of climate change on forests is constrained by a lack of long-term phenological monitoring. It is generally carried out via (1) ground observations, (2) satellite-based remote sensing, and (3) near-surface remote sensing (e.g., PhenoCams, unmanned aerial vehicles, etc.). [...] Read more.
Our understanding of the impact of climate change on forests is constrained by a lack of long-term phenological monitoring. It is generally carried out via (1) ground observations, (2) satellite-based remote sensing, and (3) near-surface remote sensing (e.g., PhenoCams, unmanned aerial vehicles, etc.). Ground-based observations are limited by space, time, funds, and human observer bias. Satellite-based phenological monitoring does not carry these limitations; however, it is generally associated with larger uncertainties due to atmospheric noise, land cover mixing, and the modifiable area unit problem. In this context, near-surface remote sensing technologies, e.g., PhenoCam, emerge as a promising alternative complementing ground and satellite-based observations. Ground-based phenological observations generally record the following key parameters: leaves (bud stage, mature, abscission), flowers (bud stage, anthesis, abscission), and fruit (bud stage, maturation, and abscission). This review suggests that most of these nine parameters can be recorded using PhenoCam with >90% accuracy. Currently, Phenocameras are situated in the US, Europe, and East Asia, with a stark paucity over Africa, South America, Central, South-East, and South Asia. There is a need to expand PhenoCam monitoring in underrepresented regions, especially in the tropics, to better understand global forest dynamics as well as the impact of global change on forest ecosystems. Here, we spotlight India and discuss the need for a new PhenoCam network covering the diversity of Indian forests and its possible applications in forest management at a local level. Full article
Show Figures

Figure 1

19 pages, 14090 KiB  
Article
Climate Potential for Apple Growing in Norway—Part 1: Zoning of Areas with Heat Conditions Favorable for Apple Growing under Observed Climate Change
by Ana Vuković Vimić, Mirjam Vujadinović Mandić, Milica Fotirić Akšić, Ksenija Vukićević and Mekjell Meland
Atmosphere 2023, 14(6), 993; https://doi.org/10.3390/atmos14060993 - 7 Jun 2023
Cited by 6 | Viewed by 1594
Abstract
Agricultural production is already, and obviously, affected by climate change. Adapting to climate change includes reducing future risks to ensure yield quality and quantity and considers seizing any potential opportunities induced by climate change. In higher latitude areas, such as Norway, cold climate [...] Read more.
Agricultural production is already, and obviously, affected by climate change. Adapting to climate change includes reducing future risks to ensure yield quality and quantity and considers seizing any potential opportunities induced by climate change. In higher latitude areas, such as Norway, cold climate limits the cultivation of fruits. An increase in temperature offers more favorable conditions for fruit production. In this study, using available phenological observations (full blooming) and harvest dates, and meteorological data from the experimental orchard of NIBIO Ullensvang, the minimum heat requirements for growing different apple varieties are determined. Those criteria are used for zoning of the areas with heat favorable conditions for apple growing. Data on six varieties were used, with lower and higher requirements for heat for fruit development (Discovery, Gravenstein, Summerred, Aroma, Rubinstep, and Elstar). High resolution daily temperature data were generated and used for zoning of the areas with heat favorable conditions for apple growing within the selected domain, which includes Western Norway, Southern Norway, Eastern Norway, and the western part of Trøndelag, Mid-Norway. Dynamics of the change in such surfaces was assessed for the period of 1961–2020. The total surface with favorable heat conditions for growing the varieties with lesser requirement for heat increased three times during this period. The growing of more heat-demanding varieties increased from near zero to about 2.5% of the studied land surface. In the period of 2011–2020, surface area with favorable heat conditions for apple growing was almost 27,000 km2, and a surface area of about 4600 km2 can sustain growing of more heat-demanding varieties. The presented results show the increasing potential of the climate of Norway for apple cultivation and highlight the importance of implementation of fruit production planned according to climate change trends, including the assessment of potential risks from climate hazards. However, the methodology for determining heat requirements can be improved by using phenological ripening dates if available, rather than harvest dates which are impacted by human decision. Zoning of areas with the potential of sustainable apple growing requires the use of future climate change assessments and information on land-related features. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

15 pages, 3643 KiB  
Technical Note
Improving Remote Estimation of Vegetation Phenology Using GCOM-C/SGLI Land Surface Reflectance Data
by Mengyu Li, Wei Yang and Akihiko Kondoh
Remote Sens. 2022, 14(16), 4027; https://doi.org/10.3390/rs14164027 - 18 Aug 2022
Viewed by 1773
Abstract
Vegetation phenology not only describes the life cycle events of periodic plants during the growing season but also acts as an indicator of biological responses to climate change. Satellite monitoring of vegetation phenology can capture the spatial patterns of vegetation dynamics at global [...] Read more.
Vegetation phenology not only describes the life cycle events of periodic plants during the growing season but also acts as an indicator of biological responses to climate change. Satellite monitoring of vegetation phenology can capture the spatial patterns of vegetation dynamics at global scales. However, the existing satellite products of global vegetation phenology still show uncertainties in estimating phenological metrices, especially for dormancy onset. The Second-Generation Global Imager (SGLI) onboard the satellite Global Change Observation Mission—Climate (GCOM-C) that launched in 2017 provides a new opportunity to improve the estimation of global vegetation phenology with a spatial resolution of 250 m. In this study, SGLI land surface reflectance data were employed to estimate the green-up and dormancy dates for different vegetation types based on a relative threshold method, in which a snow-free vegetation index (i.e., the normalized difference greenness index, NDGI) was adopted. The validation results show that there are significant agreements between the trajectories of the SGLI-based NDGI and the near-surface green color coordinate index (GCC) at the PhenoCam sites with different vegetation types. The SGLI-based estimation of the green-up dates slightly outperformed that of the existing MODIS and VIIRS phenology products, with an RMSE and R2 of 11.0 days and 0.71, respectively. In contrast, the estimation of the dormancy dates based on the SGLI data yielded much higher accuracies than the MODIS and VIIRS products, with an RMSE decreased from >23.8 days to 15.6 days, and R2 increased from <0.51 to 0.72. These results suggest that GCOM-C/SGLI data have the potential to generate improved monitoring of global vegetation phenology in the future. Full article
(This article belongs to the Special Issue Advances in Detecting and Understanding Land Surface Phenology)
Show Figures

Figure 1

25 pages, 5375 KiB  
Article
Near-Surface and High-Resolution Satellite Time Series for Detecting Crop Phenology
by Chunyuan Diao and Geyang Li
Remote Sens. 2022, 14(9), 1957; https://doi.org/10.3390/rs14091957 - 19 Apr 2022
Cited by 18 | Viewed by 3134
Abstract
Detecting crop phenology with satellite time series is important to characterize agroecosystem energy-water-carbon fluxes, manage farming practices, and predict crop yields. Despite the advances in satellite-based crop phenological retrievals, interpreting those retrieval characteristics in the context of on-the-ground crop phenological events remains a [...] Read more.
Detecting crop phenology with satellite time series is important to characterize agroecosystem energy-water-carbon fluxes, manage farming practices, and predict crop yields. Despite the advances in satellite-based crop phenological retrievals, interpreting those retrieval characteristics in the context of on-the-ground crop phenological events remains a long-standing hurdle. Over the recent years, the emergence of near-surface phenology cameras (e.g., PhenoCams), along with the satellite imagery of both high spatial and temporal resolutions (e.g., PlanetScope imagery), has largely facilitated direct comparisons of retrieved characteristics to visually observed crop stages for phenological interpretation and validation. The goal of this study is to systematically assess near-surface PhenoCams and high-resolution PlanetScope time series in reconciling sensor- and ground-based crop phenological characterizations. With two critical crop stages (i.e., crop emergence and maturity stages) as an example, we retrieved diverse phenological characteristics from both PhenoCam and PlanetScope imagery for a range of agricultural sites across the United States. The results showed that the curvature-based Greenup and Gu-based Upturn estimates showed good congruence with the visually observed crop emergence stage (RMSE about 1 week, bias about 0–9 days, and R square about 0.65–0.75). The threshold- and derivative-based End of greenness falling Season (i.e., EOS) estimates reconciled well with visual crop maturity observations (RMSE about 5–10 days, bias about 0–8 days, and R square about 0.6–0.75). The concordance among PlanetScope, PhenoCam, and visual phenology demonstrated the potential to interpret the fine-scale sensor-derived phenological characteristics in the context of physiologically well-characterized crop phenological events, which paved the way to develop formal protocols for bridging ground-satellite phenological characterization. Full article
Show Figures

Figure 1

22 pages, 8885 KiB  
Article
On the Seasonal Dynamics of Phytoplankton Chlorophyll-a Concentration in Nearshore and Offshore Waters of Plymouth, in the English Channel: Enlisting the Help of a Surfer
by Elliot McCluskey, Robert J. W. Brewin, Quinten Vanhellemont, Oban Jones, Denise Cummings, Gavin Tilstone, Thomas Jackson, Claire Widdicombe, E. Malcolm S. Woodward, Carolyn Harris, Philip J. Bresnahan, Tyler Cyronak and Andreas J. Andersson
Oceans 2022, 3(2), 125-146; https://doi.org/10.3390/oceans3020011 - 1 Apr 2022
Cited by 7 | Viewed by 5581
Abstract
The role of phytoplankton as ocean primary producers and their influence on global biogeochemical cycles makes them arguably the most important living organisms in the sea. Like plants on land, phytoplankton exhibit seasonal cycles that are controlled by physical, chemical, and biological processes. [...] Read more.
The role of phytoplankton as ocean primary producers and their influence on global biogeochemical cycles makes them arguably the most important living organisms in the sea. Like plants on land, phytoplankton exhibit seasonal cycles that are controlled by physical, chemical, and biological processes. Nearshore coastal waters often contain the highest levels of phytoplankton biomass. Yet, owing to difficulties in sampling this dynamic region, less is known about the seasonality of phytoplankton in the nearshore (e.g., surf zone) compared to offshore coastal, shelf and open ocean waters. Here, we analyse an annual dataset of chlorophyll-a concentration—a proxy of phytoplankton biomass—and sea surface temperature (SST) collected by a surfer at Bovisand Beach in Plymouth, UK on a near weekly basis between September 2017 and September 2018. By comparing this dataset with a complementary in-situ dataset collected 7 km offshore from the coastline (11 km from Bovisand Beach) at Station L4 of the Western Channel Observatory, and guided by satellite observations of light availability, we investigated differences in phytoplankton seasonal cycles between nearshore and offshore coastal waters. Whereas similarities in phytoplankton biomass were observed in autumn, winter and spring, we observed significant differences between sites during the summer months of July and August. Offshore (Station L4) chlorophyll-a concentrations dropped dramatically, whereas chlorophyll-a concentrations in the nearshore (Bovsiand Beach) remained high. We found chlorophyll-a in the nearshore to be significantly positively correlated with SST and PAR over the seasonal cycle, but no significant correlations were observed at the offshore location. However, offshore correlation coefficients were found to be more consistent with those observed in the nearshore when summer data (June–August 2018) were removed. Analysis of physical (temperature and density) and chemical variables (nutrients) suggest that the offshore site (Station L4) becomes stratified and nutrient limited at the surface during the summer, in contrast to the nearshore. However, we acknowledge that additional experiments are needed to verify this hypothesis. Considering predicted changes in ocean stratification, our findings may help understand how the spatial distribution of phytoplankton phenology within temperate coastal seas could be impacted by climate change. Additionally, this study emphasises the potential for using marine citizen science as a platform for acquiring environmental data in otherwise challenging regions of the ocean, for understanding ecological indicators such as phytoplankton abundance and phenology. We discuss the limitations of our study and future work needed to explore nearshore phytoplankton dynamics. Full article
Show Figures

Graphical abstract

17 pages, 3787 KiB  
Article
Comparing Time-Lapse PhenoCams with Satellite Observations across the Boreal Forest of Quebec, Canada
by Siddhartha Khare, Annie Deslauriers, Hubert Morin, Hooman Latifi and Sergio Rossi
Remote Sens. 2022, 14(1), 100; https://doi.org/10.3390/rs14010100 - 26 Dec 2021
Cited by 10 | Viewed by 3847
Abstract
Intercomparison of satellite-derived vegetation phenology is scarce in remote locations because of the limited coverage area and low temporal resolution of field observations. By their reliable near-ground observations and high-frequency data collection, PhenoCams can be a robust tool for intercomparison of land surface [...] Read more.
Intercomparison of satellite-derived vegetation phenology is scarce in remote locations because of the limited coverage area and low temporal resolution of field observations. By their reliable near-ground observations and high-frequency data collection, PhenoCams can be a robust tool for intercomparison of land surface phenology derived from satellites. This study aims to investigate the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology by comparing fortnightly the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) extracted using the Google Earth Engine (GEE) platform with the daily PhenoCam-based green chromatic coordinate (GCC) index. Data were collected from 2016 to 2019 by PhenoCams installed in six mature stands along a latitudinal gradient of the boreal forests of Quebec, Canada. All time series were fitted by double-logistic functions, and the estimated parameters were compared between NDVI, EVI, and GCC. The onset of GCC occurred in the second week of May, whereas the ending of GCC occurred in the last week of September. We demonstrated that GCC was more correlated with EVI (R2 from 0.66 to 0.85) than NDVI (R2 from 0.52 to 0.68). In addition, the onset and ending of phenology were shown to differ by 3.5 and 5.4 days between EVI and GCC, respectively. Larger differences were detected between NDVI and GCC, 17.05 and 26.89 days for the onset and ending, respectively. EVI showed better estimations of the phenological dates than NDVI. This better performance is explained by the higher spectral sensitivity of EVI for multiple canopy leaf layers due to the presence of an additional blue band and an optimized soil factor value. Our study demonstrates that the phenological observations derived from PhenoCam are comparable with the EVI index. We conclude that EVI is more suitable than NDVI to assess phenology in evergreen species of the northern boreal region, where PhenoCam data are not available. The EVI index could be used as a reliable proxy of GCC for monitoring evergreen species phenology in areas with reduced access, or where repeated data collection from remote areas are logistically difficult due to the extreme weather. Full article
Show Figures

Figure 1

21 pages, 54772 KiB  
Article
Assimilation of Wheat and Soil States into the APSIM-Wheat Crop Model: A Case Study
by Yuxi Zhang, Jeffrey P. Walker, Valentijn R. N. Pauwels and Yuval Sadeh
Remote Sens. 2022, 14(1), 65; https://doi.org/10.3390/rs14010065 - 24 Dec 2021
Cited by 14 | Viewed by 3464
Abstract
Optimised farm crop productivity requires careful management in response to the spatial and temporal variability of yield. Accordingly, combination of crop simulation models and remote sensing data provides a pathway for providing the spatially variable information needed on current crop status and the [...] Read more.
Optimised farm crop productivity requires careful management in response to the spatial and temporal variability of yield. Accordingly, combination of crop simulation models and remote sensing data provides a pathway for providing the spatially variable information needed on current crop status and the expected yield. An ensemble Kalman filter (EnKF) data assimilation framework was developed to assimilate plant and soil observations into a prediction model to improve crop development and yield forecasting. Specifically, this study explored the performance of assimilating state observations into the APSIM-Wheat model using a dataset collected during the 2018/19 wheat season at a farm near Cora Lynn in Victoria, Australia. The assimilated state variables include (1) ground-based measurements of Leaf Area Index (LAI), soil moisture throughout the profile, biomass, and soil nitrate-nitrogen; and (2) remotely sensed observations of LAI and surface soil moisture. In a baseline scenario, an unconstrained (open-loop) simulation greatly underestimated the wheat grain with a relative difference (RD) of −38.3%, while the assimilation constrained simulations using ground-based LAI, ground-based biomass, and remotely sensed LAI were all found to improve the RD, reducing it to −32.7%, −9.4%, and −7.6%, respectively. Further improvements in yield estimation were found when: (1) wheat states were assimilated in phenological stages 4 and 5 (end of juvenile to flowering), (2) plot-specific remotely sensed LAI was used instead of the field average, and (3) wheat phenology was constrained by ground observations. Even when using parameters that were not accurately calibrated or measured, the assimilation of LAI and biomass still provided improved yield estimation over that from an open-loop simulation. Full article
Show Figures

Graphical abstract

25 pages, 15506 KiB  
Article
Assessing Forest Phenology: A Multi-Scale Comparison of Near-Surface (UAV, Spectral Reflectance Sensor, PhenoCam) and Satellite (MODIS, Sentinel-2) Remote Sensing
by Shangharsha Thapa, Virginia E. Garcia Millan and Lars Eklundh
Remote Sens. 2021, 13(8), 1597; https://doi.org/10.3390/rs13081597 - 20 Apr 2021
Cited by 43 | Viewed by 9599
Abstract
The monitoring of forest phenology based on observations from near-surface sensors such as Unmanned Aerial Vehicles (UAVs), PhenoCams, and Spectral Reflectance Sensors (SRS) over satellite sensors has recently gained significant attention in the field of remote sensing and vegetation phenology. However, exploring different [...] Read more.
The monitoring of forest phenology based on observations from near-surface sensors such as Unmanned Aerial Vehicles (UAVs), PhenoCams, and Spectral Reflectance Sensors (SRS) over satellite sensors has recently gained significant attention in the field of remote sensing and vegetation phenology. However, exploring different aspects of forest phenology based on observations from these sensors and drawing comparatives from the time series of vegetation indices (VIs) still remains a challenge. Accordingly, this research explores the potential of near-surface sensors to track the temporal dynamics of phenology, cross-compare their results against satellite observations (MODIS, Sentinel-2), and validate satellite-derived phenology. A time series of Normalized Difference Vegetation Index (NDVI), Green Chromatic Coordinate (GCC), and Normalized Difference of Green & Red (VIgreen) indices were extracted from both near-surface and satellite sensor platforms. The regression analysis between time series of NDVI data from different sensors shows the high Pearson’s correlation coefficients (r > 0.75). Despite the good correlations, there was a remarkable offset and significant differences in slope during green-up and senescence periods. SRS showed the most distinctive NDVI profile and was different to other sensors. PhenoCamGCC tracked green-up of the canopy better than the other indices, with a well-defined start, end, and peak of the season, and was most closely correlated (r > 0.93) with the satellites, while SRS-based VIgreen accounted for the least correlation (r = 0.58) against Sentinel-2. Phenophase transition dates were estimated and validated against visual inspection of the PhenoCam data. The Start of Spring (SOS) and End of Spring (EOS) could be predicted with an accuracy of <3 days with GCC, while these metrics from VIgreen and NDVI resulted in a slightly higher bias of (3–10) days. The observed agreement between UAVNDVI vs. satelliteNDVI and PhenoCamGCC vs. satelliteGCC suggests that it is feasible to use PhenoCams and UAVs for satellite data validation and upscaling. Thus, a combination of these near-surface vegetation metrics is promising for a holistic understanding of vegetation phenology from canopy perspective and could serve as a good foundation for analysing the interoperability of different sensors for vegetation dynamics and change analysis. Full article
(This article belongs to the Special Issue UAV Photogrammetry for Environmental Monitoring)
Show Figures

Graphical abstract

22 pages, 7328 KiB  
Article
A Novel Strategy to Reconstruct NDVI Time-Series with High Temporal Resolution from MODIS Multi-Temporal Composite Products
by Linglin Zeng, Brian D. Wardlow, Shun Hu, Xiang Zhang, Guoqing Zhou, Guozhang Peng, Daxiang Xiang, Rui Wang, Ran Meng and Weixiong Wu
Remote Sens. 2021, 13(7), 1397; https://doi.org/10.3390/rs13071397 - 5 Apr 2021
Cited by 14 | Viewed by 5184
Abstract
Vegetation indices (VIs) data derived from satellite imageries play a vital role in land surface vegetation and dynamic monitoring. Due to the excessive noises (e.g., cloud cover, atmospheric contamination) in daily VI data, temporal compositing methods are commonly used to produce composite data [...] Read more.
Vegetation indices (VIs) data derived from satellite imageries play a vital role in land surface vegetation and dynamic monitoring. Due to the excessive noises (e.g., cloud cover, atmospheric contamination) in daily VI data, temporal compositing methods are commonly used to produce composite data to minimize the negative influence of noise over a given compositing time interval. However, VI time series with high temporal resolution were preferred by many applications such as vegetation phenology and land change detections. This study presents a novel strategy named DAVIR-MUTCOP (DAily Vegetation Index Reconstruction based on MUlti-Temporal COmposite Products) method for normalized difference vegetation index (NDVI) time-series reconstruction with high temporal resolution. The core of the DAVIR-MUTCOP method is a combination of the advantages of both original daily and temporally composite products, and selecting more daily observations with high quality through the temporal variation of temporally corrected composite data. The DAVIR-MUTCOP method was applied to reconstruct high-quality NDVI time-series using MODIS multi-temporal products in two study areas in the continental United States (CONUS), i.e., three field experimental sites near Mead, Nebraska from 2001 to 2012 and forty-six AmeriFlux sites evenly distributed across CONUS from 2006 to 2010. In these two study areas, the DAVIR-MUTCOP method was also compared to several commonly used methods, i.e., the Harmonic Analysis of Time-Series (HANTS) method using original daily observations, Savitzky–Golay (SG) filtering using daily observations with cloud mask products as auxiliary data, and SG filtering using temporally corrected composite data. The results showed that the DAVIR-MUTCOP method significantly improved the temporal resolution of the reconstructed NDVI time series. It performed the best in reconstructing NDVI time-series across time and space (coefficient of determination (R2 = 0.93 ~ 0.94) between reconstructed NDVI and ground-observed LAI). DAVIR-MUTCOP method presented the highest robustness and accuracy with the change of the filtering parameter (R2 = 0.99 ~ 1.00, bias = 0.001, root mean square error (RMSE) = 0.020). Only MODIS data were used in this study; nevertheless, the DAVIR-MUTCOP method proposed a universal and potential way to reconstruct daily time series of other VIs or from other operational sensors, e.g., AVHRR and VIIRS. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

20 pages, 15745 KiB  
Article
Interannual and Seasonal Variations of Hydrological Connectivity in a Large Shallow Wetland of North China Estimated from Landsat 8 Images
by Ziqi Li, Wenchao Sun, Haiyang Chen, Baolin Xue, Jingshan Yu and Zaifeng Tian
Remote Sens. 2021, 13(6), 1214; https://doi.org/10.3390/rs13061214 - 23 Mar 2021
Cited by 23 | Viewed by 3377
Abstract
Hydrological connectivity is an important characteristic of wetlands that maintains the stability and functions of an ecosystem. This study investigates the temporal variations of hydrological connectivity and their driving mechanism in Baiyangdian Lake, a large shallow wetland in North China, using a time [...] Read more.
Hydrological connectivity is an important characteristic of wetlands that maintains the stability and functions of an ecosystem. This study investigates the temporal variations of hydrological connectivity and their driving mechanism in Baiyangdian Lake, a large shallow wetland in North China, using a time series of open water surface area data derived from 36 Landsat 8 multispectral images from 2013–2019 and in situ measured water level data. Water area classification was implemented using the Google Earth Engine. Six commonly used indexes for extracting water surface data from satellite images were compared and the best performing index was selected for the water classification. A composite hydrological connectivity index computed from open water area data derived from Landsat 8 images was developed based on several landscape pattern indices and applied to Baiyangdian Lake. The results show that, reflectance in the near-infrared band is the most accurate index for water classification with >98% overall accuracy because of its sensitivity to different land cover types. The slopes of the best-fit linear relationships between the computed hydrological connectivity and observed water level show high variability between years. In most years, hydrological connectivity generally increases when water levels increase, with an average R2 of 0.88. The spatial distribution of emergent plants also varies year to year owing to interannual variations of the climate and hydrological regime. This presents a possible explanation for the variations in the annual relationship between hydrological connectivity and water level. For a given water level, the hydrological connectivity is generally higher in spring than summer and autumn. This can be explained by the fact that the drag force exerted by emergent plants, which reduces water flow, is smaller than that for summer and autumn owing to seasonal variations in the phenological characteristics of emergent plants. Our study reveals that both interannual and seasonal variations in the hydrological connectivity of Baiyangdian Lake are related to the growth of emergent plants, which occupy a large portion of the lake area. Proper vegetation management may therefore improve hydrological connectivity in this wetland. Full article
Show Figures

Graphical abstract

17 pages, 5328 KiB  
Article
Evaluation of VEGETATION and PROBA-V Phenology Using PhenoCam and Eddy Covariance Data
by Kevin Bórnez, Andrew D. Richardson, Aleixandre Verger, Adrià Descals and Josep Peñuelas
Remote Sens. 2020, 12(18), 3077; https://doi.org/10.3390/rs12183077 - 19 Sep 2020
Cited by 19 | Viewed by 3742
Abstract
High-quality retrieval of land surface phenology (LSP) is increasingly important for understanding the effects of climate change on ecosystem function and biosphere–atmosphere interactions. We analyzed four state-of-the-art phenology methods: threshold, logistic-function, moving-average and first derivative based approaches, and retrieved LSP in the North [...] Read more.
High-quality retrieval of land surface phenology (LSP) is increasingly important for understanding the effects of climate change on ecosystem function and biosphere–atmosphere interactions. We analyzed four state-of-the-art phenology methods: threshold, logistic-function, moving-average and first derivative based approaches, and retrieved LSP in the North Hemisphere for the period 1999–2017 from Copernicus Global Land Service (CGLS) SPOT-VEGETATION and PROBA-V leaf area index (LAI) 1 km V2.0 time series. We validated the LSP estimates with near-surface PhenoCam and eddy covariance FLUXNET data over 80 sites of deciduous forests. Results showed a strong correlation (R2 > 0.7) between the satellite LSP and ground-based observations from both PhenoCam and FLUXNET for the timing of the start (SoS) and R2 > 0.5 for the end of season (EoS). The threshold-based method performed the best with a root mean square error of ~9 d with PhenoCam and ~7 d with FLUXNET for the timing of SoS (30th percentile of the annual amplitude), and ~12 d and ~10 d, respectively, for the timing of EoS (40th percentile). Full article
Show Figures

Graphical abstract

23 pages, 3357 KiB  
Article
First Insights on Soil Respiration Prediction across the Growth Stages of Rainfed Barley Based on Simulated MODIS and Sentinel-2 Spectral Indices
by Víctor Cicuéndez, Manuel Rodríguez-Rastrero, Laura Recuero, Margarita Huesca, Thomas Schmid, Rosa Inclán, Javier Litago, Víctor Sánchez-Girón and Alicia Palacios-Orueta
Remote Sens. 2020, 12(17), 2724; https://doi.org/10.3390/rs12172724 - 23 Aug 2020
Cited by 1 | Viewed by 3125
Abstract
Rainfed agriculture occupies the majority of the world’s agricultural surface and is expected to increase in the near future causing serious effects on carbon cycle dynamics in the context of climate change. Carbon cycle across several temporal and spatial scales could be studied [...] Read more.
Rainfed agriculture occupies the majority of the world’s agricultural surface and is expected to increase in the near future causing serious effects on carbon cycle dynamics in the context of climate change. Carbon cycle across several temporal and spatial scales could be studied through spectral indices because they are related to vegetation structure and functioning and hence with carbon fluxes, among them soil respiration (Rs). The aim of this work was to assess Rs linked to crop phenology of a rainfed barley crop throughout two seasons based on spectral indices calculated from field spectroscopy data. The relationships between Rs, Leaf Area Index (LAI) and spectral indices were assessed by linear regression models with the adjusted coefficient of determination (Radj2). Results showed that most of the spectral indices provided better information than LAI throughout the studied period and that soil moisture and temperature were relevant variables in specific periods. During vegetative stages, indices based on the visible (VIS) region showed the best relationship with Rs. On the other hand, during reproductive stages indices containing the near infrared-shortwave infrared (NIR-SWIR) spectral region and those related to water content showed the highest relationship. The inter-annual variability found in Mediterranean regions was also observed in the estimated ratio of carbon emission to carbon fixation between years. Our results show the potential capability of spectral information to assess soil respiration linked to crop phenology across several temporal and spatial scales. These results can be used as a basis for the utilization of other remote information derived from satellites or airborne sensors to monitor crop carbon balances. Full article
(This article belongs to the Special Issue Digital Agriculture with Remote Sensing)
Show Figures

Figure 1

27 pages, 9715 KiB  
Article
Comparative Quality and Trend of Remotely Sensed Phenology and Productivity Metrics across the Western United States
by Ethan E. Berman, Tabitha A. Graves, Nate L. Mikle, Jerod A. Merkle, Aaron N. Johnston and Geneva W. Chong
Remote Sens. 2020, 12(16), 2538; https://doi.org/10.3390/rs12162538 - 7 Aug 2020
Cited by 12 | Viewed by 4639
Abstract
Vegetation phenology and productivity play a crucial role in surface energy balance, plant and animal distribution, and animal movement and habitat use and can be measured with remote sensing metrics including start of season (SOS), peak instantaneous rate of green-up date (PIRGd), peak [...] Read more.
Vegetation phenology and productivity play a crucial role in surface energy balance, plant and animal distribution, and animal movement and habitat use and can be measured with remote sensing metrics including start of season (SOS), peak instantaneous rate of green-up date (PIRGd), peak of season (POS), end of season (EOS), and integrated vegetation indices. However, for most metrics, we do not yet understand the agreement of remotely sensed data products with near-surface observations. We also need summaries of changes over time, spatial distribution, variability, and consistency in remote sensing dataset metrics for vegetation timing and quality. We compare metrics from 10 leading remote sensing datasets against a network of PhenoCam near-surface cameras throughout the western United States from 2002 to 2014. Most phenology metrics representing a date (SOS, PIRGd, POS, and EOS), rather than a duration (length of spring, length of growing season), better agreed with near-surface metrics but results varied by dataset, metric, and land cover, with absolute value of mean bias ranging from 0.38 (PIRGd) to 37.92 days (EOS). Datasets had higher agreement with PhenoCam metrics in shrublands, grasslands, and deciduous forests than in evergreen forests. Phenology metrics had higher agreement than productivity metrics, aside from a few datasets in deciduous forests. Using two datasets covering the period 1982–2016 that best agreed with PhenoCam metrics, we analyzed changes over time to growing seasons. Both datasets exhibited substantial spatial heterogeneity in the direction of phenology trends. Variability of metrics increased over time in some areas, particularly in the Southwest. Approximately 60% of pixels had consistent trend direction between datasets for SOS, POS, and EOS, with the direction varying by location. In all ecoregions except Mediterranean California, EOS has become later. This study comprehensively compares remote sensing datasets across multiple growing season metrics and discusses considerations for applied users to inform their data choices. Full article
Show Figures

Graphical abstract

17 pages, 4222 KiB  
Article
Characterizing Land Surface Phenology and Exotic Annual Grasses in Dryland Ecosystems Using Landsat and Sentinel-2 Data in Harmony
by Neal J. Pastick, Devendra Dahal, Bruce K. Wylie, Sujan Parajuli, Stephen P. Boyte and Zhouting Wu
Remote Sens. 2020, 12(4), 725; https://doi.org/10.3390/rs12040725 - 22 Feb 2020
Cited by 31 | Viewed by 6628
Abstract
Invasive annual grasses, such as cheatgrass (Bromus tectorum L.), have proliferated in dryland ecosystems of the western United States, promoting increased fire activity and reduced biodiversity that can be detrimental to socio-environmental systems. Monitoring exotic annual grass cover and dynamics over large areas [...] Read more.
Invasive annual grasses, such as cheatgrass (Bromus tectorum L.), have proliferated in dryland ecosystems of the western United States, promoting increased fire activity and reduced biodiversity that can be detrimental to socio-environmental systems. Monitoring exotic annual grass cover and dynamics over large areas requires the use of remote sensing that can support early detection and rapid response initiatives. However, few studies have leveraged remote sensing technologies and computing frameworks capable of providing rangeland managers with maps of exotic annual grass cover at relatively high spatiotemporal resolutions and near real-time latencies. Here, we developed a system for automated mapping of invasive annual grass (%) cover using in situ observations, harmonized Landsat and Sentinel-2 (HLS) data, maps of biophysical variables, and machine learning techniques. A robust and automated cloud, cloud shadow, water, and snow/ice masking procedure (mean overall accuracy >81%) was implemented using time-series outlier detection and data mining techniques prior to spatiotemporal interpolation of HLS data via regression tree models (r = 0.94; mean absolute error (MAE) = 0.02). Weekly, cloud-free normalized difference vegetation index (NDVI) image composites (2016–2018) were used to construct a suite of spectral and phenological metrics (e.g., start and end of season dates), consistent with information derived from Moderate Resolution Image Spectroradiometer (MODIS) data. These metrics were incorporated into a data mining framework that accurately (r = 0.83; MAE = 11) modeled and mapped exotic annual grass (%) cover throughout dryland ecosystems in the western United States at a native, 30-m spatial resolution. Our results show that inclusion of weekly HLS time-series data and derived indicators improves our ability to map exotic annual grass cover, as compared to distribution models that use MODIS products or monthly, seasonal, or annual HLS composites as primary inputs. This research fills a critical gap in our ability to effectively assess, manage, and monitor drylands by providing a framework that allows for an accurate and timely depiction of land surface phenology and exotic annual grass cover at spatial and temporal resolutions that are meaningful to local resource managers. Full article
(This article belongs to the Special Issue Remote Sensing of Dryland Environment)
Show Figures

Graphical abstract

Back to TopTop