Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = organic–inorganic perovskites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1726 KiB  
Article
A Hybrid Perovskite-Based Electromagnetic Wave Absorber with Enhanced Conduction Loss and Interfacial Polarization through Carbon Sphere Embedding
by Xuehua Lian, Yao Yao, Ziming Xiong, Yantao Duan, Jianbao Wang, Shangchen Fu, Yinsuo Dai, Wenke Zhou and Zhi Zhang
Nanomaterials 2024, 14(19), 1566; https://doi.org/10.3390/nano14191566 - 27 Sep 2024
Abstract
Electronic equipment brings great convenience to daily life but also causes a lot of electromagnetic radiation pollution. Therefore, there is an urgent demand for electromagnetic wave-absorbing materials with a low thickness, wide bandwidth, and strong absorption. This work obtained a high-performance electromagnetic wave [...] Read more.
Electronic equipment brings great convenience to daily life but also causes a lot of electromagnetic radiation pollution. Therefore, there is an urgent demand for electromagnetic wave-absorbing materials with a low thickness, wide bandwidth, and strong absorption. This work obtained a high-performance electromagnetic wave absorption system by adding conductive carbon spheres (CSs) to the CH3NH3PbI3 (MAPbI3) absorber. In this system, MAPbI3, with strong dipole and relaxation polarization, acts dominant to the wave absorber. The carbon spheres provide a free electron transport channel between MAPbI3 lattices and constructs interfacial polarization loss in MAPbI3/CS. By regulating the content of CSs, we speculate that this increased effective absorption bandwidth and reflection loss intensity are attributed to the conductive channel of the carbon sphere and the interfacial polarization. As a result, when the mass ratio of the carbon sphere is 7.7%, the reflection loss intensity of MAPbI3/CS reaches −54 dB at 12 GHz, the corresponding effective absorption bandwidth is 4 GHz (10.24–14.24 GHz), and the absorber thickness is 2.96 mm. This work proves that enhancing conduction loss and interfacial polarization loss is an effective strategy for regulating the properties of dielectric loss-type absorbing materials. It also indicates that organic-inorganic hybrid perovskites have great potential in the field of electromagnetic wave absorption. Full article
Show Figures

Figure 1

15 pages, 4792 KiB  
Article
Encapsulating Halide Perovskite Quantum Dots in Metal–Organic Frameworks for Efficient Photocatalytic CO2 Reduction
by Jingwen Zhang, Wentian Zhou, Junying Chen and Yingwei Li
Catalysts 2024, 14(9), 590; https://doi.org/10.3390/catal14090590 - 3 Sep 2024
Viewed by 253
Abstract
Halide perovskite has shown great potential in photocatalysis owing to its diversity, suitable energy band alignment, rapid charge transfer, and excellent optical properties. However, poor stability, especially under humid conditions, hinders their practical application in photocatalysis. In this work, we report the encapsulation [...] Read more.
Halide perovskite has shown great potential in photocatalysis owing to its diversity, suitable energy band alignment, rapid charge transfer, and excellent optical properties. However, poor stability, especially under humid conditions, hinders their practical application in photocatalysis. In this work, we report the encapsulation of inorganic–organic hybrid perovskite QDs into MIL-101(Cr) through an in situ growth strategy to prepare a series of MAPbBr3@MIL-101(Cr) (MA = CH3NH3+) composites. The perovskite precursors, i.e., MABr and PbBr2, were successively introduced into the pores of MOF, where the perovskite quantum dots were self-assembled in the confined environment. In photocatalytic CO2 reduction, 11%MAPbBr3@MIL-101(Cr) composite displayed the best performance among the composites with a total CO and CH4 yield of 875 μmol g−1 in 9 h, which was 8 times higher than that of the pure MAPbBr3. Such high gas production efficiency could be maintained for 78 h at least without structural and morphologic decomposition. The remarkable stability and catalytic activity of composites are mainly due to the synergistic effect and improved electron transfer between MAPbBr3 and MIL-101(Cr). Moreover, these composites revealed a novel mechanism, showing switched CH4 selectivity with the controlling of the perovskite location and contents. Those with perovskites encapsulated in the mesopores of MIL-101(Cr) were more preferential for CO production, while those with perovskites encapsulated in both meso- and micropores could produce CH4 dominantly. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

14 pages, 3239 KiB  
Article
First-Principles Approach to Finite Element Simulation of Flexible Photovoltaics
by Francis Ako Marley, Joseph Asare, Daniel Sekyi-Arthur, Tino Lukas, Augustine Nana Sekyi Appiah, Dennis Charway, Benjamin Agyei-Tuffour, Richard Boadi, Patryk Janasik, Samuel Yeboah, G. Gebreyesus, George Nkrumah-Buandoh, Marcin Adamiak and Henry James Snaith
Energies 2024, 17(16), 4064; https://doi.org/10.3390/en17164064 - 16 Aug 2024
Viewed by 455
Abstract
This study explores the potential of copper-doped nickel oxide (Cu:NiO) as a hole transport layer (HTL) in flexible photovoltaic (PV) devices using a combined first-principles and finite element analysis approach. Density functional theory (DFT) calculations reveal that Cu doping introduces additional states in [...] Read more.
This study explores the potential of copper-doped nickel oxide (Cu:NiO) as a hole transport layer (HTL) in flexible photovoltaic (PV) devices using a combined first-principles and finite element analysis approach. Density functional theory (DFT) calculations reveal that Cu doping introduces additional states in the valence band of NiO, leading to enhanced charge transport. Notably, Cu:NiO exhibits a direct band gap (reduced from 3.04 eV in NiO to 1.65 eV in the stable supercell structure), facilitating the efficient hole transfer from the active layer. Furthermore, the Fermi level shifts towards the valence band in Cu:NiO, promoting hole mobility. This translates to an improved photovoltaic performance, with Cu:NiO-based HTLs achieving ~18% and ~9% power conversion efficiencies (PCEs) in perovskite and poly 3-hexylthiophene: 1-3-methoxycarbonyl propyl-1-phenyl 6,6 C 61 butyric acid methyl ester (P3HT:PCBM) polymer solar cells, respectively. Finally, a finite element analysis demonstrates the potential of these composite HTLs with Poly 3,4-ethylene dioxythiophene)—polystyrene sulfonate (PEDOT:PSS) in flexible electronics design and the optimization of printing processes. Overall, this work highlights Cu:NiO as a promising candidate for high-performance and flexible organic–inorganic photovoltaic cells. Full article
(This article belongs to the Special Issue Photovoltaic Solar Cells and Systems: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 5777 KiB  
Article
Characterization and Degradation of Perovskite Mini-Modules
by R. Ebner, A. Mittal, G. Ujvari, M. Hadjipanayi, V. Paraskeva, G. E. Georghiou, A. Hadipour, A. Aguirre and T. Aernouts
Inorganics 2024, 12(8), 219; https://doi.org/10.3390/inorganics12080219 - 15 Aug 2024
Viewed by 480
Abstract
Organic–inorganic hybrid metal halide perovskites are poised to revolutionize the next generation of photovoltaics with their exceptional optoelectronic properties and compatibility with low-cost and large-scale fabrication methods. Since perovskite tends to degrade over short time intervals due to various parameters (oxygen, humidity, light, [...] Read more.
Organic–inorganic hybrid metal halide perovskites are poised to revolutionize the next generation of photovoltaics with their exceptional optoelectronic properties and compatibility with low-cost and large-scale fabrication methods. Since perovskite tends to degrade over short time intervals due to various parameters (oxygen, humidity, light, and temperature), advanced characterization methods are needed to understand their degradation mechanisms. In this context, investigation of the electrical and optoelectronic properties of several perovskite mini-modules was performed by means of photo- and electroluminescence imaging as well as Dark Lock-In Thermography methods. Current–voltage curves at periodic time intervals and External Quantum Efficiency measurements were implemented alongside other measurements to reveal correlations between the electrical and radiative properties of the solar cells. The different imaging techniques used in this study reveal the changes in radiative emission processes and how those are correlated with performance. Alongside the indoor optoelectronic characterization of perovskite reference samples, the outdoor monitoring of two perovskite modules of the same structure for 23 weeks is reported. Significant performance degradation is presented outdoors from the first week of testing for both samples under test. The evolution of the major electrical characteristics of the mini-modules and the diurnal changes were studied in detail. Finally, dark storage recovery studies after outdoor exposure were implemented to investigate changes in the major electrical parameters. Full article
(This article belongs to the Special Issue The State of the Art of Research on Perovskites Materials)
Show Figures

Figure 1

0 pages, 10436 KiB  
Article
Impact of Residual Strains on the Carrier Mobility and Stability of Perovskite Films
by Moulay Ahmed Slimani, Luis Felipe Gerlein, Ricardo Izquierdo and Sylvain G. Cloutier
Nanomaterials 2024, 14(15), 1310; https://doi.org/10.3390/nano14151310 - 3 Aug 2024
Viewed by 691
Abstract
Solution-based inorganic–organic halide perovskites are of great interest to researchers because of their unique optoelectronic properties and easy processing. However, polycrystalline perovskite films often show inhomogeneity due to residual strain induced during the film’s post-processing phase. In turn, these strains can impact both [...] Read more.
Solution-based inorganic–organic halide perovskites are of great interest to researchers because of their unique optoelectronic properties and easy processing. However, polycrystalline perovskite films often show inhomogeneity due to residual strain induced during the film’s post-processing phase. In turn, these strains can impact both their stability and performance. An exhaustive study of residual strains can provide a better understanding and control of how they affect the performance and stability of perovskite films. In this work, we explore this complex interrelationship between residual strains and electrical properties for methylammonium CH3NH3PbI3xClx films using grazing incidence X-ray diffraction (GIXRD). We correlate their resistivity and carrier mobility using the Hall effect. The sin2(ψ) technique is used to optimize the annealing parameters for the perovskite films. We also establish that temperature-induced relaxation can yield a significant enhancement of the charge carrier transports in perovskite films. Finally, we also use Raman micro-spectroscopy to assess the degradation of perovskite films as a function of their residual strains. Full article
Show Figures

Figure 1

13 pages, 2691 KiB  
Article
Hybrid Amino Acid Ligand-Regulated Excited Dynamics of Highly Luminescent Perovskite Quantum Dots for Bright White Light-Emitting Diodes
by Baoye Hu, Weiqiang Zhang and Ya Chu
Nanomaterials 2024, 14(15), 1266; https://doi.org/10.3390/nano14151266 - 29 Jul 2024
Viewed by 779
Abstract
Organic–inorganic hybrid perovskite quantum dots (QDs) have garnered significant research interest owing to their unique structure and optoelectronic properties. However, their poor optical performance in ambient air remains a significant limitation, hindering their advancement and practical applications. Herein, three amino acids (valine, threonine [...] Read more.
Organic–inorganic hybrid perovskite quantum dots (QDs) have garnered significant research interest owing to their unique structure and optoelectronic properties. However, their poor optical performance in ambient air remains a significant limitation, hindering their advancement and practical applications. Herein, three amino acids (valine, threonine and cysteine) were chosen as surface ligands to successfully prepare highly luminescent CH3NH3PbBr3 (MAPbBr3) QDs. The morphology and XRD results suggest that the inclusion of the amino acid ligands enhances the octahedral structure of the QD solutions. Moreover, the observed blue-shifted phenomenon in the photoluminescence (PL) aligns closely with the blue-shifted phenomenon observed in the ultraviolet–visible (UV-Vis) absorption spectra, attributed to the quantum confinement effect. The time-resolved spectra indicated that the introduction of the amino acid ligands successfully suppressed non-radiative recombination, consequently extending the fluorescence lifetime of the MAPbBr3 QDs. The photoluminescence quantum yields (PLQYs) of the amino acid-treated MAPbBr3 QDs are increased by 94.8%. The color rendering index (CRI) of the produced white light-emitting diode (WLED) is 85.3, with a correlated color temperature (CCT) of 5453 K. Our study presents a novel approach to enhancing the performance of perovskite QDs by employing specially designed surface ligands for surface passivation. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Optoelectronic Devices)
Show Figures

Figure 1

20 pages, 2240 KiB  
Review
The Role of Optimal Electron Transfer Layers for Highly Efficient Perovskite Solar Cells—A Systematic Review
by Ramkumar Vanaraj, Vajjiravel Murugesan and Balamurugan Rathinam
Micromachines 2024, 15(7), 859; https://doi.org/10.3390/mi15070859 - 30 Jun 2024
Viewed by 843
Abstract
Perovskite solar cells (PSCs), which are constructed using organic–inorganic combination resources, represent an upcoming technology that offers a competitor to silicon-based solar cells. Electron transport materials (ETMs), which are essential to PSCs, are attracting a lot of interest. In this section, we begin [...] Read more.
Perovskite solar cells (PSCs), which are constructed using organic–inorganic combination resources, represent an upcoming technology that offers a competitor to silicon-based solar cells. Electron transport materials (ETMs), which are essential to PSCs, are attracting a lot of interest. In this section, we begin by discussing the development of the PSC framework, which would form the foundation for the requirements of the ETM. Because of their exceptional electronic characteristics and low manufacturing costs, perovskite solar cells (PSCs) have emerged as a promising proposal for future generations of thin-film solar energy. However, PSCs with a compact layer (CL) exhibit subpar long-term reliability and efficacy. The quality of the substrate beneath a layer of perovskite has a major impact on how quickly it grows. Therefore, there has been interest in substrate modification using electron transfer layers to create very stable and efficient PSCs. This paper examines the systemic alteration of electron transport layers (ETLs) based on electron transfer layers that are employed in PSCs. Also covered are the functions of ETLs in the creation of reliable and efficient PSCs. Achieving larger-sized particles, greater crystallization, and a more homogenous morphology within perovskite films, all of which are correlated with a more stable PSC performance, will be guided by this review when they are developed further. To increase PSCs’ sustainability and enable them to produce clean energy at levels previously unheard of, the difficulties and potential paths for future research with compact ETLs are also discussed. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Second Edition)
Show Figures

Figure 1

11 pages, 2495 KiB  
Article
Photophysical Properties, Stability and Microstructures of Temperature-Dependent Evolution of Methylammonium Lead Bromide Perovskite
by Yuming Lai, Lin Ma, Shi Zheng, Xiao Li, Shuangyu Cai and Hai Chang
Crystals 2024, 14(7), 589; https://doi.org/10.3390/cryst14070589 - 27 Jun 2024
Viewed by 608
Abstract
Organic/inorganic hybrid perovskite materials, such as CH3NH3PbX3 (X = I, Br), have attracted the attention of the scientific community due to their excellent properties such as a widely tunable bandgap, high optical absorption coefficient, excellent power [...] Read more.
Organic/inorganic hybrid perovskite materials, such as CH3NH3PbX3 (X = I, Br), have attracted the attention of the scientific community due to their excellent properties such as a widely tunable bandgap, high optical absorption coefficient, excellent power conversion efficiency, etc. The exposure of perovskite solar cells and photovoltaic devices to heat can significantly degrade their performance. Therefore, elucidating their temperature-dependent optical properties is essential for performance optimization of perovskite solar cells. We synthesized CH3NH3PbBr3 (MAPbBr3) single crystals through the polymer-controlled nucleation route and investigated the optical properties and molecular structure evolution of them with temperature. Through temperature evolution photoluminescence (PL) spectroscopy, we found that the fluorescence intensity was greatly affected by increasing the temperature, with an asymmetric PL profile suggesting that more captured excitons undergo radiative complexation. The optical photographs showed that the color of MAPbBr3 single crystals faded. Raman spectroscopy revealed that during the heating process, the structure of MAPbBr3 was still preserved at 90 °C since all of the Raman bands were very clear. When the temperature increased to 120 °C, the Raman bands of the internal modes became very weak. On further heating, the inorganic framework on sample’s surface started to disintegrate above 210 °C. During the heating process, the PL spectra exhibited significant changes in spectral intensity, peak position and Full Width Half Maximum (FWHM). The PL spectral intensity decreased abruptly with increasing temperature. The peak position was blue shifted with increasing temperature, and the peak shape showed an obvious asymmetry. The FMWH of the PL spectra was gradually broadened with the increase in the temperature, and there was a sharp increase from 270 °C to 300 °C. These variations in the PL spectra with temperature indicate that the optical properties of MAPbBr3 are greatly affected by temperature, which in turn affects the application of MAPbBr3 in fields such as optical devices. These results may be instructive for the application of MAPbBr3. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

27 pages, 4667 KiB  
Review
Quantum Dots as a Potential Multifunctional Material for the Enhancement of Clinical Diagnosis Strategies and Cancer Treatments
by Wenqi Guo, Xueru Song, Jiaqi Liu, Wanyi Liu, Xiaoyuan Chu and Zengjie Lei
Nanomaterials 2024, 14(13), 1088; https://doi.org/10.3390/nano14131088 - 25 Jun 2024
Cited by 2 | Viewed by 1448
Abstract
Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties, which stem from their wide bandgap characteristics, offer significant advantages for early cancer detection and treatment. Metal [...] Read more.
Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties, which stem from their wide bandgap characteristics, offer significant advantages for early cancer detection and treatment. Metal QDs have already demonstrated therapeutic potential in early tumor imaging and therapy. However, biological toxicity has led to the development of various non-functionalized QDs, such as carbon QDs (CQDs), graphene QDs (GQDs), black phosphorus QDs (BPQDs) and perovskite quantum dots (PQDs). To meet the diverse needs of clinical cancer treatment, functionalized QDs with an array of modifications (lipid, protein, organic, and inorganic) have been further developed. These advancements combine the unique material properties of QDs with the targeted capabilities of biological therapy to effectively kill tumors through photodynamic therapy, chemotherapy, immunotherapy, and other means. In addition to tumor-specific therapy, the fluorescence quantum yield of QDs has gradually increased with technological progress, enabling their significant application in both in vivo and in vitro imaging. This review delves into the role of QDs in the development and improvement of clinical cancer treatments, emphasizing their wide bandgap semiconductor properties. Full article
(This article belongs to the Special Issue Advances in Wide-Bandgap Semiconductor Nanomaterials)
Show Figures

Figure 1

18 pages, 4026 KiB  
Article
Studying the Thermodynamic Phase Stability of Organic–Inorganic Hybrid Perovskites Using Machine Learning
by Juan Wang, Xinzhong Wang, Shun Feng and Zongcheng Miao
Molecules 2024, 29(13), 2974; https://doi.org/10.3390/molecules29132974 - 22 Jun 2024
Viewed by 586
Abstract
As an important photovoltaic material, organic–inorganic hybrid perovskites have attracted much attention in the field of solar cells, but their instability is one of the main challenges limiting their commercial application. However, the search for stable perovskites among the thousands of perovskite materials [...] Read more.
As an important photovoltaic material, organic–inorganic hybrid perovskites have attracted much attention in the field of solar cells, but their instability is one of the main challenges limiting their commercial application. However, the search for stable perovskites among the thousands of perovskite materials still faces great challenges. In this work, the energy above the convex hull values of organic–inorganic hybrid perovskites was predicted based on four different machine learning algorithms, namely random forest regression (RFR), support vector machine regression (SVR), XGBoost regression, and LightGBM regression, to study the thermodynamic phase stability of organic–inorganic hybrid perovskites. The results show that the LightGBM algorithm has a low prediction error and can effectively capture the key features related to the thermodynamic phase stability of organic–inorganic hybrid perovskites. Meanwhile, the Shapley Additive Explanation (SHAP) method was used to analyze the prediction results based on the LightGBM algorithm. The third ionization energy of the B element is the most critical feature related to the thermodynamic phase stability, and the second key feature is the electron affinity of ions at the X site, which are significantly negatively correlated with the predicted values of energy above the convex hull (Ehull). In the screening of organic–inorganic perovskites with high stability, the third ionization energy of the B element and the electron affinity of ions at the X site is a worthy priority. The results of this study can help us to understand the correlation between the thermodynamic phase stability of organic–inorganic hybrid perovskites and the key features, which can assist with the rapid discovery of highly stable perovskite materials. Full article
Show Figures

Figure 1

13 pages, 4220 KiB  
Article
The Grafting of Hydroxyaromatic Organics within Layered Perovskites via a Microwave-Assisted Method
by Anamika Poduval, Kirsten D. Jones, Levon A. LeBan and John B. Wiley
Molecules 2024, 29(12), 2888; https://doi.org/10.3390/molecules29122888 - 18 Jun 2024
Viewed by 655
Abstract
A new series of inorganic–organic hybrid perovskite materials were prepared by microwave-assisted grafting reactions. Simple carboxylic acids, acetic acid, and propionic acid, as well as hydroxyaromatic carboxylic acids, 3,5-dihydroxy benzoic acid (DBA), 5-hydroxyisophthalic acid (HPA), 4-hydroxybenzoic acid (HBA), and 4-hydroxy-4-biphenyl carboxylic acid (HBCA), [...] Read more.
A new series of inorganic–organic hybrid perovskite materials were prepared by microwave-assisted grafting reactions. Simple carboxylic acids, acetic acid, and propionic acid, as well as hydroxyaromatic carboxylic acids, 3,5-dihydroxy benzoic acid (DBA), 5-hydroxyisophthalic acid (HPA), 4-hydroxybenzoic acid (HBA), and 4-hydroxy-4-biphenyl carboxylic acid (HBCA), were reacted with the Dion–Jacobson double-layered perovskite, HLaNb2O7, and its alcoxy derivatives. Grafting was found to not occur with simple carboxylic acids, while those molecules with hydroxyls were all attached to the perovskite interlayers. Reactivity of the hydroxyaromatic carboxylic acids varied with the different layered perovskite hosts where reactions with HLaNb2O7 did not occur, and those with n-propoxy-LaNb2O7 were limited; the greatest extent of reactivity was seen with n-decoxy-LaNb2O7. This is attributed to the larger interlayer spacing available for the insertion of the various hydroxyaromatic carboxylic acid compounds. The loading exhibited by the grafting species was less than that seen with well-known long-chain alkoxy grafting groups. It is expected that the width of the molecules contributes to this where, due to the benzyl groups, the interlayer volume of the grafted moieties occupies a larger horizontal fraction, therefore minimizing the loading to the below half. X-ray powder diffraction and transmission electron microscopy studies found that grafting of the n-decoxy-LaNb2O7 intermediates with the series of hydroxyaromatics resulted in a reduction in crystallinity along with a disruption of the layer structure. Raman data on the series show little variation in local structure except for HBCA, where there appears to be a lengthening of the Nb-O apical linkage and a possible reduction in the distortion of inner-layer NbO6 octahedra. The optical properties of the hydroxyaromatic carboxylic acid grafted perovskites were also investigated using diffuse-reflectance UV-Vis spectroscopy. The band gaps of DBA, HPA, and HBA were found to be similar to the parent (Eg ≈ 3.4 eV), while the HBCA was significantly less by ca. 0.6 eV. This difference is attributed to electron withdrawal from the perovskite block to the HBCA ligand, leading to a lower band gap for the HBCA compound. The methods described herein allow for the formation of a new series of inorganic–organic hybrid materials where the products are of interest as precursors to more complex architectures as well as models for band gap modification of metal oxide photocatalysts. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

14 pages, 2127 KiB  
Article
The Effect of Cesium Incorporation on the Vibrational and Elastic Properties of Methylammonium Lead Chloride Perovskite Single Crystals
by Syed Bilal Junaid, Furqanul Hassan Naqvi and Jae-Hyeon Ko
Materials 2024, 17(12), 2862; https://doi.org/10.3390/ma17122862 - 12 Jun 2024
Viewed by 506
Abstract
Hybrid organic-inorganic lead halide perovskites (LHPs) have emerged as a highly significant class of materials due to their tunable and adaptable properties, which make them suitable for a wide range of applications. One of the strategies for tuning and optimizing LHP-based devices is [...] Read more.
Hybrid organic-inorganic lead halide perovskites (LHPs) have emerged as a highly significant class of materials due to their tunable and adaptable properties, which make them suitable for a wide range of applications. One of the strategies for tuning and optimizing LHP-based devices is the substitution of cations and/or anions in LHPs. The impact of Cs substitution at the A site on the structural, vibrational, and elastic properties of MAxCs1−xPbCl3-mixed single crystals was investigated using X-ray diffraction (XRD) and Raman and Brillouin light scattering techniques. The XRD results confirmed the successful synthesis of impurity-free single crystals, which exhibited a phase coexistence of dominant cubic and minor orthorhombic symmetries. Raman spectroscopy was used to analyze the vibrational modes associated with the PbCl6 octahedra and the A-site cation movements, thereby revealing the influence of cesium incorporation on the lattice dynamics. Brillouin spectroscopy was employed to investigate the changes in elastic properties resulting from the Cs substitution. The incorporation of Cs cations induced lattice distortions within the inorganic framework, disrupting the hydrogen bonding between the MA cations and PbCl6 octahedra, which in turn affected the elastic constants and the sound velocities. The substitution of the MA cations with smaller Cs cations resulted in a stiffer lattice structure, with the two elastic constants increasing up to a Cs content of 30%. The current findings facilitate a fundamental understanding of mixed lead chloride perovskite materials, providing valuable insights into their structural and vibrational properties. Full article
(This article belongs to the Special Issue Terahertz Vibrational Spectroscopy in Advanced Materials)
Show Figures

Figure 1

14 pages, 3592 KiB  
Article
Phonon Properties and Lattice Dynamics of Two- and Tri-Layered Lead Iodide Perovskites Comprising Butylammonium and Methylammonium Cations—Temperature-Dependent Raman Studies
by Mirosław Mączka, Szymon Smółka and Maciej Ptak
Materials 2024, 17(11), 2503; https://doi.org/10.3390/ma17112503 - 22 May 2024
Viewed by 867
Abstract
Hybrid lead iodide perovskites are promising photovoltaic and light-emitting materials. Extant literature data on the key optoelectronic and luminescent properties of hybrid perovskites indicate that these properties are affected by electron–phonon coupling, the dynamics of the organic cations, and the degree of lattice [...] Read more.
Hybrid lead iodide perovskites are promising photovoltaic and light-emitting materials. Extant literature data on the key optoelectronic and luminescent properties of hybrid perovskites indicate that these properties are affected by electron–phonon coupling, the dynamics of the organic cations, and the degree of lattice distortion. We report temperature-dependent Raman studies of BA2MAPb2I7 and BA2MA2Pb3I10 (BA = butylammonium; MA = methylammonium), which undergo two structural phase transitions. Raman data obtained in broad temperature (360–80 K) and wavenumber (1800–10 cm−1) ranges show that ordering of BA+ cations triggers the higher temperature phase transition, whereas freezing of MA+ dynamics occurs below 200 K, leading to the onset of the low-temperature phase transition. This ordering is associated with significant deformation of the inorganic sublattice, as evidenced by changes observed in the lattice mode region. Our results show, therefore, that Raman spectroscopy is a very valuable tool for monitoring the separate dynamics of different organic cations in perovskites, comprising “perovskitizer” and interlayer cations. Full article
(This article belongs to the Special Issue Terahertz Vibrational Spectroscopy in Advanced Materials)
Show Figures

Figure 1

14 pages, 4207 KiB  
Article
Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films
by Sunkyu Kim, Wonjong Lee, Zobia Irshad, Siwon Yun, Hyeji Han, Muhammad Adnan, Hyo Sik Chang and Jongchul Lim
Energies 2024, 17(9), 2062; https://doi.org/10.3390/en17092062 - 26 Apr 2024
Cited by 1 | Viewed by 771
Abstract
Hybrid organic–inorganic perovskite solar cells (PSCs) are receiving huge attention owing to their marvelous advantages, such as low cost, high efficiency, and superior optoelectronics characteristics. Despite their promising potential, charge-carrier dynamics at the interfaces are still ambiguous, causing carrier recombination and hindering carrier [...] Read more.
Hybrid organic–inorganic perovskite solar cells (PSCs) are receiving huge attention owing to their marvelous advantages, such as low cost, high efficiency, and superior optoelectronics characteristics. Despite their promising potential, charge-carrier dynamics at the interfaces are still ambiguous, causing carrier recombination and hindering carrier transport, thus lowering the open-circuit voltages (Voc) of PSCs. To unveil this ambiguous phenomenon, we intensively performed various optoelectronic measurements to investigate the impact of interfacial charge-carrier dynamics of PSCs under various light intensities. This is because the charge density can exhibit different mobility and charge transport properties depending on the characteristics of the charge transport layers. We explored the influence of the hole transport layer (HTL) by investigating charge transport properties using photoluminescence (PL) and time-resolved (TRPL) to unveil interfacial recombination phenomena and optoelectronic characteristics. We specifically investigated the impact of various thicknesses of HTLs, such as 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD), and poly(triaryl)amine (PTAA), on FA0.83MA0.17Pb(Br0.05I0.95)3 perovskite films. The HTLs are coated on perovskite film by altering the HTL’s concentration and using F4-TCNQ and 4-tert-butylpyridine (tBP) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSi) as dopants both for spiro-OMeTAD and PTAA. These HTLs diversified the charge concentration gradients in the absorption layer, thus leading to different recombination rates based on the employed laser intensities. At the same time, the generated charge carriers are rapidly transferred to the interface of the HTL/absorption layer and accumulate holes at the interface because of inefficient capacitance and mobility differences caused by differently doped HTL thicknesses. Notably, the charge concentration gradient is low at lower light intensities and did not accumulate holes at the HTL/absorption layer interface, even though they have high charge mobility. Therefore, this study highlights the importance of interfacial charge recombination and charge transport phenomena to achieve highly efficient and stable PSCs. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

4 pages, 946 KiB  
Proceeding Paper
Effective Surface Washing of All Inorganic Perovskite Nanocrystals to Enhance Optoelectronic Properties
by Saqib Ali, Maryam Basit, Muhammad Arman Liaquat, Muhammad Adnan, Aftab Akram and Sofia Javed
Mater. Proc. 2024, 17(1), 19; https://doi.org/10.3390/materproc2024017019 - 18 Apr 2024
Viewed by 570
Abstract
All inorganic perovskite colloidal nano crystals are an emerging class of optoelectronic materials. However, their colloidal and structural stability during isolation and washing are major hurdles for their commercial application. Their intrinsic chemical instability and optical stability are directly related to the bonding [...] Read more.
All inorganic perovskite colloidal nano crystals are an emerging class of optoelectronic materials. However, their colloidal and structural stability during isolation and washing are major hurdles for their commercial application. Their intrinsic chemical instability and optical stability are directly related to the bonding nature of the nanocrystals’ surface and organic capping agents that passivate the surface of nanocrystals. We studied the surface ligand properties of CsPbBr3 prepared by the conventional hot injection method and their washing with varying polarity antisolvent. We observed changes in electrical and optical properties through experimental studies. The study was mainly done by optical and electronic measurements. We determined a facile nanocrystal washing protocol and observed a considerable improvement in the optoelectronic properties of the all-inorganic perovskite colloidal nanocrystals. Full article
(This article belongs to the Proceedings of CEMP 2023)
Show Figures

Figure 1

Back to TopTop