Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,116)

Search Parameters:
Keywords = oak

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 17890 KiB  
Article
Effects of Land Cover Changes on Shallow Landslide Susceptibility Using SlideforMAP Software (Mt. Nerone, Italy)
by Ilenia Murgia, Alessandro Vitali, Filippo Giadrossich, Enrico Tonelli, Lorena Baglioni, Denis Cohen, Massimiliano Schwarz and Carlo Urbinati
Land 2024, 13(10), 1575; https://doi.org/10.3390/land13101575 - 27 Sep 2024
Abstract
Land cover changes in mountainous areas due to silvo-pastoral abandonment can affect soil stability, especially on steep slopes. In addition, the increase in rainfall intensity in recent decades requires re-assessing landslide susceptibility and vegetation management for soil protection. This study was carried out [...] Read more.
Land cover changes in mountainous areas due to silvo-pastoral abandonment can affect soil stability, especially on steep slopes. In addition, the increase in rainfall intensity in recent decades requires re-assessing landslide susceptibility and vegetation management for soil protection. This study was carried out using the software SlideforMAP in the Mt. Nerone massif (central Italy) to assess (i) the effects of land cover changes on slope stability over the past 70 years (1954–2021) and (ii) the role of actual vegetation cover during intense rainfall events. The study area has undergone a significant change in vegetation cover over the years, with a reduction in mainly pastures (−80%) and croplands (−22%) land cover classes in favor of broadleaf forests (+64%). We simulated twelve scenarios, combining land cover conditions and rainfall intensities, and analyzed the landslide failure probability results. Vegetation cover significantly increased the slope stability, up to three to four times compared to the unvegetated areas (29%, 68%, and 89%, respectively, in the no cover, 1954, and 2021 scenarios). The current land cover provided protection against landslide susceptibility, even during extreme rainfall events, for different return periods. The 30-year return period was a critical condition for a significant stability reduction. In addition, forest species provide different mitigation effects due to their root system features. The results showed that species with deep root systems, such as oaks, provide more effective slope stability than other species, such as pines. This study helps to quantify the mitigation effects of vegetation cover and suggests that physically based probabilistic models can be used at the regional scale to detect the areas prone to failure and the triggering of rainfall-induced shallow landslides. This approach can be important in land planning and management to mitigate risks in mountainous regions. Full article
17 pages, 3975 KiB  
Article
Identification of Genomic Regions Associated with Powdery Mildew Resistance in Watermelon through Genome-Wide Association Study
by Oak-Jin Lee, Koeun Han, Hye-Eun Lee, Hyo-Bong Jeong, Nari Yu and Wonbyoung Chae
Plants 2024, 13(19), 2708; https://doi.org/10.3390/plants13192708 - 27 Sep 2024
Abstract
Watermelon (Citrullus spp.) is an economically important crop globally, but it is susceptible to various diseases, including powdery mildew. Previous studies have identified genetic factors associated with powdery mildew resistance. However, further research using diverse genetic approaches is necessary to elucidate the [...] Read more.
Watermelon (Citrullus spp.) is an economically important crop globally, but it is susceptible to various diseases, including powdery mildew. Previous studies have identified genetic factors associated with powdery mildew resistance. However, further research using diverse genetic approaches is necessary to elucidate the underlying genetic mechanisms of this resistance. In this study, the germplasm collection comprising highly homozygous inbred lines was employed, which enabled the accumulation of consistent data and improved the reliability of the genome-wide association study (GWAS) findings. Our investigation identified two significant single-nucleotide polymorphisms (SNPs), pm2.1 and pm3.1, which were strongly associated with disease resistance. Moreover, several candidate genes were revealed within the linkage disequilibrium (LD) blocks surrounding the significant SNPs. In conclusion, the identification of significant SNPs and their additive effects, combined with the discovery of relevant candidate genes, expanded our understanding of the genetic basis of disease resistance and can pave the way for the development of more resilient watermelon cultivars through marker-assisted selection. Full article
Show Figures

Figure 1

23 pages, 35711 KiB  
Article
EELS-DARTS: A Planetary Snake Robot Simulator for Closed-Loop Autonomy Development
by Tristan D. Hasseler, Carl Leake, Aaron Gaut, Asher Elmquist, Robert Michael Swan, Rob Royce, Bryson Jones, Ben Hockman, Michael Paton, Guglielmo Daddi, Masahiro Ono, Rohan Thakker and Abhinandan Jain
Aerospace 2024, 11(10), 795; https://doi.org/10.3390/aerospace11100795 - 27 Sep 2024
Abstract
EELS-DARTS is a simulator designed for autonomy development and analysis of large degree of freedom snake-like robots for space exploration. A detailed description of the EELS-DARTS simulator design is presented. This includes the versatile underlying multibody dynamics representation used to model a variety [...] Read more.
EELS-DARTS is a simulator designed for autonomy development and analysis of large degree of freedom snake-like robots for space exploration. A detailed description of the EELS-DARTS simulator design is presented. This includes the versatile underlying multibody dynamics representation used to model a variety of distinct snake robot configurations as well as an anisotropic friction model for describing screw–ice interaction. Additional simulation components such as graphics, importable terrain, joint controllers, and perception are discussed. Methods for setting up and running simulations are discussed, including how a snake robot’s autonomy stack closes the commands and information loop with the simulation via ROS. Multiple use cases are described to illustrate how the simulation is used to aid and inform robot design, autonomy development, and field test use throughout the project’s life cycle. A validation analysis of the screw–ice contact model is performed for the surface mobility case. Lastly, an overview of simulation use for planning operations during a recent field test to the Athabasca Glacier in Canada is discussed. Full article
(This article belongs to the Special Issue Planetary Exploration)
Show Figures

Figure 1

23 pages, 877 KiB  
Article
Comprehensive Analysis of Teran Red Wine Aroma and Sensory Profiles: Impacts of Maceration Duration, Pre-Fermentation Heating Treatment, and Barrel Aging
by Sara Rossi, Ena Bestulić, Fumica Orbanić, Ivana Horvat, Igor Lukić, Anita Silvana Ilak Peršurić, Marijan Bubola, Tomislav Plavša and Sanja Radeka
Appl. Sci. 2024, 14(19), 8729; https://doi.org/10.3390/app14198729 - 27 Sep 2024
Abstract
This study investigates the effect of prolonged maceration, pre-fermentation heating, and barrel aging on the volatile aroma profile and sensory characteristics of Teran wine. The vinification processes included a control treatment (7-day maceration, TM7-Y; Y—young wine), 10-day maceration (TM10-Y), 21-day post-fermentation maceration (TM21-Y), [...] Read more.
This study investigates the effect of prolonged maceration, pre-fermentation heating, and barrel aging on the volatile aroma profile and sensory characteristics of Teran wine. The vinification processes included a control treatment (7-day maceration, TM7-Y; Y—young wine), 10-day maceration (TM10-Y), 21-day post-fermentation maceration (TM21-Y), and 48-h pre-fermentation heating at 45 °C followed by 8-day maceration (TPHT-Y). All wines were then aged in oak barrels for six months, resulting in TM7-A, TM10-A, TM21-A, and TPHT-A wines (A—aged wine). Volatile compounds were extracted using headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS), while sensory profiles were evaluated using quantitative descriptive analysis (QDA). TPHT-Y and TM21-Y treatments reduced several groups of free volatile compounds while enhancing sensory properties, with TM21-Y wines notably exhibiting pronounced dried fruit notes, likely due to high β-damascenone concentrations. Conversely, TM10-Y and TM7-Y treatments resulted in significantly higher concentrations of the most volatile aroma compounds. Aging in oak barrels significantly increased the levels of particular free volatile compounds like C13-norisoprenoids, volatile phenols, furans, and lactones. It also enhanced sensory quality, with fruity aromas prominent across all treatments, and TM21-A and TPHT-A wines showing strong dried fruit, jam, and liqueur notes. This study offers valuable insights into tailoring wine aromas and sensory attributes through specific vinification techniques, contributing to a more refined approach to optimizing wine production. In conclusion, the findings highlight the importance of maceration and aging techniques in developing complex and desirable wine profiles, offering practical guidance for improving Teran wine quality. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

17 pages, 4228 KiB  
Brief Report
Full-Length ASFV B646L Gene Sequencing by Nanopore Offers a Simple and Rapid Approach for Identifying ASFV Genotypes
by Vivian O’Donnell, Edward Spinard, Lizhe Xu, Amy Berninger, Roger W. Barrette, Douglas P. Gladue and Bonto Faburay
Viruses 2024, 16(10), 1522; https://doi.org/10.3390/v16101522 - 26 Sep 2024
Abstract
African swine fever (ASF) is an acute, highly hemorrhagic viral disease in domestic pigs and wild boars. The disease is caused by African swine fever virus, a double stranded DNA virus of the Asfarviridae family. ASF can be classified into 25 different genotypes, [...] Read more.
African swine fever (ASF) is an acute, highly hemorrhagic viral disease in domestic pigs and wild boars. The disease is caused by African swine fever virus, a double stranded DNA virus of the Asfarviridae family. ASF can be classified into 25 different genotypes, based on a 478 bp fragment corresponding to the C-terminal sequence of the B646L gene, which is highly conserved among strains and encodes the major capsid protein p72. The C-terminal end of p72 has been used as a PCR target for quick diagnosis of ASF, and its characterization remains the first approach for epidemiological tracking and identification of the origin of ASF in outbreak investigations. Recently, a new classification of ASF, based on the complete sequence of p72, reduced the 25 genotypes into only six genotypes; therefore, it is necessary to have the capability to sequence the full-length B646L gene (p72) in a rapid manner for quick genotype characterization. Here, we evaluate the use of an amplicon approach targeting the whole B646L gene, coupled with nanopore sequencing in a multiplex format using Flongle flow cells, as an easy, low cost, and rapid method for the characterization and genotyping of ASF in real-time. Full article
Show Figures

Figure 1

16 pages, 2735 KiB  
Article
Aluminum Phosphate Nanoplates Synthesized via Green Method Using Cork Oak Somatic Embryo-Derived Phytates
by Beatriz Pintos and Arancha Gomez-Garay
Appl. Sci. 2024, 14(19), 8681; https://doi.org/10.3390/app14198681 - 26 Sep 2024
Abstract
This study presents a novel green synthesis method for aluminum phosphate (AlPO4) nanoplates using extracts from Quercus suber somatic embryos. Traditionally, metallic nanoparticles are synthesized using harmful chemical reagents and solvents, but our approach leverages bioactive compounds, such as phytic acid [...] Read more.
This study presents a novel green synthesis method for aluminum phosphate (AlPO4) nanoplates using extracts from Quercus suber somatic embryos. Traditionally, metallic nanoparticles are synthesized using harmful chemical reagents and solvents, but our approach leverages bioactive compounds, such as phytic acid (IP6) from plant extracts, offering a more sustainable alternative. We observed a high phosphate content of 23.6 μMol PO43−/mg dry weight (DW) in the extracts, which is significantly higher than in other Quercus species. Characterization through UV–VIS spectroscopy and XRD confirmed the formation of complex crystal nanoplates, where anisotropic aluminum phosphate with a triclinic crystal structure coexists with monoclinic structures, both forms of aluminum phosphate tridymite. Electron microscopy (TEM and SEM) revealed the hierarchical organization of these nanoplates, distinguishing them from the more commonly observed spherical nanoparticles. Fourier-transform infrared (FTIR) spectroscopy further validated the incorporation of phytic acid into the nanoplate structure. This innovative method not only advances sustainable nanomaterial synthesis but also demonstrates the potential for unique optical and structural properties in aluminum phosphate nanoplates, paving the way for future applications in specialized fields. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
Show Figures

Figure 1

13 pages, 1703 KiB  
Article
Untargeted Metabolomic Biomarker Discovery for the Detection of Ectopic Pregnancy
by Onur Turkoglu, Ayse Citil, Ceren Katar, Ismail Mert, Robert A. Quinn, Ray O. Bahado-Singh and Stewart F. Graham
Int. J. Mol. Sci. 2024, 25(19), 10333; https://doi.org/10.3390/ijms251910333 - 26 Sep 2024
Abstract
Ectopic pregnancy (EP) is the leading cause of maternal morbidity and mortality in the first trimester. Using an untargeted metabolomic approach, we sought to identify putative plasma biomarkers using tandem liquid chromatography–mass spectrometry for the detection of tubal EP. This case-control study included [...] Read more.
Ectopic pregnancy (EP) is the leading cause of maternal morbidity and mortality in the first trimester. Using an untargeted metabolomic approach, we sought to identify putative plasma biomarkers using tandem liquid chromatography–mass spectrometry for the detection of tubal EP. This case-control study included the prospective recruitment of 50 tubal EP cases and 50 early intrauterine pregnancy controls. To avoid over-fitting, logistic regression models were developed in a randomly selected discovery group (30 cases vs. 30 controls) and validated in the test group (20 cases vs. 20 controls). In total, 585 mass spectral features were detected, of which 221 molecular features were significantly altered in EP plasma (p < 0.05). Molecular networking and metabolite identification was employed using the Global Natural Products Social Molecular Networking (GNPS) database, which identified 97 metabolites at a high confidence level. Top significant metabolites include subclasses of sphingolipids, carnitines, glycerophosphocholines, and tryptophan metabolism. The top regression model, consisting of D-erythro-sphingosine and oleoyl-carnitine, was validated in a test group and achieved an area under receiving operating curve (AUC) (95% CI) = 0.962 (0.910–1) with a sensitivity of 100% and specificity of 95.9%. Metabolite alterations indicate alterations related to inflammation and abnormal placentation in EP. The validation of these metabolite biomarkers in the future could potentially result in improved early diagnosis. Full article
(This article belongs to the Special Issue Metabolomic Profiling in Prenatal Health Research)
Show Figures

Figure 1

23 pages, 2202 KiB  
Article
Managing Trees Species of High Social and Cultural Value: Forest Manager Attitudes towards Pest and Disease Risks to Oak in Britain
by Liz O’Brien, Mariella Marzano, Norman Dandy, Seumas Bates, Gabriel Hemery, Gillian Petrokofsky, Mike Dunn and Jack Forster
Forests 2024, 15(10), 1695; https://doi.org/10.3390/f15101695 - 25 Sep 2024
Abstract
The values of forests have been extensively researched by focusing on general public perspectives with different frameworks used to categorise them. Studies have also explored forest manager values; however, there is limited evidence on the values they associate with specific tree species. Understanding [...] Read more.
The values of forests have been extensively researched by focusing on general public perspectives with different frameworks used to categorise them. Studies have also explored forest manager values; however, there is limited evidence on the values they associate with specific tree species. Understanding more about managers’ values regarding a particular species is important when considering how they make decisions and might respond to tree pests and disease threats. In this study, we explored forest managers’ values regarding oak trees and the effects of a particular pest and disease risk known as Acute Oak Decline on these. This paper outlines the results from interviews with forest managers in England and a survey of private forest managers in Britain to capture the ways in which they value the oak trees they own, manage, or influence. Forest manager types included private owners of single or multiple properties, forestry professionals, businesses, and tenants. The results show that oaks were highly valued by forest managers as an iconic cultural species in the landscape and for their timber. Veteran and ancient oak trees were considered very important, and managers were more likely to spend time and resources attempting to conserve these oaks due to their perceived cultural value. Those who had trees that were suffering from Acute Oak Decline were also more likely to spend resources on them to save the trees or try to reduce the impact of the disease. Gaining a better understanding of forest managers’ attitudes towards protecting species they value is important as it has implications for their decision-making and management behaviours. It can also help to provide relevant bodies with information on how best to develop and communicate guidance and advice on monitoring and reporting disease symptoms, as well as managing oak tree health. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

9 pages, 1844 KiB  
Article
An Improved Sampling and Baiting Method for Phytophthora tropicalis and P. heveae Detection in Macadamia integrifolia
by Christopher M. Ference and Lisa M. Keith
Plants 2024, 13(19), 2687; https://doi.org/10.3390/plants13192687 - 25 Sep 2024
Abstract
Macadamia nuts are, economically, the second most important crop in the state of Hawai’i. A recent decline in yield and acreage has been attributed to insect damage and diseases such as Macadamia Quick Decline (MQD) caused by Phytophthora tropicalis and P. heveae. [...] Read more.
Macadamia nuts are, economically, the second most important crop in the state of Hawai’i. A recent decline in yield and acreage has been attributed to insect damage and diseases such as Macadamia Quick Decline (MQD) caused by Phytophthora tropicalis and P. heveae. To develop an improved methodology for the diagnosis and treatment of MQD, investigations were undertaken to better understand the pathosystem of the disease. These investigations included sampling from multiple locations from sectioned trees utilizing two methods of tissue collection and isolations using two baiting techniques. The collection of tissue from the cambium and phloem of trees after scraping away the bark and in locations of recent or current sap exudation using a narrow diameter steel awl proved to be an efficient means for the molecular detection of the MQD pathogens from infected trees exhibiting MQD symptoms. In addition, a more efficient and cost-effective baiting method using apple puree was developed. Full article
(This article belongs to the Special Issue Novel Methods for Detection and Control Strategies of Phytopathogens)
Show Figures

Figure 1

11 pages, 2117 KiB  
Review
Recycling of Lithium-Ion Batteries via Electrochemical Recovery: A Mini-Review
by Lu Yu, Yaocai Bai and Ilias Belharouak
Batteries 2024, 10(10), 337; https://doi.org/10.3390/batteries10100337 - 24 Sep 2024
Abstract
With the rising demand for lithium-ion batteries (LIBs), it is crucial to develop recycling methods that minimize environmental impacts and ensure resource sustainability. The focus of this short review is on the electrochemical techniques used in LIB recycling, particularly electrochemical leaching and electrodeposition. [...] Read more.
With the rising demand for lithium-ion batteries (LIBs), it is crucial to develop recycling methods that minimize environmental impacts and ensure resource sustainability. The focus of this short review is on the electrochemical techniques used in LIB recycling, particularly electrochemical leaching and electrodeposition. Our summary covers the latest research, highlighting the principles, progress, and challenges tied to these methods. By examining the current state of electrochemical recovery, this review intends to provide guidance for future advancements and enhance LIB recycling efficiency. Full article
(This article belongs to the Special Issue Lithium-Ion Battery Recycling)
Show Figures

Figure 1

14 pages, 4449 KiB  
Brief Report
Evaluation of the Deletion of African Swine Fever Virus E111R Gene from the Georgia Isolate in Virus Replication and Virulence in Domestic Pigs
by Elizabeth Ramirez-Medina, Lauro Velazquez-Salinas, Alyssa Valladares, Amanda Meyers, Leeanna Burton, Ediane Silva, Jason Clark, Manuel V. Borca and Douglas P. Gladue
Viruses 2024, 16(9), 1502; https://doi.org/10.3390/v16091502 - 23 Sep 2024
Abstract
African swine fever virus (ASFV) is the causative agent of an often lethal disease in domestic pigs, African swine fever (ASF). ASF is currently a pandemic disease challenging pig production in Eurasia. While the ASFV genome encodes for over 160 proteins, the function [...] Read more.
African swine fever virus (ASFV) is the causative agent of an often lethal disease in domestic pigs, African swine fever (ASF). ASF is currently a pandemic disease challenging pig production in Eurasia. While the ASFV genome encodes for over 160 proteins, the function of most of them are still not characterized. Among those ASF genes with unknown functions is the E111R gene. It has been recently reported that the deletion of the E111R gene from the genome of the virulent Chinese field isolate SY18 strain produced a reduction of virus virulence when pigs were inoculated at relatively low doses. Conversely, we report here that deletion of the ASFV gene E111R in the Georgia 2010 isolate does not alter the virulence of the parental virus in experimentally inoculated pigs. A recombinant virus lacking the E111R gene, ASFV-G-∆E111R was intramuscularly (IM) inoculated in domestic pigs at a dose of 102 HAD50 of ASFV-G-∆E111R and compared with animals that received a similar dose of virulent ASFV-G. Both, animals inoculated with either the recombinant ASFV-G-∆E111R or the parental virus developed a fatal form of the disease and were euthanized around the 6th–7th day post-inoculation (dpi). Full article
(This article belongs to the Special Issue African Swine Fever Virus 4.0)
Show Figures

Figure 1

13 pages, 10605 KiB  
Article
Surface Reaction-Diffusion-Coupled Simulation of Ni–Fe–Cr Alloy under FLiNaK Molten Salt
by Maehyun Cho, Michael R. Tonks and Kunok Chang
Metals 2024, 14(9), 1088; https://doi.org/10.3390/met14091088 - 23 Sep 2024
Abstract
A molten salt reactor is one of the fourth-generation reactors and is considered to be a feasible replacement for current reactors due to their many advantages. However, there are a number of issues that remain; one of which is the corrosion of the [...] Read more.
A molten salt reactor is one of the fourth-generation reactors and is considered to be a feasible replacement for current reactors due to their many advantages. However, there are a number of issues that remain; one of which is the corrosion of the materials. Corrosion problems in molten salt reactors have been reported since The Molten Salt Reactor Experiment at Oak Ridge National Laboratory in the 1960s. There have been many attempts to mitigate the corrosion problem, but a fundamental solution has not yet been achived. In this study, surface reaction-diffusion-coupled simulations were performed to simulate the corrosion of a Ni–Cr–Fe material, a prototype of Hastelloy N, which is being promoted as a structural material for molten salt reactors in F–Li–Na–K eutectic salts. This surface reaction-diffusion-coupled simulation framework was developed to study which corrosion reactions are dominant in molten salt environment corrosion where a large number of oxidation–reduction reactions exist, the correlation between composition of alloy and corrosion rate, and the effect of Cr depletion on corrosion. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

9 pages, 2436 KiB  
Article
Changes in Cyanobacterial Phytoplankton Communities in Lake-Water Mesocosms Treated with Either Glucose or Hydrogen Peroxide
by David Linz, Charlyn G. Partridge, Michael C. Hassett, Nathan Sienkiewicz, Katie Tyrrell, Aimèe Henderson, Renee Tardani, Jingrang Lu, Alan D. Steinman and Stephen Vesper
Microorganisms 2024, 12(9), 1925; https://doi.org/10.3390/microorganisms12091925 - 22 Sep 2024
Abstract
When cyanobacterial phytoplankton form harmful cyanobacterial blooms (HCBs), the toxins they produce threaten freshwater ecosystems. Hydrogen peroxide is often used to control HCBs, but it is broadly toxic and dangerous to handle. Previously, we demonstrated that glucose addition to lake water could suppress [...] Read more.
When cyanobacterial phytoplankton form harmful cyanobacterial blooms (HCBs), the toxins they produce threaten freshwater ecosystems. Hydrogen peroxide is often used to control HCBs, but it is broadly toxic and dangerous to handle. Previously, we demonstrated that glucose addition to lake water could suppress the abundance of cyanobacteria. In this study, glucose was compared to hydrogen peroxide for the treatment of cyanobacterial phytoplankton communities. The six-week study was conducted in the large mesocosms facility at Grand Valley State University’s Annis Water Resources Institute in Michigan. To 1000 L of Muskegon Lake water, glucose was added at either 150 mg or 30 mg glucose/L. Hydrogen peroxide was added at 3 mg/L to two 1000 L mesocosms. And two mesocosms were left untreated as controls. Triplicate 100 mL samples were collected weekly from each mesocosm, which were then filtered and frozen at −80 °C for 16S rRNA amplicon sequencing. The 16S rRNA amplicon sequencing results revealed that hydrogen peroxide treatment quickly reduced the relative abundance of the cyanobacteria compared to the control mesocosms, but the cyanobacteria population returned over the course of the 6-week study. On the other hand, both glucose concentrations caused a rapid proliferation of multiple low abundance proteobacterial and bacteroidotal taxa resulting in notable increases in taxonomic richness over the duration of the study and reducing the relative abundance of cyanobacteria. Although hydrogen peroxide quickly suppressed the cyanobacteria, the population later returned to near starting levels. The glucose suppressed the cyanobacterial phytoplankton apparently by promoting competitive heterotrophic bacteria. Full article
(This article belongs to the Special Issue Phytoplankton and Environment Interactions)
Show Figures

Figure 1

33 pages, 3669 KiB  
Article
Smoke Emissions and Buoyant Plumes above Prescribed Burns in the Pinelands National Reserve, New Jersey
by Kenneth L. Clark, Michael R. Gallagher, Nicholas Skowronski, Warren E. Heilman, Joseph Charney, Matthew Patterson, Jason Cole, Eric Mueller and Rory Hadden
Fire 2024, 7(9), 330; https://doi.org/10.3390/fire7090330 - 21 Sep 2024
Abstract
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns [...] Read more.
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns influences above-canopy sensible heat flux and turbulent kinetic energy (TKE) in buoyant plumes, affecting the lofting and dispersion of smoke. A more comprehensive understanding of how enhanced energy fluxes and turbulence are related during the passage of flame fronts could improve efforts to mitigate the impacts of smoke emissions. Pre- and post-fire fuel loading measurements taken during 48 operational prescribed burns were used to estimate the combustion completeness factors (CC) and emissions of fine particulates (PM2.5), carbon dioxide (CO2), and carbon monoxide (CO) in pine- and oak-dominated stands in the Pinelands National Reserve of southern New Jersey. During 11 of the prescribed burns, sensible heat flux and turbulence statistics were measured by tower networks above the forest canopy. Fire behavior when fire fronts passed the towers ranged from low-intensity backing fires to high-intensity head fires with some crown torching. Consumption of forest-floor and understory vegetation was a near-linear function of pre-burn loading, and combustion of fine litter on the forest floor was the predominant source of emissions, even during head fires with some crowning activity. Tower measurements indicated that above-canopy sensible heat flux and TKE calculated at 1 min intervals during the passage of fire fronts were strongly influenced by fire behavior. Low-intensity backing fires, regardless of forest type, had weaker enhancement of above-canopy air temperature, vertical and horizontal wind velocities, sensible heat fluxes, and TKE compared to higher-intensity head and flanking fires. Sensible heat flux and TKE in buoyant plumes were unrelated during low-intensity burns but more tightly coupled during higher-intensity burns. The weak coupling during low-intensity backing fires resulted in reduced rates of smoke transport and dispersion, and likely in more prolonged periods of elevated surface concentrations. This research facilitates more accurate estimates of PM2.5, CO, and CO2 emissions from prescribed burns in the Pinelands, and it provides a better understanding of the relationships among fire behavior, sensible heat fluxes and turbulence, and smoke dispersion in pine- and oak-dominated forests. Full article
Show Figures

Figure 1

13 pages, 3348 KiB  
Article
The Emerging Fusarium graminearum NA3 Population Produces High Levels of Mycotoxins in Wheat and Barley
by Nicholas A. Rhoades, Susan P. McCormick, Martha M. Vaughan and Guixia Hao
Toxins 2024, 16(9), 408; https://doi.org/10.3390/toxins16090408 - 20 Sep 2024
Abstract
Fusarium graminearum (Fg) is the primary causal agent of Fusarium head blight (FHB) in wheat, barley, and other small grains in North America and worldwide. FHB results in yield reduction and contaminates grain with mycotoxins that pose threats to human and [...] Read more.
Fusarium graminearum (Fg) is the primary causal agent of Fusarium head blight (FHB) in wheat, barley, and other small grains in North America and worldwide. FHB results in yield reduction and contaminates grain with mycotoxins that pose threats to human and livestock health. Three genetically distinct North American (NA) populations of Fg have been characterized, which are generally associated with differences in their predominant trichothecene chemotype: NA1/15-acetyl-deoxynivalenol (15-ADON), NA2/3-acetyl-deoxynivalenol (3-ADON), and NA3/3α-acetoxy, 7,15-dihydroxy-12,13-epoxytrichothec-9-ene (NX-2). Recent studies found that the NA3 population had significantly less spread on point-inoculated wheat spikes than the NA1 and NA2 populations, and NX toxins are important for Fg spread and initial infection in wheat. In this follow-up study, to compare the effect of the three populations on initial infection and mycotoxin production on different hosts, we dip-inoculated spikes of the moderately resistant wheat cultivar Alsen and the susceptible barley cultivar Voyager using five strains from each population to evaluate disease, trichothecene mycotoxin accumulation, and trichothecene production per unit of fungal biomass. In dip-inoculated wheat spikes, the NA3 population produced significantly more trichothecene per unit of fungal biomass and accumulated higher levels of trichothecene per plant biomass than the NA1 and NA2 populations, regardless of the disease levels caused by the three populations. In contrast to its critical role during wheat infection, NX toxins had no effect on barley infection. In dip-inoculated barley, the NA1 population was more infectious and caused more severe FHB symptoms than the NA2 and NA3 populations; however, the NA3 population produced significantly higher toxin per unit of fungal biomass in infected barley tissues than the NA1 population. This study provides critical information on the emerging NA3 population, which produces high levels of NX toxin and poses a potential food safety concern. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

Back to TopTop