Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = octree

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1281 KiB  
Article
A Flexible Hierarchical Framework for Implicit 3D Characterization of Bionic Devices
by Yunhong Lu, Xiangnan Li and Mingliang Li
Biomimetics 2024, 9(10), 590; https://doi.org/10.3390/biomimetics9100590 - 29 Sep 2024
Viewed by 335
Abstract
In practical applications, integrating three-dimensional models of bionic devices with simulation systems can predict their behavior and performance under various operating conditions, providing a basis for subsequent engineering optimization and improvements. This study proposes a framework for characterizing three-dimensional models of objects, focusing [...] Read more.
In practical applications, integrating three-dimensional models of bionic devices with simulation systems can predict their behavior and performance under various operating conditions, providing a basis for subsequent engineering optimization and improvements. This study proposes a framework for characterizing three-dimensional models of objects, focusing on extracting 3D structures and generating high-quality 3D models. The core concept involves obtaining the density output of the model from multiple images to enable adaptive boundary surface detection. The framework employs a hierarchical octree structure to partition the 3D space based on surface and geometric complexity. This approach includes recursive encoding and decoding of the octree structure and surface geometry, ultimately leading to the reconstruction of the 3D model. The framework has been validated through a series of experiments, yielding positive results. Full article
(This article belongs to the Special Issue Biomimetic Aspects of Human–Computer Interactions)
Show Figures

Figure 1

29 pages, 9403 KiB  
Article
DIO-SLAM: A Dynamic RGB-D SLAM Method Combining Instance Segmentation and Optical Flow
by Lang He, Shiyun Li, Junting Qiu and Chenhaomin Zhang
Sensors 2024, 24(18), 5929; https://doi.org/10.3390/s24185929 - 12 Sep 2024
Viewed by 583
Abstract
Feature points from moving objects can negatively impact the accuracy of Visual Simultaneous Localization and Mapping (VSLAM) algorithms, while detection or semantic segmentation-based VSLAM approaches often fail to accurately determine the true motion state of objects. To address this challenge, this paper introduces [...] Read more.
Feature points from moving objects can negatively impact the accuracy of Visual Simultaneous Localization and Mapping (VSLAM) algorithms, while detection or semantic segmentation-based VSLAM approaches often fail to accurately determine the true motion state of objects. To address this challenge, this paper introduces DIO-SLAM: Dynamic Instance Optical Flow SLAM, a VSLAM system specifically designed for dynamic environments. Initially, the detection thread employs YOLACT (You Only Look At CoefficienTs) to distinguish between rigid and non-rigid objects within the scene. Subsequently, the optical flow thread estimates optical flow and introduces a novel approach to capture the optical flow of moving objects by leveraging optical flow residuals. Following this, an optical flow consistency method is implemented to assess the dynamic nature of rigid object mask regions, classifying them as either moving or stationary rigid objects. To mitigate errors caused by missed detections or motion blur, a motion frame propagation method is employed. Lastly, a dense mapping thread is incorporated to filter out non-rigid objects using semantic information, track the point clouds of rigid objects, reconstruct the static background, and store the resulting map in an octree format. Experimental results demonstrate that the proposed method surpasses current mainstream dynamic VSLAM techniques in both localization accuracy and real-time performance. Full article
(This article belongs to the Special Issue Sensors and Algorithms for 3D Visual Analysis and SLAM)
Show Figures

Figure 1

13 pages, 21058 KiB  
Article
Color Analysis of Brocade from the 4th to 8th Centuries Driven by Image-Based Matching Network Modeling
by Hui Feng, Xibin Sheng, Lingling Zhang, Yuwan Liu and Bingfei Gu
Appl. Sci. 2024, 14(17), 7802; https://doi.org/10.3390/app14177802 - 3 Sep 2024
Viewed by 395
Abstract
To achieve the color matching rules for the textiles discovered during Silk Road excavations between the 4th and 8th centuries, this research proposed an image-based matching network modeling method. The Silk Road facilitated trade and cultural exchange between the East and West, and [...] Read more.
To achieve the color matching rules for the textiles discovered during Silk Road excavations between the 4th and 8th centuries, this research proposed an image-based matching network modeling method. The Silk Road facilitated trade and cultural exchange between the East and West, and the textiles found along the way depict the development of fabrics in a color scheme with great cultural significance. A total of 165 images with brocade patterns were collected from a book with a detailed description of the Western influences on textiles along the Silk Road. Two different clustering methods, including the K-means clustering method and octree quantization approach, were used to extract the primary and secondary colors. By combining the HSV color space with the PCCS color system, the color distribution was analyzed to discover the features of representative color patterns. The co-occurrence relationship of the auxiliary colors was explored using the Apriori algorithm, and a total of eight association rules were established. The results showed that the K-means clustering algorithm can show a better effect of color classification to obtain three primary colors and nine secondary colors. The matching mechanism with a visualized network model was also proposed, which showed that reddish-yellow tones are the main colors in the brocade patterns, and the light and soft tones separately account for 27% and 20%. Beige and brown are the most common colorways, with a confidence level of 47%. One style of brocade pattern was used to demonstrate different appearances within various color networks, which could be applied to 3D virtual fitting. This image-based matching network modeling approach makes the color matching schemes visible, and can assist fashion design with fabric features influenced by historical and cultural development. Full article
Show Figures

Figure 1

13 pages, 4401 KiB  
Article
Cattle Body Size Measurement Based on DUOS–PointNet++
by Zhi Weng, Wenzhi Lin and Zhiqiang Zheng
Animals 2024, 14(17), 2553; https://doi.org/10.3390/ani14172553 - 2 Sep 2024
Viewed by 476
Abstract
The common non-contact, automatic body size measurement methods based on the whole livestock point cloud are complex and prone to errors. Therefore, a cattle body measuring system is proposed. The system includes a new algorithm called dynamic unbalanced octree grouping (DUOS), based on [...] Read more.
The common non-contact, automatic body size measurement methods based on the whole livestock point cloud are complex and prone to errors. Therefore, a cattle body measuring system is proposed. The system includes a new algorithm called dynamic unbalanced octree grouping (DUOS), based on PointNet++, and an efficient method of body size measurement based on segmentation results. This system is suitable for livestock body feature sampling. The network divides the cow into seven parts, including the body and legs. Moreover, the key points of body size are located in the different parts. It combines density measurement, point cloud slicing, contour extraction, point cloud repair, etc. A total of 137 items of cattle data are collected. Compared with some of the other models, the DUOS algorithm improves the accuracy of the segmentation task and mean intersection by 0.53% and 1.21%, respectively. Moreover, compared with the manual measurement results, the relative errors of the experimental measurement results are as follows: withers height, 1.18%; hip height, 1.34%; body length, 2.52%; thoracic circumference, 2.12%; abdominal circumference, 2.26%; and cannon circumference, 2.78%. In summary, the model is proven to have a good segmentation effect on cattle bodies and is suitable for cattle body size measurement. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

18 pages, 7128 KiB  
Article
RGBTSDF: An Efficient and Simple Method for Color Truncated Signed Distance Field (TSDF) Volume Fusion Based on RGB-D Images
by Yunqiang Li, Shuowen Huang, Ying Chen, Yong Ding, Pengcheng Zhao, Qingwu Hu and Xujie Zhang
Remote Sens. 2024, 16(17), 3188; https://doi.org/10.3390/rs16173188 - 29 Aug 2024
Viewed by 588
Abstract
RGB-D image mapping is an important tool in applications such as robotics, 3D reconstruction, autonomous navigation, and augmented reality (AR). Efficient and reliable mapping methods can improve the accuracy, real-time performance, and flexibility of sensors in various fields. However, the currently widely used [...] Read more.
RGB-D image mapping is an important tool in applications such as robotics, 3D reconstruction, autonomous navigation, and augmented reality (AR). Efficient and reliable mapping methods can improve the accuracy, real-time performance, and flexibility of sensors in various fields. However, the currently widely used Truncated Signed Distance Field (TSDF) still suffers from the problem of inefficient memory management, making it difficult to directly use it for large-scale 3D reconstruction. In order to address this problem, this paper proposes a highly efficient and accurate TSDF voxel fusion method, RGBTSDF. First, based on the sparse characteristics of the volume, an improved grid octree is used to manage the whole scene, and a hard coding method is proposed for indexing. Second, during the depth map fusion process, the depth map is interpolated to achieve a more accurate voxel fusion effect. Finally, a mesh extraction method with texture constraints is proposed to overcome the effects of noise and holes and improve the smoothness and refinement of the extracted surface. We comprehensively evaluate RGBTSDF and similar methods through experiments on public datasets and the datasets collected by commercial scanning devices. Experimental results show that RGBTSDF requires less memory and can achieve real-time performance experience using only the CPU. It also improves fusion accuracy and achieves finer grid details. Full article
(This article belongs to the Special Issue New Insight into Point Cloud Data Processing)
Show Figures

Figure 1

36 pages, 30845 KiB  
Article
Semantic Visual SLAM Algorithm Based on Improved DeepLabV3+ Model and LK Optical Flow
by Yiming Li, Yize Wang, Liuwei Lu, Yiran Guo and Qi An
Appl. Sci. 2024, 14(13), 5792; https://doi.org/10.3390/app14135792 - 2 Jul 2024
Viewed by 815
Abstract
Aiming at the problem that dynamic targets in indoor environments lead to low accuracy and large errors in the localization and position estimation of visual SLAM systems and the inability to build maps containing semantic information, a semantic visual SLAM algorithm based on [...] Read more.
Aiming at the problem that dynamic targets in indoor environments lead to low accuracy and large errors in the localization and position estimation of visual SLAM systems and the inability to build maps containing semantic information, a semantic visual SLAM algorithm based on the semantic segmentation network DeepLabV3+ and LK optical flow is proposed based on the ORB-SLAM2 system. First, the dynamic target feature points are detected and rejected based on the lightweight semantic segmentation network DeepLabV3+ and LK optical flow method. Second, the static environment occluded by the dynamic target is repaired using the time-weighted multi-frame fusion background repair technique. Lastly, the filtered static feature points are used for feature matching and position calculation. Meanwhile, the semantic labeling information of static objects obtained based on the lightweight semantic segmentation network DeepLabV3+ is fused with the static environment information after background repair to generate dense point cloud maps containing semantic information, and the semantic dense point cloud maps are transformed into semantic octree maps using the octree spatial segmentation data structure. The localization accuracy of the visual SLAM system and the construction of the semantic maps are verified using the widely used TUM RGB-D dataset and real scene data, respectively. The experimental results show that the proposed semantic visual SLAM algorithm can effectively reduce the influence of dynamic targets on the system, and compared with other advanced algorithms, such as DynaSLAM, it has the highest performance in indoor dynamic environments in terms of localization accuracy and time consumption. In addition, semantic maps can be constructed so that the robot can better understand and adapt to the indoor dynamic environment. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

20 pages, 9236 KiB  
Article
Innovative Adaptive Multiscale 3D Simulation Platform for the Yellow River Using Sphere Geodesic Octree Grid Techniques
by Bingxuan Li, Jinxin Wang, Yan Zhang and Yongkang Sun
Water 2024, 16(13), 1791; https://doi.org/10.3390/w16131791 - 25 Jun 2024
Viewed by 649
Abstract
Earth system simulation technology is fundamental for ecological protection and high-quality development in the Yellow River Basin. To address the lack of a Yellow River simulation platform, this study proposes an adaptive multiscale true 3D crust simulation platform using the Sphere Geodesic Octree [...] Read more.
Earth system simulation technology is fundamental for ecological protection and high-quality development in the Yellow River Basin. To address the lack of a Yellow River simulation platform, this study proposes an adaptive multiscale true 3D crust simulation platform using the Sphere Geodesic Octree Grid (SGOG). Twelve models in four categories were designed: single fine-scale models, geomorphic zone-based models, and models using both top-down and bottom-up approaches. The models were evaluated based on terrain feature representation and computational efficiency. The results show that single fine-scale models preserve detailed terrain features but are computationally intensive. They are suitable for the precise simulation of surface processes. Top-down and bottom-up models balance terrain detail and efficiency, and are thereby widely applicable. Geomorphic zone-based models provide detailed focal area representation and higher computational efficiency, being more targeted. Various methods offer flexible scale transformations, each with its own strengths, allowing researchers to select a method according to practical application needs. Consequently, this research demonstrates that spherical discrete grids offer reliable support for constructing basin simulation platforms, providing new technological and scientific insights for the Yellow River Basin’s ecological protection and development. Full article
Show Figures

Figure 1

19 pages, 5344 KiB  
Article
3D Reconstruction Based on Iterative Optimization of Moving Least-Squares Function
by Saiya Li, Jinhe Su, Guoqing Jiang, Ziyu Huang and Xiaorong Zhang
Algorithms 2024, 17(6), 263; https://doi.org/10.3390/a17060263 - 14 Jun 2024
Viewed by 716
Abstract
Three-dimensional reconstruction from point clouds is an important research topic in computer vision and computer graphics. However, the discrete nature, sparsity, and noise of the original point cloud contribute to the results of 3D surface generation based on global features often appearing jagged [...] Read more.
Three-dimensional reconstruction from point clouds is an important research topic in computer vision and computer graphics. However, the discrete nature, sparsity, and noise of the original point cloud contribute to the results of 3D surface generation based on global features often appearing jagged and lacking details, making it difficult to describe shape details accurately. We address the challenge of generating smooth and detailed 3D surfaces from point clouds. We propose an adaptive octree partitioning method to divide the global shape into local regions of different scales. An iterative loop method based on GRU is then used to extract features from local voxels and learn local smoothness and global shape priors. Finally, a moving least-squares approach is employed to generate the 3D surface. Experiments demonstrate that our method outperforms existing methods on benchmark datasets (ShapeNet dataset, ABC dataset, and Famous dataset). Ablation studies confirm the effectiveness of the adaptive octree partitioning and GRU modules. Full article
Show Figures

Figure 1

23 pages, 12799 KiB  
Article
Construction of Three-Dimensional Semantic Maps of Unstructured Lawn Scenes Based on Deep Learning
by Xiaolin Xie, Zixiang Yan, Zhihong Zhang, Yibo Qin, Hang Jin, Cheng Zhang and Man Xu
Appl. Sci. 2024, 14(11), 4884; https://doi.org/10.3390/app14114884 - 4 Jun 2024
Viewed by 770
Abstract
Traditional automatic gardening pruning robots generally employ electronic fences for the delineation of working boundaries. In order to quickly determine the working area of a robot, we combined an improved DeepLabv3+ semantic segmentation model with a simultaneous localization and mapping (SLAM) system to [...] Read more.
Traditional automatic gardening pruning robots generally employ electronic fences for the delineation of working boundaries. In order to quickly determine the working area of a robot, we combined an improved DeepLabv3+ semantic segmentation model with a simultaneous localization and mapping (SLAM) system to construct a three-dimensional (3D) semantic map. To reduce the computational cost of its future deployment in resource-constrained mobile robots, we replaced the backbone network of DeepLabv3+, ResNet50, with MobileNetV2 to decrease the number of network parameters and improve recognition speed. In addition, we introduced an efficient channel attention network attention mechanism to enhance the accuracy of the neural network, forming an improved Multiclass MobileNetV2 ECA DeepLabv3+ (MM-ED) network model. Through the integration of this model with the SLAM system, the entire framework was able to generate a 3D semantic point cloud map of a lawn working area and convert it into octree and occupancy grid maps, providing technical support for future autonomous robot operation and navigation. We created a lawn dataset containing 7500 images, using our own annotated images as ground truth. This dataset was employed for experimental purposes. Experimental results showed that the proposed MM-ED network model achieved 91.07% and 94.71% for MIoU and MPA metrics, respectively. Using a GTX 3060 Laptop GPU, the frames per second rate reached 27.69, demonstrating superior recognition performance compared to similar semantic segmentation architectures and better adaptation to SLAM systems. Full article
(This article belongs to the Special Issue Advanced 2D/3D Computer Vision Technology and Applications)
Show Figures

Figure 1

21 pages, 6240 KiB  
Article
Similarity Measurement and Retrieval of Three-Dimensional Voxel Model Based on Symbolic Operator
by Zhenwen He, Xianzhen Liu and Chunfeng Zhang
ISPRS Int. J. Geo-Inf. 2024, 13(3), 89; https://doi.org/10.3390/ijgi13030089 - 11 Mar 2024
Viewed by 1424
Abstract
Three-dimensional voxel models are widely applied in various fields such as 3D imaging, industrial design, and medical imaging. The advancement of 3D modeling techniques and measurement devices has made the generation of three-dimensional models more convenient. The exponential increase in the number of [...] Read more.
Three-dimensional voxel models are widely applied in various fields such as 3D imaging, industrial design, and medical imaging. The advancement of 3D modeling techniques and measurement devices has made the generation of three-dimensional models more convenient. The exponential increase in the number of 3D models presents a significant challenge for model retrieval. Currently, these models are numerous and typically represented as point clouds or meshes, resulting in sparse data and high feature dimensions within the retrieval database. Traditional methods for 3D model retrieval suffer from high computational complexity and slow retrieval speeds. To address this issue, this paper combines spatial-filling curves with octree structures and proposes a novel approach for representing three-dimensional voxel model sequence data features, along with a similarity measurement method based on symbolic operators. This approach enables efficient similarity calculations and rapid dimensionality reduction for the three-dimensional model database, facilitating efficient similarity calculations and expedited retrieval. Full article
Show Figures

Figure 1

14 pages, 4665 KiB  
Article
Estimation of Diameter at Breast Height in Tropical Forests Based on Terrestrial Laser Scanning and Shape Diameter Function
by Yang Wu, Xingli Gan, Ying Zhou and Xiaoyu Yuan
Sustainability 2024, 16(6), 2275; https://doi.org/10.3390/su16062275 - 8 Mar 2024
Viewed by 981
Abstract
Estimating forest carbon content typically requires the precise measurement of the trees’ diameter at breast height (DBH), which is crucial for maintaining the health and sustainability of natural forests. Currently, Terrestrial Laser Scanning (TLS) systems are commonly used to acquire forest point cloud [...] Read more.
Estimating forest carbon content typically requires the precise measurement of the trees’ diameter at breast height (DBH), which is crucial for maintaining the health and sustainability of natural forests. Currently, Terrestrial Laser Scanning (TLS) systems are commonly used to acquire forest point cloud data for DBH estimation. However, traditional circular fitting methods face challenges such as a reliance on forest elevation normalization and underfitting of large trees. This study explores a novel approach, the Shape Diameter Function (SDF) algorithm model, leveraging the advantages of three-dimensional point cloud information to replace traditional circular fitting methods. This study employed a parallel approach, combining the Digital Elevation Model (DEM) with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to segment tree point clouds at breast height. Additionally, a point cloud SDF algorithm based on an octree structure was proposed to accurately estimate individual tree DBH. The research data were obtained from tropical secondary forests located in Cameroon, Peru, Indonesia, and Guyana, with forest ground point cloud data acquired via TLS. The experimental results demonstrated the superior performance of the SDF algorithm in estimating DBH. Compared with the Random Sample Consensus (RANSAC) and Hough transform methods, the Root Mean Square Error (RMSE) decreased by 28.1% and 47.8%, respectively. Particularly in estimating DBH for large trees, the SDF algorithm exhibited smaller errors, indicating a closer alignment between the estimated individual tree DBH values and those obtained from manual measurements. This study presented a more accurate DBH estimation algorithm, contributing to the exploration of improved forest carbon content estimation methods. Full article
Show Figures

Figure 1

26 pages, 12468 KiB  
Article
Deep Learning-Based Target Point Localization for UAV Inspection of Point Cloud Transmission Towers
by Xuhui Li, Yongrong Li, Yiming Chen, Geng Zhang and Zhengjun Liu
Remote Sens. 2024, 16(5), 817; https://doi.org/10.3390/rs16050817 - 27 Feb 2024
Viewed by 1259
Abstract
UAV transmission tower inspection is the use of UAV technology for regular inspection and troubleshooting of towers on transmission lines, which helps to improve the safety and reliability of transmission lines and ensures the stability of the power supply. From the traditional manual [...] Read more.
UAV transmission tower inspection is the use of UAV technology for regular inspection and troubleshooting of towers on transmission lines, which helps to improve the safety and reliability of transmission lines and ensures the stability of the power supply. From the traditional manual tower boarding to the current way of manually selecting target camera shooting points from 3D point clouds to plan the inspection path of the UAV, operational efficiency has drastically improved. However, indoor planning work is still labor-consuming and expensive. In this paper, a deep learning-based point cloud transmission tower segmentation (PCTTS) model combined with the corresponding target point localization algorithm is proposed for automatic segmentation of transmission tower point cloud data and automatically localizing the key inspection component as the target point for UAV inspection. First, we utilize octree sampling with unit ball normalization to simplify the data and ensure translation invariance before putting the data into the model. In the feature extraction stage, we encode the point set information and combine Euclidean distance and cosine similarity features to ensure rotational invariance. On this basis, we adopt multi-scale feature extraction, construct a local coordinate system, and introduce the offset-attention mechanism to enhance model performance further. Then, after the feature propagation module, gradual up-sampling is used to obtain the features of each point to complete the point cloud segmentation. Finally, combining the segmentation results with the target point localization algorithm completes the automatic extraction of UAV inspection target points. The method has been applied to six kinds of transmission tower point cloud data of part segmentation results and three kinds of transmission tower point cloud data of instance segmentation results. The experimental results show that the model achieves mIOU of 94.1% on the self-built part segmentation dataset and 86.9% on the self-built instance segmentation dataset, and the segmentation accuracy outperforms that of the methods for point cloud segmentation, such as PointNet++, DGCNN, Point Transformer, and PointMLP. Meanwhile, the experimental results of UAV inspection target point localization also verify the method’s effectiveness in this paper. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

20 pages, 9873 KiB  
Article
GY-SLAM: A Dense Semantic SLAM System for Plant Factory Transport Robots
by Xiaolin Xie, Yibo Qin, Zhihong Zhang, Zixiang Yan, Hang Jin, Man Xu and Cheng Zhang
Sensors 2024, 24(5), 1374; https://doi.org/10.3390/s24051374 - 20 Feb 2024
Cited by 1 | Viewed by 1540
Abstract
Simultaneous Localization and Mapping (SLAM), as one of the core technologies in intelligent robotics, has gained substantial attention in recent years. Addressing the limitations of SLAM systems in dynamic environments, this research proposes a system specifically designed for plant factory transportation environments, named [...] Read more.
Simultaneous Localization and Mapping (SLAM), as one of the core technologies in intelligent robotics, has gained substantial attention in recent years. Addressing the limitations of SLAM systems in dynamic environments, this research proposes a system specifically designed for plant factory transportation environments, named GY-SLAM. GY-SLAM incorporates a lightweight target detection network, GY, based on YOLOv5, which utilizes GhostNet as the backbone network. This integration is further enhanced with CoordConv coordinate convolution, CARAFE up-sampling operators, and the SE attention mechanism, leading to simultaneous improvements in detection accuracy and model complexity reduction. While [email protected] increased by 0.514% to 95.364, the model simultaneously reduced the number of parameters by 43.976%, computational cost by 46.488%, and model size by 41.752%. Additionally, the system constructs pure static octree maps and grid maps. Tests conducted on the TUM dataset and a proprietary dataset demonstrate that GY-SLAM significantly outperforms ORB-SLAM3 in dynamic scenarios in terms of system localization accuracy and robustness. It shows a remarkable 92.59% improvement in RMSE for Absolute Trajectory Error (ATE), along with a 93.11% improvement in RMSE for the translational drift of Relative Pose Error (RPE) and a 92.89% improvement in RMSE for the rotational drift of RPE. Compared to YOLOv5s, the GY model brings a 41.5944% improvement in detection speed and a 17.7975% increase in SLAM operation speed to the system, indicating strong competitiveness and real-time capabilities. These results validate the effectiveness of GY-SLAM in dynamic environments and provide substantial support for the automation of logistics tasks by robots in specific contexts. Full article
Show Figures

Figure 1

19 pages, 6539 KiB  
Article
Coarse-Grained Monte Carlo Simulations with Octree Cells for Geopolymer Nucleation at Different pH Values
by Nicolas Castrillon Valencia, Mohammadreza Izadifar, Neven Ukrainczyk and Eduardus Koenders
Materials 2024, 17(1), 95; https://doi.org/10.3390/ma17010095 - 24 Dec 2023
Cited by 2 | Viewed by 866
Abstract
Geopolymers offer a potential alternative to ordinary Portland cement owing to their performance in mechanical and thermal properties, as well as environmental benefits stemming from a reduced carbon footprint. This paper endeavors to build upon prior atomistic computational work delving deeper into the [...] Read more.
Geopolymers offer a potential alternative to ordinary Portland cement owing to their performance in mechanical and thermal properties, as well as environmental benefits stemming from a reduced carbon footprint. This paper endeavors to build upon prior atomistic computational work delving deeper into the intricate relationship between pH levels and the resulting material’s properties, including pore size distribution, geopolymer nucleate cluster dimensions, total system energy, and monomer poly-condensation behavior. Coarse-grained Monte Carlo (CGMC) simulation inputs include tetrahedral geometry and binding energy parameters derived from DFT simulations for aluminate and silicate monomers. Elevated pH values may can alter reactivity and phase stability, or, in the structural concrete application, may passivate the embedded steel reinforcement. Thus, we examine the effects of pH values set at 11, 12, and 13 (based on silicate speciation chemistry), investigating their respective contributions to the nucleation of geopolymers. To simulate a larger system to obtain representative results, we propose the numerical implementation of an Octree cell. Finally, we further digitize the resulting expanded structure to ascertain pore size distribution, facilitating a comparative analysis. The novelty of this study is underscored by its expansion in both system size, more accurate monomer representation, and pH range when compared to previous CGMC simulation approaches. The results unveil a discernible correlation between the number of clusters and pores under specific pH levels. This links geopolymerization mechanisms under varying pH conditions to the resulting chemical properties and final structural state. Full article
(This article belongs to the Special Issue Mathematical Modeling of Building Materials (Second Volume))
Show Figures

Figure 1

21 pages, 7945 KiB  
Article
Automated Reconstruction of Existing Building Interior Scene BIMs Using a Feature-Enhanced Point Transformer and an Octree
by Junwei Chen, Yangze Liang, Zheng Xie, Shaofeng Wang and Zhao Xu
Appl. Sci. 2023, 13(24), 13239; https://doi.org/10.3390/app132413239 - 14 Dec 2023
Viewed by 1130
Abstract
Building information models (BIMs) offer advantages, such as visualization and collaboration, making them widely used in the management of existing buildings. Currently, most BIMs for existing indoor spaces are manually created, consuming a significant amount of manpower and time, severely impacting the efficiency [...] Read more.
Building information models (BIMs) offer advantages, such as visualization and collaboration, making them widely used in the management of existing buildings. Currently, most BIMs for existing indoor spaces are manually created, consuming a significant amount of manpower and time, severely impacting the efficiency of building operations and maintenance management. To address this issue, this study proposes an automated reconstruction method for an indoor scene BIM based on a feature-enhanced point transformer and an octree. This method enhances the semantic segmentation performance of point clouds by using feature position encoding to strengthen the point transformer network. Subsequently, the data are partitioned into multiple segments using an octree, collecting the geometric and spatial information of individual objects in the indoor scene. Finally, the BIM is automatically reconstructed using Dynamo in Revit. The research results indicate that the proposed feature-enhanced point transformer algorithm achieves a high segmentation accuracy of 71.3% mIoU on the S3DIS dataset. The BIM automatically generated from the field point cloud data, when compared to the original data, has an average error of ±1.276 mm, demonstrating a good reconstruction quality. This method achieves the high-precision, automated reconstruction of the indoor BIM for existing buildings, avoiding extensive manual operations and promoting the application of BIMs for the maintenance processes of existing buildings. Full article
Show Figures

Figure 1

Back to TopTop