Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = non-enzymatic glucose sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 13426 KiB  
Review
Non-Enzymatic Electrochemical Glucose Sensors Based on Metal Oxides and Sulfides: Recent Progress and Perspectives
by Haibing Zhu, Feng Shi, Maoying Peng, Ye Zhang, Sitian Long, Ruixin Liu, Juan Li and Zhanjun Yang
Chemosensors 2025, 13(1), 19; https://doi.org/10.3390/chemosensors13010019 - 16 Jan 2025
Viewed by 552
Abstract
With the sudden advancement of glucose biosensors for monitoring blood glucose levels for the prevention and diagnosis of diabetes, non-enzymatic glucose sensors have aroused great interest owing to their sensitivity, stability, and economy. Recently, researchers have dedicated themselves to developing non-enzymatic electrochemical glucose [...] Read more.
With the sudden advancement of glucose biosensors for monitoring blood glucose levels for the prevention and diagnosis of diabetes, non-enzymatic glucose sensors have aroused great interest owing to their sensitivity, stability, and economy. Recently, researchers have dedicated themselves to developing non-enzymatic electrochemical glucose sensors for the rapid, convenient, and sensitive determination of glucose. However, it is desirable to explore economic and effective nanomaterials with a high non-enzymatic catalysis performance toward glucose to modify electrodes. Metal oxides (MOs) and metal sulfides (MSs) have attracted extensive interest among scholars owing to their excellent catalytic activity, good biocompatibility, low cost, simple synthesis process, and controllable morphology and structure. Nonetheless, the exploitation of MOs and MSs in non-enzymatic electrochemical glucose sensors still suffers from relatively low conductivity and biocompatibility. Therefore, it is of significance to integrate MOs and MSs with metal/carbon/conducive polymers to modify electrodes for compensating the aforementioned deficiency. This review introduces the recent developments in non-enzymatic electrochemical glucose sensors based on MOs and MSs, focusing on their preparation methods and how their structural composition influences sensing performance. Finally, this review discusses the prospects and challenges of non-enzymatic electrochemical glucose sensors. Full article
Show Figures

Figure 1

13 pages, 3746 KiB  
Article
A Hierarchical Core-Shell Structure of NiO@Cu2O-CF for Effective Non-Enzymatic Electrochemical Glucose Detection
by Yueyun Huang, Jiahua You, Yingru Ding, Yun Xie, Ting Wang, Fanglong Zhu, Weiping Gong and Zhenting Zhao
Nanomaterials 2025, 15(1), 47; https://doi.org/10.3390/nano15010047 - 30 Dec 2024
Viewed by 510
Abstract
Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core–shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)2@Cu(OH)2-CF) was fabricated and derived from [...] Read more.
Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core–shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)2@Cu(OH)2-CF) was fabricated and derived from NiO@Cu2O-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions. The measurement displays that the fabricated sensor exhibits a detection scale of 0.005–4.5 mM with a detection sensitivity of 4.67 µA/µM/cm2. It has remarkable response/recovery times in respect of 750 μM glucose (1.0 s/3.5 s). Moreover, the NiO@Cu2O-CF shows significant selectivity, reliable reproducibility and long-term stability for glucose determination, suggesting it is a suitable candidate for further applications. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Graphical abstract

17 pages, 5352 KiB  
Article
Evaluation of a Non-Enzymatic Electrochemical Sensor Based on Co(OH)2-Functionalized Carbon Nanotubes for Glucose Detection
by Diego Bolaños-Mendez, Lenys Fernández, Rafael Uribe, Alisson Cunalata-Castro, Gema González, Isamara Rojas, Andrés Chico-Proano, Alexis Debut, Luis Alberto Celi and Patricio Espinoza-Montero
Sensors 2024, 24(23), 7707; https://doi.org/10.3390/s24237707 - 2 Dec 2024
Viewed by 797
Abstract
This work reports on the assessment of a non-hydrolytic electrochemical sensor for glucose sensing that is developed using functionalized carbon nanotubes (fCNTs)/Co(OH)2. The morphology of the nanocomposite was investigated by scanning electron microscopy, which revealed that the CNTs interacted with Co(OH) [...] Read more.
This work reports on the assessment of a non-hydrolytic electrochemical sensor for glucose sensing that is developed using functionalized carbon nanotubes (fCNTs)/Co(OH)2. The morphology of the nanocomposite was investigated by scanning electron microscopy, which revealed that the CNTs interacted with Co(OH)2. This content formed a nanocomposite that improved the electrochemical characterizations of the electrode, including the electrochemical active surface area and capacitance, thus improving sensitivity to glucose. In the electrochemical characterization by cyclic voltammetry and chronoamperometry, the increase in catalytic activity by Co(OH)2 improved the stability and reproducibility of the glucose sensor without the use of enzymes, and its concentration range was between 50 and 700 μmol L−1. The sensor exhibited good linearity towards glucose with LOD value of 43.200 µmol L−1, which proved that the Co(OH)2-fCNTs composite is judicious for constructing cost effective and feasible sensor for glucose detection. Full article
(This article belongs to the Special Issue Nanomaterials for Sensor Applications)
Show Figures

Figure 1

17 pages, 4964 KiB  
Article
Laser-Induced Graphene Decorated with MOF-Derived NiCo-LDH for Highly Sensitive Non-Enzymatic Glucose Sensor
by Longxiao Li, Yufei Han, Yuzhe Zhang, Weijia Wu, Wei Du, Guojun Wen and Siyi Cheng
Molecules 2024, 29(23), 5662; https://doi.org/10.3390/molecules29235662 - 29 Nov 2024
Viewed by 659
Abstract
Designing and fabricating a highly sensitive non-enzymatic glucose sensor is crucial for the early detection and management of diabetes. Meanwhile, the development of innovative electrode substrates has become a key focus for addressing the growing demand for constructing flexible sensors. Here, a simple [...] Read more.
Designing and fabricating a highly sensitive non-enzymatic glucose sensor is crucial for the early detection and management of diabetes. Meanwhile, the development of innovative electrode substrates has become a key focus for addressing the growing demand for constructing flexible sensors. Here, a simple one-step laser engraving method is applied for preparing laser-induced graphene (LIG) on polyimide (PI) film, which serves as the sensor substrate. NiCo-layered double hydroxides (NiCo-LDH) are synthesized on LIG as a precursor, utilizing the zeolitic imidazolate framework (ZIF-67), and then reacted with Ni(NO3)2 via solvent-thermal methods. The sensitivity of the non-enzymatic electrochemical glucose sensor is significantly improved by employing NiCo-LDH/LIG as the sensing material. The porous and interconnected structure of NiCo-LDH, derived from ZIF-67, enhances the accessibility of electrochemically active sites, while the incorporation of LIG ensures exceptional conductivity. The combination of NiCo-LDH with LIG enables efficient electron transport, leading to an increased electrochemically active surface area and enhanced catalytic efficiency. The fabricated electrode achieves a low glucose detection limit of 0.437 μM and demonstrates a high sensitivity of 1141.2 and 631.1 μA mM−2 cm−2 within the linear ranges of 0–770 μM and 770–1970 μM, respectively. Furthermore, the NiCo-LDH/LIG glucose sensor demonstrates superior reliability and little impact from other substances. A flexible integrated LIG-based non-enzymatic glucose sensor has been developed, demonstrating high sensitivity and suggesting a promising application for LIG-based chemical sensors. Full article
Show Figures

Graphical abstract

15 pages, 6145 KiB  
Article
Hierarchical Nanostructured Copper by Dealloying MnCu Alloy Ribbon for High-Performance Glucose Sensing
by Jinyi Wang, Bowen Fan, Jiana Song, Chen Chen, Yuan Ji and Jincheng Yu
Crystals 2024, 14(12), 1024; https://doi.org/10.3390/cryst14121024 - 26 Nov 2024
Viewed by 616
Abstract
Electrochemical glucose sensing is vital for biomedical applications, particularly in diabetes management and continuous health monitoring. Among electrochemical sensors, non-enzyme-based sensors offer advantages such as cost-effectiveness, robust anti-interference capabilities, and environmental stability compared to enzyme-based ones. This study focuses on the development of [...] Read more.
Electrochemical glucose sensing is vital for biomedical applications, particularly in diabetes management and continuous health monitoring. Among electrochemical sensors, non-enzyme-based sensors offer advantages such as cost-effectiveness, robust anti-interference capabilities, and environmental stability compared to enzyme-based ones. This study focuses on the development of non-enzyme-based glucose sensors utilizing hierarchical nanostructured copper (Cu) electrodes. The electrodes are fabricated by selectively dissolving components from an alloy precursor. Specifically, MnCu alloy ribbons prepared by melt rolling were used due to their favorable properties, and electrochemical dealloying was employed to create nanostructured Cu with high electrocatalytic activity for glucose oxidation. Three-dimensional bicontinuous nanoporous copper with an average pore size of 34 nm~86 nm and an average ligament size range of 45 nm~125 nm can be obtained. The optimized hierarchical nanostructured Cu electrodes exhibited excellent performance, including high sensitivity (0.652 mA·mM−1·cm−2), a wide linear detection range (0.001 mM to 1.5 mM), a low detection limit (0.73 μM), and a rapid response time. This work demonstrates the potential of nanostructured Cu in the advancement of non-enzyme-based glucose sensors. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

16 pages, 5590 KiB  
Article
Coral-like Ti3C2Tx/PANI Binary Nanocomposite Wearable Enzyme Electrochemical Biosensor for Continuous Monitoring of Human Sweat Glucose
by Jinhao Wang, Lijuan Chen, Fan Chen, Xinyang Lu, Xuanye Li, Yu Bao, Wei Wang, Dongxue Han and Li Niu
Chemosensors 2024, 12(11), 222; https://doi.org/10.3390/chemosensors12110222 - 25 Oct 2024
Viewed by 1108
Abstract
With the continuous advancement of contemporary medical technology, an increasing number of individuals are inclined towards self-monitoring their physiological health information, specifically focusing on monitoring blood glucose levels. However, as an emerging flexible sensing technique, continuous and non-invasive monitoring of glucose in sweat [...] Read more.
With the continuous advancement of contemporary medical technology, an increasing number of individuals are inclined towards self-monitoring their physiological health information, specifically focusing on monitoring blood glucose levels. However, as an emerging flexible sensing technique, continuous and non-invasive monitoring of glucose in sweat offers a promising alternative to conventional invasive blood tests for measuring blood glucose levels, reducing the risk of infection associated with blood testing. In this study, we fabricated a flexible and wearable electrochemical enzyme sensor based on a two-dimensional Ti3C2Tx MXene nanosheets and coral-like polyaniline (PANI) binary nanocomposite (denoted as Ti3C2Tx/PANI) for continuous, non-invasive, real-time monitoring of sweat glucose. The exceptional conductivity of Ti3C2Tx MXene nanosheets, in conjunction with the mutual doping effect facilitated by coral-like PANI, significantly enhances electrical conductivity and specific surface areas of Ti3C2Tx/PANI. Consequently, the fabricated sensor exhibits remarkable sensitivity (25.16 μA·mM−1·cm−2), a low detection limit of glucose (26 μM), and an extensive detection range (0.05 mM ~ 1.0 mM) in sweat. Due to the dense coral-like structure of Ti3C2Tx/PANI binary nanocomposite, a larger effective area is obtained to offer more active sites for enzyme immobilization and enhancing enzymatic catalytic activity. Moreover, the sensor demonstrates exceptional mechanical performance, enabling a 60° bend in practical applications, thus satisfying the rigorous demands of human sweat detection applications. The results obtained from continuous 60 min in vitro monitoring of sweat glucose levels demonstrate a robust correlation with the data of blood glucose levels collected by a commercial glucose meter. Furthermore, the fabricated Ti3C2Tx/PANI/GOx sensor demonstrated agreement with HPLC findings regarding the actual concentration of added glucose. This study presents an efficient and practical approach for the development of a highly reliable MXene glucose biosensor, enabling stable and long-term monitoring of glucose levels in human sweat. Full article
Show Figures

Figure 1

18 pages, 5507 KiB  
Article
Microfibrous Carbon Paper Decorated with High-Density Manganese Dioxide Nanorods: An Electrochemical Nonenzymatic Platform of Glucose Sensing
by Khawtar Hasan Ahmed and Mohamed Mohamedi
Sensors 2024, 24(18), 5864; https://doi.org/10.3390/s24185864 - 10 Sep 2024
Viewed by 955
Abstract
Nanorod structures exhibit a high surface-to-volume ratio, enhancing the accessibility of electrolyte ions to the electrode surface and providing an abundance of active sites for improved electrochemical sensing performance. In this study, tetragonal α-MnO2 with a large K+-embedded tunnel structure, [...] Read more.
Nanorod structures exhibit a high surface-to-volume ratio, enhancing the accessibility of electrolyte ions to the electrode surface and providing an abundance of active sites for improved electrochemical sensing performance. In this study, tetragonal α-MnO2 with a large K+-embedded tunnel structure, directly grown on microfibrous carbon paper to form densely packed nanorod arrays, is investigated as an electrocatalytic material for non-enzymatic glucose sensing. The MnO2 nanorods electrode demonstrates outstanding catalytic activity for glucose oxidation, showcasing a high sensitivity of 143.82 µA cm−2 mM−1 within the linear range from 0.01 to 15 mM, with a limit of detection (LOD) of 0.282 mM specifically for glucose molecules. Importantly, the MnO2 nanorods electrode exhibits excellent selectivity towards glucose over ascorbic acid and uric acid, which is crucial for accurate glucose detection in complex samples. For comparison, a gold electrode shows a lower sensitivity of 52.48 µA cm−2 mM−1 within a linear range from 1 to 10 mM. These findings underscore the superior performance of the MnO2 nanorods electrode in both sensitivity and selectivity, offering significant potential for advancing electrochemical sensors and bioanalytical techniques for glucose monitoring in physiological and clinical settings. Full article
(This article belongs to the Special Issue Recent Innovations in Electrochemical Biosensors)
Show Figures

Figure 1

13 pages, 2830 KiB  
Article
A Biocompatible, Highly Sensitive, and Non-Enzymatic Glucose Electrochemical Sensor Based on a Copper-Cysteamine (Cu-Cy)/Chitosan-Modified Electrode
by Huan Chen, Tingting Gu, Longyang Lv, Xing Chen, Qifeng Lu, Amer Kotb and Wei Chen
Nanomaterials 2024, 14(17), 1430; https://doi.org/10.3390/nano14171430 - 31 Aug 2024
Viewed by 1460
Abstract
A biocompatible, highly sensitive, and enzyme-free glucose electrochemical sensor was developed based on a copper-cysteamine (Cu-Cy)-modified electrode. The catalytically active biocompatible material Cu-Cy was immobilized on the electrode surface by the natural polymer chitosan (CTS). The electrochemical characterization and glucose response of the [...] Read more.
A biocompatible, highly sensitive, and enzyme-free glucose electrochemical sensor was developed based on a copper-cysteamine (Cu-Cy)-modified electrode. The catalytically active biocompatible material Cu-Cy was immobilized on the electrode surface by the natural polymer chitosan (CTS). The electrochemical characterization and glucose response of the Cu-Cy/CTS/glassy carbon electrode (GCE) were investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and constant potential amperometry. The significant electrocatalytic activity of Cu-Cy to the oxidation of glucose in an alkaline environment was revealed. Several crucial parameters, including the number of scanning cycles for electrode activation, applied potential, and the contents of Cu-Cy and chitosan, were investigated to understand their impact on the sensor’s response. The proposed sensing platform exhibited linear ranges of 2.7 μM to 1.3 mM and 1.3 mM to 7.7 mM for glucose detection, coupled with high sensitivity (588.28 and 124.42 μA·mM−1·cm−2), and commendable selectivity and stability. Moreover, a Cu-Cy/CTS-modified screen-printed electrode (SPE) was further developed for portable direct detection of glucose in real samples. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

33 pages, 10474 KiB  
Review
A Review on the Advances in Nanomaterials for Electrochemical Non-Enzymatic Glucose Sensors Working in Physiological Conditions
by Velia Osuna, Eider Pedro Aparicio Martínez, Rocio B. Dominguez and Alejandro Vega Rios
Chemosensors 2024, 12(8), 159; https://doi.org/10.3390/chemosensors12080159 - 8 Aug 2024
Cited by 1 | Viewed by 1788
Abstract
Although an enzymatic electrochemical biosensor is a major keystone in Diabetes Mellitus management, its replacement with a low-cost and stable non-enzymatic glucose sensor (NEGS) is of high interest to scientific and industrial fields. However, most NEGS for direct glucose electrooxidation (DGE) must be [...] Read more.
Although an enzymatic electrochemical biosensor is a major keystone in Diabetes Mellitus management, its replacement with a low-cost and stable non-enzymatic glucose sensor (NEGS) is of high interest to scientific and industrial fields. However, most NEGS for direct glucose electrooxidation (DGE) must be performed under extreme alkaline conditions, implying additional pretreatments before detection and a limited application for on-body, real-time monitoring. Thus, research on DGE in physiological conditions is fundamental to successfully translating the current NEGS into clinical applications. In physiological conditions, drawbacks such as low current, low selectivity, and poisoning appear due to the reduction of OH ions in neutral electrolytes and the presence of chloride ions in biofluids. Therefore, an increasing number of nanomaterials based on Pt, Au, and their nanocomposites have been proposed to improve the electrochemical performance. Additionally, transition metals such as Cu, Pd, Ni, or Co combined with high surface area supports have shown promising results in increasing catalytic sites for DGE. The molecular interaction of phenylboronic acid with glucose has also been demonstrated in neutral conditions. Overall, the present review summarizes the current strategies for DGE in physiological conditions and highlights the challenges still faced for further development of functional glucose NEGS. Full article
Show Figures

Graphical abstract

15 pages, 2069 KiB  
Article
Batch-Injection Amperometric Determination of Glucose Using a NiFe2O4/Carbon Nanotube Composite Enzymeless Sensor
by Amanda B. Nascimento, Lucas V. de Faria, Tiago A. Matias, Osmando F. Lopes and Rodrigo A. A. Muñoz
Chemosensors 2024, 12(6), 112; https://doi.org/10.3390/chemosensors12060112 - 16 Jun 2024
Cited by 2 | Viewed by 2010
Abstract
The development of sensitive and selective analytical devices for monitoring glucose levels (GLU) in biological fluids is extremely important for clinical diagnostics. In this work, we produced a new composite based on NiFe2O4 and multi-walled carbon nanotubes (MWCNT), called NiFe [...] Read more.
The development of sensitive and selective analytical devices for monitoring glucose levels (GLU) in biological fluids is extremely important for clinical diagnostics. In this work, we produced a new composite based on NiFe2O4 and multi-walled carbon nanotubes (MWCNT), called NiFe2O4@MWCNT, to be applied as a non-enzymatic amperometric sensor for GLU. Both NiFe2O4 and NiFe2O4@MWCNT composites were properly characterized by XRD, SEM, FTIR, and Raman spectroscopy, which confirmed that the composite was successfully prepared. A glassy-carbon electrode (GCE) modified with NiFe2O4@MWCNT was investigated by cyclic voltammetry and applied for the amperometric GLU detection using batch-injection analysis (BIA). A linear working range between 50 and 600 µmol L−1 GLU with a significant increase in sensitivity (3-fold) in comparison with MWCNT/GCE was verified, with a detection limit of 36 µmol L−1. Inter-electrode measurements (n = 4, RSD = 10%) indicated that the sensor fabrication is reproducible. Furthermore, the proposed non-enzymatic sensor was selective even in the presence of other biomarkers found in urine. When applied to synthetic urine samples, recovery levels between 84 and 95% confirmed analytical accuracy and the absence of sample matrix effect. Importantly, the developed approach is simple (free of biological modifiers), fast (77 injections per hour), and practical (high-performance tool), which are suitable features for routine analyses. Full article
Show Figures

Graphical abstract

14 pages, 5581 KiB  
Article
Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance
by Nebras Sobahi, Md. Mottahir Alam, Mohd Imran, Mohammad Ehtisham Khan, Akbar Mohammad, Taeho Yoon, Ibrahim M. Mehedi, Mohammad A. Hussain, Mohammed J. Abdulaal and Ahmad A. Jiman
Molecules 2024, 29(11), 2439; https://doi.org/10.3390/molecules29112439 - 22 May 2024
Cited by 1 | Viewed by 1253
Abstract
The measurement of glucose concentration is a fundamental daily care for diabetes patients, and therefore, its detection with accuracy is of prime importance in the field of health care. In this study, the fabrication of an electrochemical sensor for glucose sensing was successfully [...] Read more.
The measurement of glucose concentration is a fundamental daily care for diabetes patients, and therefore, its detection with accuracy is of prime importance in the field of health care. In this study, the fabrication of an electrochemical sensor for glucose sensing was successfully designed. The electrode material was fabricated using polyaniline and systematically characterized using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV-visible spectroscopy. The polyaniline nanofiber-modified electrode showed excellent detection ability for glucose with a linear range of 10 μM to 1 mM and a detection limit of 10.6 μM. The stability of the same electrode was tested for 7 days. The electrode shows high sensitivity for glucose detection in the presence of interferences. The polyaniline-modified electrode does not affect the presence of interferences and has a low detection limit. It is also cost-effective and does not require complex sample preparation steps. This makes it a potential tool for glucose detection in pharmacy and medical diagnostics. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

14 pages, 3260 KiB  
Article
Optimized Copper-Based Microfeathers for Glucose Detection
by Carlota Guati, Lucía Gómez-Coma, Marcos Fallanza and Inmaculada Ortiz
Biosensors 2023, 13(12), 1032; https://doi.org/10.3390/bios13121032 - 15 Dec 2023
Cited by 1 | Viewed by 2145
Abstract
Diabetes is expected to rise substantially by 2045, prompting extensive research into accessible glucose electrochemical sensors, especially those based on non-enzymatic materials. In this context, advancing the knowledge of stable metal-based compounds as alternatives to non-enzymatic sensors becomes a scientific challenge. Nonetheless, these [...] Read more.
Diabetes is expected to rise substantially by 2045, prompting extensive research into accessible glucose electrochemical sensors, especially those based on non-enzymatic materials. In this context, advancing the knowledge of stable metal-based compounds as alternatives to non-enzymatic sensors becomes a scientific challenge. Nonetheless, these materials have encountered difficulties in maintaining stable responses under physiological conditions. This work aims to advance knowledge related to the synthesis and characterization of copper-based electrodes for glucose detection. The microelectrode presented here exhibits a wide linear range and a sensitivity of 1009 µA∙cm−2∙mM−1, overperfoming the results reported in literature so far. This electrode material has also demonstrated outstanding results in terms of reproducibility, repeatability, and stability, thereby meeting ISO 15197:2015 standards. Our study guides future research on next-generation sensors that combine copper with other materials to enhance activity in neutral media. Full article
Show Figures

Graphical abstract

32 pages, 6836 KiB  
Review
Recent Progress in the Application of Palladium Nanoparticles: A Review
by Marwa Alaqarbeh, Syed Farooq Adil, Tamara Ghrear, Mujeeb Khan, Mohammed Bouachrine and Abdulrahman Al-Warthan
Catalysts 2023, 13(10), 1343; https://doi.org/10.3390/catal13101343 - 4 Oct 2023
Cited by 13 | Viewed by 4937
Abstract
Palladium (Pd), a noble metal, has unique properties for C-C bond formation in reactions such as the Suzuki and Heck reactions. Besides Pd-based complexes, Pd NPs have also attracted significant attention for applications such as fuel cells, hydrogen storage, and sensors for gases [...] Read more.
Palladium (Pd), a noble metal, has unique properties for C-C bond formation in reactions such as the Suzuki and Heck reactions. Besides Pd-based complexes, Pd NPs have also attracted significant attention for applications such as fuel cells, hydrogen storage, and sensors for gases such as H2 and non-enzymatic glucose, including catalysis. Additionally, Pd NPs are catalysts in environmental treatment to abstract organic and heavy-metal pollutants such as Cr (VI) by converting them to Cr(III). In terms of biological activity, Pd NPs were found to be active against Staphylococcus aureus and Escherichia coli, where 99.99% of bacteria were destroyed, while PVP-Pd NPs displayed anticancer activity against human breast cancer MCF7. Hence, in this review, we attempted to cover recent progress in the various applications of Pd NPs with emphasis on their application as sensors and catalysts for energy-related and other applications. Full article
Show Figures

Figure 1

19 pages, 1534 KiB  
Review
Exploring Copper Oxide and Copper Sulfide for Non-Enzymatic Glucose Sensors: Current Progress and Future Directions
by Nonkululeko Miya, Lerato F. Eugeni Machogo-Phao and Bulelwa Ntsendwana
Micromachines 2023, 14(10), 1849; https://doi.org/10.3390/mi14101849 - 27 Sep 2023
Cited by 6 | Viewed by 2165
Abstract
Millions of people worldwide are affected by diabetes, a chronic disease that continuously grows due to abnormal glucose concentration levels present in the blood. Monitoring blood glucose concentrations is therefore an essential diabetes indicator to aid in the management of the disease. Enzymatic [...] Read more.
Millions of people worldwide are affected by diabetes, a chronic disease that continuously grows due to abnormal glucose concentration levels present in the blood. Monitoring blood glucose concentrations is therefore an essential diabetes indicator to aid in the management of the disease. Enzymatic electrochemical glucose sensors presently account for the bulk of glucose sensors on the market. However, their disadvantages are that they are expensive and dependent on environmental conditions, hence affecting their performance and sensitivity. To meet the increasing demand, non-enzymatic glucose sensors based on chemically modified electrodes for the direct electrocatalytic oxidation of glucose are a good alternative to the costly enzymatic-based sensors currently on the market, and the research thereof continues to grow. Nanotechnology-based biosensors have been explored for their electronic and mechanical properties, resulting in enhanced biological signaling through the direct oxidation of glucose. Copper oxide and copper sulfide exhibit attractive attributes for sensor applications, due to their non-toxic nature, abundance, and unique properties. Thus, in this review, copper oxide and copper sulfide-based materials are evaluated based on their chemical structure, morphology, and fast electron mobility as suitable electrode materials for non-enzymatic glucose sensors. The review highlights the present challenges of non-enzymatic glucose sensors that have limited their deployment into the market. Full article
(This article belongs to the Special Issue Nanotechnology for Electrochemistry Applications)
Show Figures

Figure 1

20 pages, 5895 KiB  
Article
Fabrications of the Flexible Non-Enzymatic Glucose Sensors Using Au-CuO-rGO and Au-CuO-rGO-MWCNTs Nanocomposites as Carriers
by Shu-Han Liao, Kai-Yi Shiau, Fang-Hsing Wang and Cheng-Fu Yang
Sensors 2023, 23(19), 8029; https://doi.org/10.3390/s23198029 - 22 Sep 2023
Cited by 5 | Viewed by 1595
Abstract
A flexible, non-enzymatic glucose sensor was developed and tested on a polyethylene terephthalate (PET) substrate. The sensor’s design involved printing Ag (silver) as the electrode and utilizing mixtures of either gold–copper oxide-modified reduced graphene oxide (Au-CuO-rGO) or gold–copper oxide-modified reduced graphene oxide-multi-walled carbon [...] Read more.
A flexible, non-enzymatic glucose sensor was developed and tested on a polyethylene terephthalate (PET) substrate. The sensor’s design involved printing Ag (silver) as the electrode and utilizing mixtures of either gold–copper oxide-modified reduced graphene oxide (Au-CuO-rGO) or gold–copper oxide-modified reduced graphene oxide-multi-walled carbon nanotubes (Au-CuO-rGO-MWCNTs) as the carrier materials. A one-pot synthesis method was employed to create a nanocomposite material, consisting of Au-CuO-rGO mixtures, which was then printed onto pre-prepared flexible electrodes. The impact of different weight ratios of MWCNTs (0~75 wt%) as a substitute for rGO was also investigated on the sensing characteristics of Au-CuO-rGO-MWCNTs glucose sensors. The fabricated electrodes underwent various material analyses, and their sensing properties for glucose in a glucose solution were measured using linear sweep voltammetry (LSV). The LSV measurement results showed that increasing the proportion of MWCNTs improved the sensor’s sensitivity for detecting low concentrations of glucose. However, it also led to a significant decrease in the upper detection limit for high-glucose concentrations. Remarkably, the research findings revealed that the electrode containing 60 wt% MWCNTs demonstrated excellent sensitivity and stability in detecting low concentrations of glucose. At the lowest concentration of 0.1 μM glucose, the nanocomposites with 75 wt% MWCNTs showed the highest oxidation peak current, approximately 5.9 μA. On the other hand, the electrode without addition of MWCNTs displayed the highest detection limit (approximately 1 mM) and an oxidation peak current of about 8.1 μA at 1 mM of glucose concentration. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Sensing)
Show Figures

Figure 1

Back to TopTop