Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = photonic device optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7152 KiB  
Article
Deep Learning Design for Loss Optimization in Metamaterials
by Xianfeng Wu, Jing Zhao, Kunlun Xie and Xiaopeng Zhao
Nanomaterials 2025, 15(3), 178; https://doi.org/10.3390/nano15030178 - 23 Jan 2025
Viewed by 373
Abstract
Inherent material loss is a pivotal challenge that impedes the development of metamaterial properties, particularly in the context of 3D metamaterials operating at visible wavelengths. Traditional approaches, such as the design of periodic model structures and the selection of noble metals, have encountered [...] Read more.
Inherent material loss is a pivotal challenge that impedes the development of metamaterial properties, particularly in the context of 3D metamaterials operating at visible wavelengths. Traditional approaches, such as the design of periodic model structures and the selection of noble metals, have encountered a plateau. Coupled with the complexities of constructing 3D structures and achieving precise alignment, these factors have made the creation of low-loss metamaterials in the visible spectrum a formidable task. In this work, we harness the concept of deep learning, combined with the principle of weak interactions in metamaterials, to re-examine and optimize previously validated disordered discrete metamaterials. The paper presents an innovative strategy for loss optimization in metamaterials with disordered structural unit distributions, proving their robustness and ability to perform intended functions within a critical distribution ratio. This refined design strategy offers a theoretical framework for the development of single-frequency and broadband metamaterials within disordered discrete systems. It paves the way for the loss optimization of optical metamaterials and the facile fabrication of high-performance photonic devices. Full article
Show Figures

Figure 1

19 pages, 7308 KiB  
Article
New Insights Reached via Graded-Interfaces Modeling: How High-Power, High-Efficiency Mid-Infrared QCLs Work
by Dan Botez, Suraj Suri, Huilong Gao, Thomas Grange, Jeremy D. Kirch, Luke J. Mawst and Robert A. Marsland
Photonics 2025, 12(2), 93; https://doi.org/10.3390/photonics12020093 - 21 Jan 2025
Viewed by 491
Abstract
Graded-interfaces modeling unveils key features of high-power, high-efficiency quantum-cascade lasers (QCLs): direct resonant-tunneling injection from a prior-stage, low-energy state into the upper-laser (ul) level, over a wide (~50 nm) multiple-barrier region; and a new type of photon-induced carrier transport (PICT). Stage-level [...] Read more.
Graded-interfaces modeling unveils key features of high-power, high-efficiency quantum-cascade lasers (QCLs): direct resonant-tunneling injection from a prior-stage, low-energy state into the upper-laser (ul) level, over a wide (~50 nm) multiple-barrier region; and a new type of photon-induced carrier transport (PICT). Stage-level QCL operation primarily involves two steps: injection into the ul level and photon-assisted diagonal transition. Furthermore, under certain conditions, a prior-stage low-energy state, extending deep into the next stage, is the ul level, thus making such devices injectionless QCLs and leading to stronger PICT action due to quicker gain recovery. Thermalization within a miniband ensures population inversion between a state therein and a state in the next miniband. Using graded-interfaces modeling, step-tapered active-region (STA) QCLs possessing PICT action have been designed for carrier-leakage suppression. A preliminary 4.6 µm emitting STA design of a metal–organic chemical-vapor deposition (MOCVD)-grown QCL led to an experimental 19.1% front-facet, peak wall-plug efficiency (WPE). Pure, diffraction-limited beam operation is obtained at 1.3 W CW power. A low-leakage 4.7 µm emitting design provides a projected 24.5% WPE value, considering MOCVD-growth, graded-interface interface-roughness (IFR) parameters, and waveguide loss (αw). The normalized leakage-current density, Jleak/Jth, is 17.5% vs. 28% for the record-WPE 4.9 µm emitting QCL. Then, when considering the IFR parameters and αw values of optimized-crystal-growth QCLs, Jleak/Jth decreases to 13.5%, and the front-facet WPE value reaches 33%, thus approaching the ~41% fundamental limit. The potential of graded-interfaces modeling to become the design tool for achieving room-temperature operation of terahertz QCLs is discussed. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

14 pages, 4800 KiB  
Article
Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator
by Zixin Chen, Jianping Li, Weiqin Zheng, Hongkang Liu, Quandong Huang, Ya Han and Yuwen Qin
Photonics 2025, 12(1), 85; https://doi.org/10.3390/photonics12010085 - 17 Jan 2025
Viewed by 518
Abstract
With the ever-growing demand for high-speed optical communications, microwave photonics, and quantum key distribution systems, compact electro-optic (EO) modulators with high extinction ratios, large bandwidth, and high tuning efficiency are urgently pursued. However, most integrated lithium–niobate (LN) modulators cannot achieve these high performances [...] Read more.
With the ever-growing demand for high-speed optical communications, microwave photonics, and quantum key distribution systems, compact electro-optic (EO) modulators with high extinction ratios, large bandwidth, and high tuning efficiency are urgently pursued. However, most integrated lithium–niobate (LN) modulators cannot achieve these high performances simultaneously. In this paper, we propose an improved theoretical model of a chip-scale electro-optic (EO) microring modulator (EO-MRM) based on X-cut lithium–niobate-on-insulator (LNOI) with a hybrid architecture consisting of a 180-degree Euler bend in the coupling region, double-layer metal electrode structure, and ground–signal–signal–ground (G-S-S-G) electrode configuration, which can realize highly comprehensive performance and a compact footprint. After parameter optimization, the designed EO-MRM exhibited an extinction ratio of 38 dB. Compared to the structure without Euler bends, the increase was 35 dB. It also had a modulation bandwidth of 29 GHz and a tunability of 8.24 pm/V when the straight waveguide length was 100 μm. At the same time, the proposed device footprint was 1.92 × 104 μm2. The proposed MRM model provides an efficient solution to high-speed optical communication systems and microwave photonics, which is helpful for the fabrication of high-performance and multifunctional photonic integrated devices. Full article
Show Figures

Figure 1

17 pages, 3310 KiB  
Article
Fully Inkjet-Printed Flexible Graphene–Prussian Blue Platform for Electrochemical Biosensing
by Željka Boček, Marko Zubak and Petar Kassal
Biosensors 2025, 15(1), 28; https://doi.org/10.3390/bios15010028 - 8 Jan 2025
Viewed by 509
Abstract
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work [...] Read more.
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene–Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice. The graphene electrode was inkjet-printed on a flexible polyimide substrate and then thermally and photonically treated with intense pulsed light, followed by inkjet printing of a PB nanoparticle suspension. The optimization of post-printing treatment and electrode deposition conditions was performed to yield a platform with minimal sheet resistance and peak potential differences. A thorough study of PB deposition was conducted: the fully inkjet-printed system was compared against sensors with PB deposited chemically or by drop casting the PB suspension on different kinds of carbon electrodes (glassy carbon, commercial screen-printed, and in-house inkjet-printed electrodes). For hydrogen peroxide detection, the fully inkjet-printed platform exhibits excellent sensitivity, a wider linear range, better linearity, and greater stability towards higher concentrations of peroxide than the other tested electrodes. Finally, lactate oxidase was immobilized in a chitosan matrix, and the prepared biosensor exhibited analytical performance comparable to other lactate sensors found in the literature in a wide, physiologically relevant linear range for measuring lactate concentration in sweat. The development of mediator-modified electrodes with a single fabrication technology, as demonstrated here, paves the way for the scalable production of low-cost, wearable, and flexible biosensors. Full article
(This article belongs to the Special Issue Flexible Electronics for Biosensing)
Show Figures

Figure 1

13 pages, 3526 KiB  
Article
Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells
by Chenqing Tian, Dongxue Liu, Yixin Dong, Yajie Wang, Tinghuan Yang, Yang Yang, Meng Zhang, Erxin Zhao, Nan Wu, Zheng Zhang, Ye Yang, Yongshuai Gong, Buyi Yan, Shengxiong Zhang, Lu Zhang and Tianqi Niu
Materials 2025, 18(1), 179; https://doi.org/10.3390/ma18010179 - 3 Jan 2025
Viewed by 666
Abstract
Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, [...] Read more.
Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies. The strong chemical coordination of 4-ABS with the octahedra framework can further regulate the crystallization kinetics of perovskite, facilitating the enlarged crystal sizes with mitigated grain boundaries within films. The synergistic optimization effects on trap suppression and crystallization modulation upon 4-ABS addition can reduce energy loss and mitigate ionic migration under low-light conditions. As a result, the optimized device demonstrated an improved power conversion efficiency from 22.48% to 24.34% and achieved an impressive efficiency of 41.11% under 1000 lux weak light conditions. This research provides an effective defect modulation strategy for synergistically boosting the device efficiency under standard and weak light irradiations. Full article
Show Figures

Figure 1

11 pages, 2058 KiB  
Data Descriptor
Synthetic Dataset for Analyzing Geometry-Dependent Optical Properties of All-Pass Micro-Ring Resonators
by Sebastian Valencia-Garzon, Esteban Gonzalez-Valencia, Nelson Gómez-Cardona, Andres Calvo-Salcedo, J. A. Jaramillo-Villegas, Jorge Montoya-Cardona and Erick Reyes-Vera
Data 2025, 10(1), 3; https://doi.org/10.3390/data10010003 - 30 Dec 2024
Viewed by 539
Abstract
This study focuses on the analysis of the spectral response of all-pass micro-ring resonators (MRRs), which are essential in photonic device applications such as telecommunications, sensing, and optical frequency comb generation. The aim of this work is to generate a synthetic dataset that [...] Read more.
This study focuses on the analysis of the spectral response of all-pass micro-ring resonators (MRRs), which are essential in photonic device applications such as telecommunications, sensing, and optical frequency comb generation. The aim of this work is to generate a synthetic dataset that explores the spectral characteristics of the expected transmission spectra of MRRs by varying their structural parameters. Using numerical simulations, the dataset will allow the optimization of MRR performance metrics such as free spectral range (FSR), full width at half maximum (FWHM), and quality factor (Q-factor). The results confirm that variations in geometric configurations can significantly affect MRR performance, and the dataset provides valuable insights into the optimization process. Furthermore, machine learning techniques can be applied to the dataset to automate and improve the design process, reducing simulation times and increasing accuracy. This work contributes to the development of photonic devices by providing a broad dataset for further analysis and optimization. Full article
Show Figures

Figure 1

13 pages, 10236 KiB  
Article
Silicon Nitride Spot-Size Converter with Coupling Loss < 1.5 dB for Both Polarizations at 1W Optical Input
by Enge Zhang, Yu Zhang, Lei Zhang and Xu Yang
Photonics 2025, 12(1), 5; https://doi.org/10.3390/photonics12010005 - 24 Dec 2024
Viewed by 522
Abstract
Microwave photonics (MWP) applications often require a high optical input power (>100 mW) to achieve an optimal signal-to-noise ratio (SNR). However, conventional silicon spot-size converters (SSCs) are susceptible to high optical power due to the two-photon absorption (TPA) effect. To overcome this, we [...] Read more.
Microwave photonics (MWP) applications often require a high optical input power (>100 mW) to achieve an optimal signal-to-noise ratio (SNR). However, conventional silicon spot-size converters (SSCs) are susceptible to high optical power due to the two-photon absorption (TPA) effect. To overcome this, we introduce a silicon nitride (SiN) SSC fabricated on a silicon-on-insulator (SOI) substrate. When coupled to a tapered fiber with a 4.5 μm mode field diameter (MFD), the device exhibits low coupling losses of <0.9 dB for TE modes and <1.4 dB for TM modes at relatively low optical input power. Even at a 1W input power, the additional loss is minimal, at approximately 0.1 dB. The versatility of the SSC is further demonstrated by its ability to efficiently couple to fibers with MFDs of 2.5 μm and 6.5 μm, maintaining coupling losses below 1.5 dB for both polarizations over the entire C-band. This adaptability to different mode diameters makes the SiN SSC a promising candidate for future electro-optic chiplets that integrate heterogeneous materials such as III-V for gain and lithium niobate for modulation with the SiN-on-SOI for all other functions using advanced packaging techniques. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

12 pages, 20525 KiB  
Communication
Performance Analysis of Chirped Graded Photonic Crystal Resonator for Biosensing Applications
by Jasmine Saini, Ajay Kumar and Amit Kumar Goyal
Photonics 2024, 11(12), 1173; https://doi.org/10.3390/photonics11121173 - 13 Dec 2024
Viewed by 550
Abstract
In this manuscript, a chirped graded photonic crystal (PhC) resonator structure is optimized for biosensing applications. The proposed structure comprises a bilayer PhC with an aqueous defect layer, where the thickness grading within the material is introduced, considering alpha (α) as [...] Read more.
In this manuscript, a chirped graded photonic crystal (PhC) resonator structure is optimized for biosensing applications. The proposed structure comprises a bilayer PhC with an aqueous defect layer, where the thickness grading within the material is introduced, considering alpha (α) as a grading parameter. The device performance is analytically evaluated using the finite element method (FEM). The impact of α, the resonator thickness, and the incidence angle on the device performance is analyzed. Further, the device’s ability to be used as a biosensor is evaluated, considering cholesterol as an analyte. The analytical results demonstrate an average sensitivity of 410 nm/RIU, a quality factor of 0.91 × 103, and a figure of merit (FOM) of 2.47 × 102RIU1, showing 88.5% and 43% improvements in sensitivity and FOM compared to recently reported devices. The device’s superior sensing performance makes it suitable for medical and commercial applications, while the use of thickness grading addresses fabrication limitations, offering a robust framework for advanced photonic device design. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

26 pages, 3798 KiB  
Article
Polycrystalline Films of Indium-Doped PbTe on Amorphous Substrates: Investigation of the Material Based on Study of Its Structural, Transport, and Optical Properties
by Jürgen Jopp, Vadim Kovalyuk, Elias Towe, Roni Shneck, Zinovi Dashevsky and Mark Auslender
Materials 2024, 17(24), 6058; https://doi.org/10.3390/ma17246058 - 11 Dec 2024
Viewed by 583
Abstract
Nowadays, polycrystalline lead telluride is one of the premier substances for thermoelectric devices while remaining a hopeful competitor to current semiconductor materials used in mid-infrared photonic applications. Notwithstanding that, the development of reliable and reproducible routes for the synthesis of PbTe thin films [...] Read more.
Nowadays, polycrystalline lead telluride is one of the premier substances for thermoelectric devices while remaining a hopeful competitor to current semiconductor materials used in mid-infrared photonic applications. Notwithstanding that, the development of reliable and reproducible routes for the synthesis of PbTe thin films has not yet been accomplished. As an effort toward this aim, the present article reports progress in the growth of polycrystalline indium-doped PbTe films and their study. The introduction foregoing the main text presents an overview of studies in these and closely related research fields for seven decades. The main text reports on the electron-beam-assisted physical vapor deposition of n-type indium-doped PbTe films on two different amorphous substrates. This doping of PbTe is unique since it sets electron density uniform over grains due to pinning the Fermi level. In-house optimized parameters of the deposition process are presented. The films are structurally characterized by a set of techniques. The transport properties of the films are measured with the original setups described in detail. The infrared transmission spectra are measured and simulated with the original optical-multilayer modeling tool described in the appendix. Conclusions of films’ quality in terms of these properties altogether are drawn. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

11 pages, 2728 KiB  
Article
Reflectivity Thresholds and Optical Loss Predictions in Resonant Photonic Cavities
by Paulo Henrique Dias Ferreira, Douglas Ramos do Amaral, Vinicius Tribuzi, John Fredy Ricardo Marroquin, Jorlandio Francisco Felix and Filippo Ghiglieno
Metrology 2024, 4(4), 765-775; https://doi.org/10.3390/metrology4040044 - 11 Dec 2024
Viewed by 807
Abstract
Minimizing optical losses in resonant cavities is crucial for improving photonic device performance. This study focuses on the development of a simulation tool to analyze scattering losses in Fabry–Pérot interferometers (FPIs), offering precise modeling of waveguide dynamics and contributing to accurate loss predictions [...] Read more.
Minimizing optical losses in resonant cavities is crucial for improving photonic device performance. This study focuses on the development of a simulation tool to analyze scattering losses in Fabry–Pérot interferometers (FPIs), offering precise modeling of waveguide dynamics and contributing to accurate loss predictions across various platforms. Optical cavities often suffer from scattering losses due to surface roughness and material defects. Our approach integrates theoretical models and simulations to quantify these losses, utilizing the FPI as a model system. We identified upper and lower reflectivity thresholds, beyond which accurate measurement of losses becomes unreliable. For reflectivity below a certain threshold, measurement errors arise, while excessively high reflectivity can reduce fringe visibility and introduce detector sensitivity issues. Simulations were used to validate the model’s ability to predict reflectivity and attenuation in waveguides with varying loss levels. The software’s flexibility to adjust transmission parameters for different cavity configurations enhances its utility for a broad range of photonic systems. Our study offers a novel methodology for optical loss analysis, with practical applications in optimizing photonic devices. By providing a reliable tool for precise loss measurement, this work supports advancements in optical technologies, enabling the design of more efficient, high-performance devices across various applications. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

7 pages, 1202 KiB  
Proceeding Paper
Optimizing Germanium-Selective Functionalization on Patterned SiGe Substrates with Thiol-Based Molecules: The Critical Role of Oxygen-Free Conditions
by Alessia Arrigoni, Federico Turco, Benedetta Maria Squeo, Sonia Freddi, Monica Bollani, Tersilla Virgili, Andrea Chiappini, Laura Pasquardini and Mariacecilia Pasini
Chem. Proc. 2024, 16(1), 21; https://doi.org/10.3390/ecsoc-28-20193 - 9 Dec 2024
Cited by 1 | Viewed by 398
Abstract
Germanium offers attractive optical properties despite being an indirect bandgap semiconductor, and new Ge-based devices are being optimized for sensing and photonics applications. In particular, considering the use of Ge as a sensor, improving its selectivity via organic grafting offers new alternatives that [...] Read more.
Germanium offers attractive optical properties despite being an indirect bandgap semiconductor, and new Ge-based devices are being optimized for sensing and photonics applications. In particular, considering the use of Ge as a sensor, improving its selectivity via organic grafting offers new alternatives that are still under investigation. In this work, we focus on the selective functionalization of germanium in SiGe-patterned alloys using a custom thiol-based luminescent molecule, namely 6-[2,7-bis[5-(5-hexyl-2-thienyl)-2-thienyl]-9-(6-sulfanylhexyl)fluoren-9-yl]hexane-1-thiol. The process selectively targets regions with Ge, while leaving Si-rich areas uncovered. Moreover, this study emphasizes the importance of an oxygen-free environment, as performing the functionalization in an inert atmosphere significantly improves surface coverage. Full article
Show Figures

Figure 1

19 pages, 13815 KiB  
Article
Annealing Temperature Effect on the Properties of CoCe Thin Films Prepared by Magnetron Sputtering at Si(100) and Glass Substrates
by Shih-Hung Lin, Yung-Huang Chang, Yu-Jie Huang, Yuan-Tsung Chen and Shu-Huan Dong
Processes 2024, 12(12), 2806; https://doi.org/10.3390/pr12122806 - 8 Dec 2024
Viewed by 490
Abstract
This study explores cobalt–cerium (Co90Ce10) thin films deposited on silicon (Si) (100) and glass substrates via direct current (DC) magnetron sputtering, with thicknesses from 10 nanometer (nm) to 50 nm. Post-deposition annealing treatments, conducted from 100 °C to 300 [...] Read more.
This study explores cobalt–cerium (Co90Ce10) thin films deposited on silicon (Si) (100) and glass substrates via direct current (DC) magnetron sputtering, with thicknesses from 10 nanometer (nm) to 50 nm. Post-deposition annealing treatments, conducted from 100 °C to 300 °C, resulted in significant changes in surface roughness, surface energy, and magnetic domain size, demonstrating the potential to tune magnetic properties via thermal processing. The films exhibited hydrophilic behavior, with thinner films showing a stronger substrate effect, crucial for surface engineering in device fabrication. Increased film thickness reduced transmittance due to photon signal inhibition and light scattering, important for optimizing optical devices. Furthermore, the reduction in sheet resistance and resistivity with increasing thickness and heat treatment highlights the significance of these parameters in optimizing the electrical properties for practical applications. Full article
Show Figures

Graphical abstract

12 pages, 3361 KiB  
Article
Ultra-Low Loss and Ultra-Compact Polarization-Insensitive SOI Multimode Waveguide Crossing Based on an Inverse Design Method
by Lu Wang, Hongquan Zhou, Hao Shi, Chengqiang Zhao, Chuanqi Ma, Yanqing Wu and Renzhong Tai
Photonics 2024, 11(12), 1137; https://doi.org/10.3390/photonics11121137 - 3 Dec 2024
Viewed by 837
Abstract
Polarization-insensitive waveguide crossings are indispensable components of photonic integrated circuits (PICs), enabling the concurrent computing of optical signals from diverse waveguides inside the limits of a restricted spatial footprint. Leveraging mirror symmetry direct binary search, we successfully demonstrate an ultra-compact and ultra-low loss [...] Read more.
Polarization-insensitive waveguide crossings are indispensable components of photonic integrated circuits (PICs), enabling the concurrent computing of optical signals from diverse waveguides inside the limits of a restricted spatial footprint. Leveraging mirror symmetry direct binary search, we successfully demonstrate an ultra-compact and ultra-low loss polarization-insensitive waveguide crossing that achieves insertion losses below −0.11 dB and crosstalk levels beneath −22.6 dB for transverse electric (TE) mode, as well as insertion losses below 0.05 dB and crosstalk levels beneath −24.5 dB for transverse magnetic (TM) mode across the C-band with a footprint of 3 × 4 μm2. The results confirm that this mirror symmetry optimization method yields high-efficiency devices while reducing computational time. We believe this high-efficiency polarization-insensitive waveguide crossing can have potential applications in dense PIC systems. Full article
(This article belongs to the Special Issue Progress in Integrated Photonics and Future Prospects)
Show Figures

Figure 1

10 pages, 4742 KiB  
Article
Tellurium Photonic Crystal-Based Terahertz Polarization Splitter Using a Diamond-Shaped Ferrite Pillar Array
by Haiping Zhang, Zhifeng Zeng and Yong Wang
Crystals 2024, 14(12), 1015; https://doi.org/10.3390/cryst14121015 - 23 Nov 2024
Viewed by 624
Abstract
A T-shaped photonic crystal waveguide was designed with square lattice tellurium photonic crystals. A diamond-shaped ferrite pillar array was inserted in the junction of the waveguide to make a novel terahertz polarization splitter. Both transverse electric and transverse magnetic modes were numerically investigated [...] Read more.
A T-shaped photonic crystal waveguide was designed with square lattice tellurium photonic crystals. A diamond-shaped ferrite pillar array was inserted in the junction of the waveguide to make a novel terahertz polarization splitter. Both transverse electric and transverse magnetic modes were numerically investigated by the plane wave expansion method, which used complete photonic band gaps covering from 0.138 THz to 0.144 THz. In this frequency domain of the fully polarized band gaps, the transmission efficiency of the photonic crystal waveguide was up to −0.21 dB and −1.67 dB for the transverse electric and transverse magnetic modes, respectively. Under the action of a DC magnetic field, the THz waves were rotated 90 degrees by the diamond-shaped ferrite pillar array. Transverse electric waves or transverse magnetic waves can be separated by a polarization isolator (six smaller tellurium rods) from the fixed waves. The characteristics of the designed polarization splitter were analyzed by the finite element method, and its transmission efficiency was optimized to 95 percent by fine-tuning the radii of the thirteen ferrite pillars. A future integrated communication network of sky–earth–space will require fully polarized devices in the millimeter and terahertz wavebands. The envisaged polarization splitter has a unique function and provides a promising method for the realization of fully polarized 6G devices. Full article
(This article belongs to the Special Issue Metamaterials and Their Devices)
Show Figures

Figure 1

15 pages, 3516 KiB  
Article
Modeling of Complex Integrated Photonic Resonators Using the Scattering Matrix Method
by Di Jin, Sian Ren, Junkai Hu, Duan Huang, David J. Moss and Jiayang Wu
Photonics 2024, 11(12), 1107; https://doi.org/10.3390/photonics11121107 - 22 Nov 2024
Viewed by 813
Abstract
We propose a universal approach for modeling complex integrated photonic resonators based on the scattering matrix method. By dividing devices into basic elements including directional couplers and connecting waveguides, our approach can be used to model integrated photonic resonators with both unidirectional and [...] Read more.
We propose a universal approach for modeling complex integrated photonic resonators based on the scattering matrix method. By dividing devices into basic elements including directional couplers and connecting waveguides, our approach can be used to model integrated photonic resonators with both unidirectional and bidirectional light propagation, with the simulated spectral response showing good agreement with experimental results. A simplified form of our approach, which divides devices into several independent submodules such as microring resonators and Sagnac interferometers, is also introduced to streamline the calculation of spectral transfer functions. Finally, we discuss the deviations introduced by approximations in our modeling, along with strategies for improving modeling accuracy. Our approach is universal across different integrated platforms, providing a useful tool for designing and optimizing integrated photonic devices with complex configurations. Full article
Show Figures

Figure 1

Back to TopTop