Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (218)

Search Parameters:
Keywords = optomechanical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4164 KiB  
Article
Increasing Light-Induced Forces with Magnetic Photonic Glasses
by Hugo Avalos-Sánchez, Abraham J. Carmona-Carmona, Martha A. Palomino-Ovando, Benito Flores Desirena, Rodolfo Palomino-Merino, Khashayar Misaghian, Jocelyn Faubert, Miller Toledo-Solano and Jesus Eduardo Lugo
Photonics 2024, 11(9), 827; https://doi.org/10.3390/photonics11090827 - 1 Sep 2024
Viewed by 358
Abstract
In this work, we theoretically and experimentally study the induction of electromagnetic forces in an opal-based magnetic photonic glass, where light normally impinges onto a disordered arrangement of SiO2 spheres by the aggregation of Fe3O4 nanoparticles. The working wavelength [...] Read more.
In this work, we theoretically and experimentally study the induction of electromagnetic forces in an opal-based magnetic photonic glass, where light normally impinges onto a disordered arrangement of SiO2 spheres by the aggregation of Fe3O4 nanoparticles. The working wavelength is 633 nm. Experimental evidence is presented for the force that results from forced oscillations of the photonic structure. Finite-element method simulations and a theoretical model estimate the magnetic force volumetric density value, peak displacement, and velocity of oscillations. The magnetic force is of the order of 56 microN, which is approximately 500-times higher than forces induced in dielectric optomechanical photonic crystal cavities. Full article
(This article belongs to the Special Issue Emerging Trends in Photonic Crystals)
Show Figures

Figure 1

11 pages, 1452 KiB  
Article
Chaos in Optomechanical Systems Coupled to a Non-Markovian Environment
by Pengju Chen, Nan Yang, Austen Couvertier, Quanzhen Ding, Rupak Chatterjee and Ting Yu
Entropy 2024, 26(9), 742; https://doi.org/10.3390/e26090742 - 30 Aug 2024
Viewed by 273
Abstract
We study the chaotic motion of a semi-classical optomechanical system coupled to a non-Markovian environment with a finite correlation time. By studying the emergence of chaos using the Lyapunov exponent with the changing non-Markovian parameter, we show that the non-Markovian environment can significantly [...] Read more.
We study the chaotic motion of a semi-classical optomechanical system coupled to a non-Markovian environment with a finite correlation time. By studying the emergence of chaos using the Lyapunov exponent with the changing non-Markovian parameter, we show that the non-Markovian environment can significantly enhance chaos. It is observed that a non-Markovian environment characterized by the Ornstein–Uhlenbeck type noise can modify the generation of chaos with different environmental memory times. As a comparison, the crossover properties from Markov to non-Markovian regimes are also discussed. Our findings indicate that the quantum memory effects on the onset of chaos may become a useful property to be investigated in quantum manipulations and control. Full article
(This article belongs to the Special Issue Non-Markovian Open Quantum Systems)
Show Figures

Figure 1

15 pages, 3589 KiB  
Article
Numerical Investigation of Localized Surface Plasmons in Gold Nano-Ridge Dimer-on-Mirror Structures
by Mohamed El Ghafiani, Adnane Noual, Madiha Amrani, Mohammed Moutaouekkil and El Houssaine El Boudouti
Photonics 2024, 11(9), 817; https://doi.org/10.3390/photonics11090817 - 30 Aug 2024
Viewed by 373
Abstract
The study of localized surface plasmons (LSPs) in nanoscale structures is an essential step towards identifying optimal plasmonic modes that can facilitate robust optomechanical coupling and deepen our understanding of light–matter interactions at the nanoscale. This paper investigates, numerically, using the finite element [...] Read more.
The study of localized surface plasmons (LSPs) in nanoscale structures is an essential step towards identifying optimal plasmonic modes that can facilitate robust optomechanical coupling and deepen our understanding of light–matter interactions at the nanoscale. This paper investigates, numerically, using the finite element method, LSP modes in a design comprising two coupled nano-ridges deposited on a gold layer with an interposing polymer spacer layer. Such a structure, usually referred to as a particle-on-mirror structure, shows exquisite optical properties at the nanoscale. We first examine the LSP modes of a single nano-ridge through the analysis of its scattering cross-section in the visible and infrared ranges. To enhance the plasmonic response, a thin polymer layer is placed at the middle of the ridge, which introduces additional LSP modes confined within the former. Then, we extend the analysis to the dimer configuration, which exhibits more complex and enhanced plasmonic behavior compared to a single nano-ridge. In particular, the dimer configuration yields LSP resonances with a quality factor enhancement of approximately threefold relative to a single nano-ridge. Furthermore, the presence of the polymer layer within the ridges significantly improves plasmon field localization and the quality factor. These findings underscore the potential of nano-ridge-based structures in advancing optomechanical coupling and offering valuable insights for the development of high-performance acousto-plasmonic devices. In particular, the proposed device could help significantly improve the design of nano-acousto-optic modulators, operating in the visible or in the near-infrared ranges, that require an enhanced light–phonon coupling rate. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
Show Figures

Figure 1

13 pages, 5473 KiB  
Article
Designs of Miniature Optomechanical Sensors for Measurements of Acceleration with Frequencies of Hundreds of Hertz
by Marina Rezinkina and Claus Braxmaier
Designs 2024, 8(4), 67; https://doi.org/10.3390/designs8040067 - 4 Jul 2024
Viewed by 3209
Abstract
Some applications, such as aerospace testing and monitoring the operating conditions of equipment on space missions, require mechanical sensors capable of measuring accelerations at frequencies of several hundred hertz. For such measurements, optomechanical sensors can be used, providing the ability to measure accelerations [...] Read more.
Some applications, such as aerospace testing and monitoring the operating conditions of equipment on space missions, require mechanical sensors capable of measuring accelerations at frequencies of several hundred hertz. For such measurements, optomechanical sensors can be used, providing the ability to measure accelerations without calibration. To enable such measurements, improved designs of drum-type sensors with the assigned performance have been elaborated. Such designs make it possible to provide the necessary levels of natural frequencies for optomechanical sensors and eliminate crosstalk. Using mathematical modeling, the dependencies of the mechanical characteristics of the proposed types of acceleration sensors versus their parameters were obtained. The use of such sensor designs ensures their compactness, making their manufacturing more technologically sound and suitable for use, in particular, in space missions. Full article
Show Figures

Figure 1

17 pages, 7536 KiB  
Article
Accuracy Evaluation of Differential Absorption Lidar for Ozone Detection and Intercomparisons with Other Instruments
by Guangqiang Fan, Bowen Zhang, Tianshu Zhang, Yibin Fu, Chenglei Pei, Shengrong Lou, Xiaobing Li, Zhenyi Chen and Wenqing Liu
Remote Sens. 2024, 16(13), 2369; https://doi.org/10.3390/rs16132369 - 28 Jun 2024
Cited by 1 | Viewed by 756
Abstract
Differential absorption lidar is an advanced tool for investigating tropospheric ozone transport and development. High-quality differential absorption lidar data are the basis for studying the temporal and spatial evolution of ozone pollution. We assessed the quality of the ozone data generated via differential [...] Read more.
Differential absorption lidar is an advanced tool for investigating tropospheric ozone transport and development. High-quality differential absorption lidar data are the basis for studying the temporal and spatial evolution of ozone pollution. We assessed the quality of the ozone data generated via differential absorption lidar. By correcting the ozone lidar profile in real-time with an atmospheric correction term and comparing the lidar data to ozone data collected using an unmanned aerial vehicle (UAV), we quantified the statistical error of the ozone lidar data in the vertical direction and determined that the data from the two instruments were generally in agreement. To verify the reliability of the ozone lidar system and the atmospheric correction algorithm, we conducted a long-term comparison experiment using data from the Canton Tower. Over the two months, the UAV and lidar data were consistent with one another, which confirmed the viability of the ozone lidar optomechanical structure and the atmospheric correction algorithm, both in real-time and over a given time duration. In addition, we also quantified the relationship between statistical error and signal-to-noise ratio. When the SNR is less than 10, the corresponding statistical error is about 40%. The statistical error was less than 15% when the signal-to-noise ratio was greater than 20, and the statistical error was mostly less than 8% when the signal-to-noise ratio was greater than 40. In general, the statistical error of the differential absorption lidar data was inversely proportional to the signal-to-noise ratio of each echo signal. Full article
Show Figures

Figure 1

11 pages, 2457 KiB  
Article
Integrated Analysis of Line-Of-Sight Stability of Off-Axis Three-Mirror Optical System
by Yatao Lu, Bin Sun, Gui Mei, Qinglei Zhao, Zhongshan Wang, Yang Gao and Shuxin Wang
Photonics 2024, 11(5), 461; https://doi.org/10.3390/photonics11050461 - 15 May 2024
Viewed by 687
Abstract
As a space camera works in orbit, the stress rebound caused by gravity inevitably results in the deformation of its optomechanical structure, and the relative position change between different optical components will affect the Line-Of-Sight pointing of the camera. In this paper, the [...] Read more.
As a space camera works in orbit, the stress rebound caused by gravity inevitably results in the deformation of its optomechanical structure, and the relative position change between different optical components will affect the Line-Of-Sight pointing of the camera. In this paper, the optical sensitivity calculation of a space camera’s Line-Of-Sight pointing is realized based on the optomechanical constraint equations, and the Line-Of-Sight equations are constructed using the second type of response (DRESP2) method to realize an optomechanical integrated analysis of the camera’s Line-Of-Sight stability at the structural finite element solver level. The verification results show that the Line-Of-Sight stability error is 6.38%, meaning that this method can identify the sensitive optical elements of the optical system efficiently and quickly. Thus, the method in this paper has important significance as a reference for the analysis of the Line-Of-Sight stability of complex optical systems. Full article
Show Figures

Figure 1

10 pages, 2342 KiB  
Article
Modulation of Second-Order Sideband Efficiency in an Atom-Assisted Optomechanical System
by Liang-Xuan Fan, Tao Shui, Ling Li and Wen-Xing Yang
Photonics 2024, 11(5), 416; https://doi.org/10.3390/photonics11050416 - 30 Apr 2024
Viewed by 702
Abstract
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. [...] Read more.
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. We use the steady-state method to analyze the nonlinear interaction in the system, which is different from the traditional linear analysis method. The existence of an auxiliary three-level atom driven by the control field significantly enhances the generation of an OSS. It is found that the efficiency of the OSS can be effectively modulated by adjusting the Rabi frequency of the control field, optomechanical cooperativity and atomic coupling strength. Our scheme provides a promising solution for controlling light propagation and has potential application in quantum optical devices and quantum information networks. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

3 pages, 464 KiB  
Abstract
Soft Optomechanical Devices Featuring Intrinsic Redox Activity
by Ferran Pujol-Vila and Mar Álvarez
Proceedings 2024, 97(1), 195; https://doi.org/10.3390/proceedings2024097195 - 19 Apr 2024
Viewed by 677
Abstract
Soft optomechanical sensors have the ability to combine the high tunability and elasticity of soft polymers with the distinctive optical properties of photonic structures, thus offering unprecedented opportunities for the development high-performance colorimetric sensors. Herein, we demonstrate for the first time the use [...] Read more.
Soft optomechanical sensors have the ability to combine the high tunability and elasticity of soft polymers with the distinctive optical properties of photonic structures, thus offering unprecedented opportunities for the development high-performance colorimetric sensors. Herein, we demonstrate for the first time the use of optomechanical devices made of off-stoichiometry thiol-ene (OSTE), a polymeric material that features intrinsic redox activity, overcoming some limitations of conventional materials (e.g., polydimethylsiloxane or silicon). Remarkably, this work provides the foundation for a new generation of highly tunable and versatile optomechanical sensors, enabling unexplored functionalities. Full article
Show Figures

Figure 1

16 pages, 3398 KiB  
Article
Enhancing Pure Inertial Navigation Accuracy through a Redundant High-Precision Accelerometer-Based Method Utilizing Neural Networks
by Qinyuan He, Huapeng Yu, Dalei Liang and Xiaozhuo Yang
Sensors 2024, 24(8), 2566; https://doi.org/10.3390/s24082566 - 17 Apr 2024
Viewed by 892
Abstract
The pure inertial navigation system, crucial for autonomous navigation in GPS-denied environments, faces challenges of error accumulation over time, impacting its effectiveness for prolonged missions. Traditional methods to enhance accuracy have focused on improving instrumentation and algorithms but face limitations due to complexity [...] Read more.
The pure inertial navigation system, crucial for autonomous navigation in GPS-denied environments, faces challenges of error accumulation over time, impacting its effectiveness for prolonged missions. Traditional methods to enhance accuracy have focused on improving instrumentation and algorithms but face limitations due to complexity and costs. This study introduces a novel device-level redundant inertial navigation framework using high-precision accelerometers combined with a neural network-based method to refine navigation accuracy. Experimental validation confirms that this integration significantly boosts navigational precision, outperforming conventional system-level redundancy approaches. The proposed method utilizes the advanced capabilities of high-precision accelerometers and deep learning to achieve superior predictive accuracy and error reduction. This research paves the way for the future integration of cutting-edge technologies like high-precision optomechanical and atom interferometer accelerometers, offering new directions for advanced inertial navigation systems and enhancing their application scope in challenging environments. Full article
Show Figures

Figure 1

18 pages, 8045 KiB  
Article
Designs of Optomechanical Acceleration Sensors with the Natural Frequency from 5 Hz to 50 kHz
by Marina Rezinkina and Claus Braxmaier
Designs 2024, 8(2), 33; https://doi.org/10.3390/designs8020033 - 7 Apr 2024
Cited by 1 | Viewed by 1287
Abstract
In many applications, such as space navigation, metrology, testing, and geodesy, it is necessary to measure accelerations with frequencies ranging from fractions of a hertz to several kilohertz. For this purpose, optomechanical sensors are used. The natural frequency of such sensors should be [...] Read more.
In many applications, such as space navigation, metrology, testing, and geodesy, it is necessary to measure accelerations with frequencies ranging from fractions of a hertz to several kilohertz. For this purpose, optomechanical sensors are used. The natural frequency of such sensors should be approximately ten times greater than the frequency of the measured acceleration. In the case of triaxial acceleration measurements, a planar design with two sensors that measure accelerations in two perpendicular in-plane directions and a third sensor that measures out-of-plane acceleration is effective. The mechanical characteristics of the existing designs of both in-plane and out-of-plane types of sensors were analyzed, and the improved designs were elaborated. Using numerical simulation, the dependencies of the natural frequency level in the range from several hertz to tens of kilohertz on the designs and geometric parameters of opto-mechanical accelerometers were modeled. This allows one to select the accelerometer design and its parameters to measure the acceleration at the assigned frequency. It is shown that the opto-mechanical accelerometers of the proposed designs have reduced dissipation losses and crosstalk. Full article
(This article belongs to the Special Issue Design Sensitivity Analysis and Engineering Optimization)
Show Figures

Figure 1

19 pages, 2854 KiB  
Review
Optomechanical Microwave-to-Optical Photon Transducer Chips: Empowering the Quantum Internet Revolution
by Xinyao Xu, Yifei Zhang, Jindao Tang, Peiqin Chen, Liping Zeng, Ziwei Xia, Wenbo Xing, Qiang Zhou, You Wang, Haizhi Song, Guangcan Guo and Guangwei Deng
Micromachines 2024, 15(4), 485; https://doi.org/10.3390/mi15040485 - 31 Mar 2024
Viewed by 1265
Abstract
The first quantum revolution has brought us the classical Internet and information technology. Today, as technology advances rapidly, the second quantum revolution quietly arrives, with a crucial moment for quantum technology to establish large-scale quantum networks. However, solid-state quantum bits (such as superconducting [...] Read more.
The first quantum revolution has brought us the classical Internet and information technology. Today, as technology advances rapidly, the second quantum revolution quietly arrives, with a crucial moment for quantum technology to establish large-scale quantum networks. However, solid-state quantum bits (such as superconducting and semiconductor qubits) typically operate in the microwave frequency range, making it challenging to transmit signals over long distances. Therefore, there is an urgent need to develop quantum transducer chips capable of converting microwaves into optical photons in the communication band, since the thermal noise of optical photons at room temperature is negligible, rendering them an ideal information carrier for large-scale spatial communication. Such devices are important for connecting different physical platforms and efficiently transmitting quantum information. This paper focuses on the fast-developing field of optomechanical quantum transducers, which has flourished over the past decade, yielding numerous advanced achievements. We categorize transducers based on various mechanical resonators and discuss their principles of operation and their achievements. Based on existing research on optomechanical transducers, we compare the parameters of several mechanical resonators and analyze their advantages and limitations, as well as provide prospects for the future development of quantum transducers. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

17 pages, 740 KiB  
Review
Weak Value Amplification of Photons in Optical Nonlinear Medium, Opto-Mechanical, and Spin-Mechanical Systems
by Sergio Carrasco and Miguel Orszag
Photonics 2024, 11(4), 291; https://doi.org/10.3390/photonics11040291 - 23 Mar 2024
Viewed by 849
Abstract
A measurement of an observable A performed on a quantum system that is initially prepared in a state ρi, followed by a probabilistic procedure that leaves the system in a final state ρf, a process often referred as state [...] Read more.
A measurement of an observable A performed on a quantum system that is initially prepared in a state ρi, followed by a probabilistic procedure that leaves the system in a final state ρf, a process often referred as state postselection (or filtering process), can yield, on average, anomalous measurement results, i.e., values that may exceed the eigenvalue range of the observable being measured or be complex numbers. There is, therefore, an amplification effect of the average measurement result, i.e., the effect of the system on the measurement device is increased. When the coupling between the system and the measurement device satisfies some weakness conditions, the amplification effect occurs due to the weak value of the operator A. In this article, the amplification effect due to the postselection process is reviewed, and theoretical proposals and experiments published in the recent literature on the field are commented on. The emphasis is made on interactions occurring in optical nonlinear media and opto-mechanical and spin-mechanical systems, in which the amplification of number operators takes place. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

10 pages, 1056 KiB  
Article
Analysis of Interference Effect in Double Optomechanically Induced Transparency System
by Shengyan Liu, Zhengkai Han, Deen Li and Chaohua Tan
Photonics 2024, 11(4), 289; https://doi.org/10.3390/photonics11040289 - 22 Mar 2024
Cited by 2 | Viewed by 841
Abstract
We propose a scheme to investigate the interference properties of a double optomechanically induced transparency system, which involves two charged nanomechanical resonators, coupled via Coulomb interaction. The results show that the opening of transparency windows is caused by a destructive interference effect only [...] Read more.
We propose a scheme to investigate the interference properties of a double optomechanically induced transparency system, which involves two charged nanomechanical resonators, coupled via Coulomb interaction. The results show that the opening of transparency windows is caused by a destructive interference effect only in the weak optical coupling region. For strong optical coupling, normal mode splitting dominates the transparency phenomenon. In the intermediate region, both destructive interference and normal mode splitting contribute to the transparency windows. When the Coulomb coupling is much weaker than the optical coupling, the Coulomb interaction strength linearly determines the distance between the two transparency windows, and has nearly no influence on the destructive interference effect. Otherwise, the system will work in a nonlinear region. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

14 pages, 3109 KiB  
Article
1/f Noise Mitigation in an Opto-Mechanical Sensor with a Fabry–Pérot Interferometer
by Andrea M. Nelson, Jose Sanjuan and Felipe Guzmán
Sensors 2024, 24(6), 1969; https://doi.org/10.3390/s24061969 - 20 Mar 2024
Cited by 1 | Viewed by 1436
Abstract
Low-frequency and 1/f noise are common measurement limitations that arise in a variety of physical processes. Mitigation methods for these noises are dependent on their source. Here, we present a method for removing 1/f noise of optical origin using a [...] Read more.
Low-frequency and 1/f noise are common measurement limitations that arise in a variety of physical processes. Mitigation methods for these noises are dependent on their source. Here, we present a method for removing 1/f noise of optical origin using a micro-cavity Fabry–Pérot (FP) interferometer. A mechanical modulation of the FP cavity length was applied to a previously studied opto-mechanical sensor. It effectively mimics an up-conversion of the laser frequency, shifting signals to a region where lower white-noise sources dominate and 1/f noise is not present. Demodulation of this signal shifts the results back to the desired frequency range of observation with the reduced noise floor of the higher frequencies. This method was found to improve sensitivities by nearly two orders of magnitude at 1 Hz and eliminated 1/f noise in the range from 1 Hz to 4 kHz. A mathematical model for low-finesse FP cavities is presented to support these results. This study suggests a relatively simple and efficient method for 1/f noise suppression and improving the device sensitivity of systems with an FP interferometer readout. Full article
(This article belongs to the Special Issue Sensors Based on Optical and Photonic Devices)
Show Figures

Figure 1

12 pages, 691 KiB  
Article
Second-Order Sidebands and Group Delays in Coupled Optomechanical Cavity System with a Cubic Nonlinear Harmonic Oscillator
by Qiwen Zhao, Ying He, Yanfang Yang, Huifang Zhang and Yi Xu
Photonics 2024, 11(3), 256; https://doi.org/10.3390/photonics11030256 - 12 Mar 2024
Viewed by 1108
Abstract
The generation of second-order sidebands and its associated group delay is an important subject in optical storage and switch. In this work, the efficiency of second-order sideband generation in a coupled optomechanical cavity system with a cubic nonlinear harmonic oscillator is theoretically investigated. [...] Read more.
The generation of second-order sidebands and its associated group delay is an important subject in optical storage and switch. In this work, the efficiency of second-order sideband generation in a coupled optomechanical cavity system with a cubic nonlinear harmonic oscillator is theoretically investigated. It is found that the efficiency of second-order sideband generation can be effectively enhanced with the decrease in decay rate of optomechanical cavity, the increase in coupling strength between two cavities and the power of probe field. The slow light effect (i.e., positive group delay) is also observed in the proposed optomechanical cavity system, and can be controlled with the power of control field. Full article
(This article belongs to the Special Issue Levitated Optomechanics)
Show Figures

Figure 1

Back to TopTop