Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = photovoltaic array extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5313 KiB  
Article
Optimizing Method for Photovoltaic Water-Pumping Systems under Partial Shading and Changing Pump Head
by Perla Yazmín Sevilla-Camacho, José Billerman Robles-Ocampo, Sergio De la Cruz-Arreola, Marco Antonio Zúñiga-Reyes, Andrés López-López, Juvenal Rodríguez-Reséndiz, Marcos Avilés and Horacio Irán Solís-Cisneros
Clean Technol. 2024, 6(2), 732-749; https://doi.org/10.3390/cleantechnol6020037 - 11 Jun 2024
Viewed by 477
Abstract
Photovoltaic systems for pumping water, based on direct current powered motor pumps, have great application in small rural regions without electrical networks. In addition, these systems provide environmental benefits by replacing fossil fuels. However, these systems reduce their performance due to partial shading, [...] Read more.
Photovoltaic systems for pumping water, based on direct current powered motor pumps, have great application in small rural regions without electrical networks. In addition, these systems provide environmental benefits by replacing fossil fuels. However, these systems reduce their performance due to partial shading, which is magnified by the internal mismatch of the PV modules. This work proposes an intelligent, low-cost, and automatic method to mitigate these effects through the electrical reconfiguration of the PV array. Unlike other reported techniques, this method considers the pump head variations. For that, the global voltage and current supplied by the PV array to the motor pump subsystem are introduced to an artificial neural network and to a third-order equation, which locates the shaded PV module and detects the pump head, respectively. A connection control implements the optimal electrical rearrangement. The selection is based on the identified partial shading pattern and pump head. Finally, the switching matrix modifies the electrical connections between the PV modules on the PV array without changing the interconnection scheme, PV array dimension, or physical location of the PVMs. The proposed approach was implemented in a real PV water pumping system. Low-cost and commercial electronic devices were used. The experimental results show that the output power of the PV array increased by 8.43%, which maintains a more stable level of water extraction and, therefore, a constant flow level. Full article
(This article belongs to the Topic Smart Solar Energy Systems)
Show Figures

Figure 1

25 pages, 7140 KiB  
Article
Novel Hybrid Mexican Axolotl Optimization with Fuzzy Logic for Maximum Power Point Tracker of Partially Shaded Photovoltaic Systems
by Ali M. Eltamaly and Majed A. Alotaibi
Energies 2024, 17(11), 2445; https://doi.org/10.3390/en17112445 - 21 May 2024
Viewed by 529
Abstract
Due to the nonlinear relation between the generated power and voltage of photovoltaic (PV) arrays, there is a need to stimulate PV arrays to operate at maximum possible power. Maximum power can be tracked using the maximum power point tracker (MPPT). Due to [...] Read more.
Due to the nonlinear relation between the generated power and voltage of photovoltaic (PV) arrays, there is a need to stimulate PV arrays to operate at maximum possible power. Maximum power can be tracked using the maximum power point tracker (MPPT). Due to the presence of several peaks on the power–voltage (P–V) characteristics of the shaded PV array, conventional MPPT such as hill climbing may show premature convergence, which can significantly reduce the generated power. Metaheuristic optimization algorithms (MOAs) have been used to avoid this problem. The main shortcomings of MOAs are the low convergence speed and the high ripples in the waveforms. Several strategies have been introduced to shorten the convergence time (CT) and improve the accuracy of convergence. The proposed technique sequentially uses a recent optimization algorithm called Mexican Axolotl Optimization (MAO) to capture the vicinity of the global peak of the P–V characteristics and move the control to a fuzzy logic controller (FLC) to accurately track the maximum power point. The proposed strategy extracts both the benefits of the MAO and FLC and avoids their limitations with the use of the high exploration involved in the MOA at the beginning of optimization and uses the fine accuracy of the FLC to fine-track the MPP. The results obtained from the proposed strategy show a substantial reduction in the CT and the highest accuracy of the global peak, which easily proves its superiority compared to other MPPT algorithms. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

32 pages, 9428 KiB  
Article
Short-Term Solar Irradiance Prediction with a Hybrid Ensemble Model Using EUMETSAT Satellite Images
by Jayesh Thaker, Robert Höller and Mufaddal Kapasi
Energies 2024, 17(2), 329; https://doi.org/10.3390/en17020329 - 9 Jan 2024
Cited by 1 | Viewed by 1041
Abstract
Accurate short-term solar irradiance forecasting is crucial for the efficient operation of solar energy-driven photovoltaic (PV) power plants. In this research, we introduce a novel hybrid ensemble forecasting model that amalgamates the strengths of machine learning tree-based models and deep learning neuron-based models. [...] Read more.
Accurate short-term solar irradiance forecasting is crucial for the efficient operation of solar energy-driven photovoltaic (PV) power plants. In this research, we introduce a novel hybrid ensemble forecasting model that amalgamates the strengths of machine learning tree-based models and deep learning neuron-based models. The hybrid ensemble model integrates the interpretability of tree-based models with the capacity of neuron-based models to capture complex temporal dependencies within solar irradiance data. Furthermore, stacking and voting ensemble strategies are employed to harness the collective strengths of these models, significantly enhancing the prediction accuracy. This integrated methodology is enhanced by incorporating pixels from satellite images provided by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). These pixels are converted into structured data arrays and employed as exogenous inputs in the algorithm. The primary objective of this study is to improve the accuracy of short-term solar irradiance predictions, spanning a forecast horizon up to 6 h ahead. The incorporation of EUMETSAT satellite image pixel data enables the model to extract valuable spatial and temporal information, thus enhancing the overall forecasting precision. This research also includes a detailed analysis of the derivation of the GHI using satellite images. The study was carried out and the models tested across three distinct locations in Austria. A detailed comparative analysis was carried out for traditional satellite (SAT) and numerical weather prediction (NWP) models with hybrid models. Our findings demonstrate a higher skill score for all of the approaches compared to a smart persistent model and consistently highlight the superiority of the hybrid ensemble model for a short-term prediction window of 1 to 6 h. This research underscores the potential for enhanced accuracy of the hybrid approach to advance short-term solar irradiance forecasting, emphasizing its effectiveness at understanding the intricate interplay of the meteorological variables affecting solar energy generation worldwide. The results of this investigation carry noteworthy implications for advancing solar energy systems, thereby supporting the sustainable integration of renewable energy sources into the electrical grid. Full article
(This article belongs to the Special Issue Forecasting, Modeling, and Optimization of Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 34181 KiB  
Article
Rooftop PV Segmenter: A Size-Aware Network for Segmenting Rooftop Photovoltaic Systems from High-Resolution Imagery
by Jianxun Wang, Xin Chen, Weiyue Shi, Weicheng Jiang, Xiaopu Zhang, Li Hua, Junyi Liu and Haigang Sui
Remote Sens. 2023, 15(21), 5232; https://doi.org/10.3390/rs15215232 - 3 Nov 2023
Cited by 3 | Viewed by 1549
Abstract
The photovoltaic (PV) industry boom has accelerated the need for accurately understanding the spatial distribution of PV energy systems. The synergy of remote sensing and artificial intelligence presents significant prospects for PV energy monitoring. Currently, numerous studies have focused on extracting rooftop PV [...] Read more.
The photovoltaic (PV) industry boom has accelerated the need for accurately understanding the spatial distribution of PV energy systems. The synergy of remote sensing and artificial intelligence presents significant prospects for PV energy monitoring. Currently, numerous studies have focused on extracting rooftop PV systems from airborne or satellite imagery, but their small-scale and size-varying characteristics make the segmentation results suffer from PV internal incompleteness and small PV omission. To address these issues, this study proposed a size-aware deep learning network called Rooftop PV Segmenter (RPS) for segmenting small-scale rooftop PV systems from high-resolution imagery. In detail, the RPS network introduced a Semantic Refinement Module (SRM) to sense size variations of PV panels and reconstruct high-resolution deep semantic features. Moreover, a Feature Aggregation Module (FAM) enhanced the representation of robust features by continuously aggregating deeper features into shallower ones. In the output stage, a Deep Supervised Fusion Module (DSFM) was employed to constrain and fuse the outputs at different scales to achieve more refined segmentation. The proposed RPS network was tested and shown to outperform other models in producing segmentation results closer to the ground truth, with the F1 score and IoU reaching 0.9186 and 0.8495 on the publicly available California Distributed Solar PV Array Dataset (C-DSPV Dataset), and 0.9608 and 0.9246 on the self-annotated Heilbronn Rooftop PV System Dataset (H-RPVS Dataset). This study has provided an effective solution for obtaining a refined small-scale energy distribution database. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

24 pages, 5509 KiB  
Article
Ecovoltaics: Maintaining Native Plants and Wash Connectivity inside a Mojave Desert Solar Facility Leads to Favorable Growing Conditions
by Tamara Wynne-Sison, Dale A. Devitt and Stanley D. Smith
Land 2023, 12(10), 1950; https://doi.org/10.3390/land12101950 - 21 Oct 2023
Viewed by 1936
Abstract
The installation of solar facilities is increasing rapidly in the Mojave Desert USA, with the largest facility in North America (3227 ha) currently being built 30 km north of Las Vegas, NV. At the state level, Nevada (USA) has developed an energy plan [...] Read more.
The installation of solar facilities is increasing rapidly in the Mojave Desert USA, with the largest facility in North America (3227 ha) currently being built 30 km north of Las Vegas, NV. At the state level, Nevada (USA) has developed an energy plan to diversify its energy portfolio by 2030 with green energy representing 50% of the energy produced. Although solar is considered a clean energy, it does require significant amounts of land and as such may have negative consequences at the habitat and ecosystem levels. A multi-year study was conducted to assess the impact a photovoltaic facility in the Mojave Desert had on the growth and physiological response of two native shrubs (Ambrosia dumosa and Larrea tridentata) growing inside and outside the facility. These species were selected because they were the dominant species at the site and are representative of desert scrub communities throughout the Mojave Desert. At the time of construction, native plants and washes were left intact inside the solar facility. The solar panel arrays were separated at either 8 m or 10 m. Plants were selected for monitoring on the basis of location: at the panel drip line, below the panels, or midway between panel rows. Abiotic factors, including PAR, reference evapotranspiration, precipitation, soil water in storage, and infiltration, were monitored bi-monthly. The growth and physiological status of the plants were assessed by monitoring leaf water potential, chlorophyll index, canopy temperatures, non-structural carbohydrates in the roots and stems, leaf tissue ion concentrations, stem elongation, and seed production. Plants at the bottom edges of the panels received more precipitation due to runoff from the panels, which led to increased soil moisture in the long spacing but not the short spacing. The lower soil water in storage in the short spacing was related to greater growth and higher soil water extraction. Although the area under the panels provided shade in the summer and warmer temperatures in the winter, the incoming PAR was reduced by as much as 85%, causing plants growing under the panels to be spindly with lower canopy volume (L. tridentata, p = 0.03) and seed yield (A. dumosa, p = 0.05). Ambrosia plants remained green in color year-round (not going into winter dormancy) inside the facility and had elevated levels of starch in their roots and stems compared with plants growing at the outside control sites (p < 0.001). Larrea growing outside the facility had lower xylem water potentials compared with those inside the facility (p < 0.001), lower chlorophyll index (p < 0.001, Ambrosia as well), and lower stem elongation (p < 0.001), supporting the conclusion that both Larrea and Ambrosia performed better inside the facility. Shifts in δ13 C suggested greater water-use efficiency at the locations with the least amount of soil water in storage. Our results support the installation of solar facilities that minimize the impact on native plants and wash connectivity (ecovoltaics), which should translate into a reduced negative impact at the habitat and ecosystem levels. Basedon our results, energy companies that embrace ecovoltaic systems that take an engineering and biological approach should provide acceptable environments for desert fauna. However, corridors (buffers) will need to be maintained between solar facilities, and fences will need to have openings that allow for the continuous flow of animals and resources. Full article
Show Figures

Figure 1

27 pages, 5489 KiB  
Article
Atomic Orbital Search Algorithm for Efficient Maximum Power Point Tracking in Partially Shaded Solar PV Systems
by Md Tahmid Hussain, Mohd Tariq, Adil Sarwar, Shabana Urooj, Amal BaQais and Md. Alamgir Hossain
Processes 2023, 11(9), 2776; https://doi.org/10.3390/pr11092776 - 17 Sep 2023
Cited by 2 | Viewed by 1251
Abstract
The efficient extraction of solar PV power is crucial to maximize utilization, even in rapidly changing environmental conditions. The increasing energy demands highlight the importance of solar photovoltaic (PV) systems for cost-effective energy production. However, traditional PV systems with bypass diodes at their [...] Read more.
The efficient extraction of solar PV power is crucial to maximize utilization, even in rapidly changing environmental conditions. The increasing energy demands highlight the importance of solar photovoltaic (PV) systems for cost-effective energy production. However, traditional PV systems with bypass diodes at their output terminals often produce multiple power peaks, leading to significant power losses if the optimal combination of voltage and current is not achieved. To address this issue, algorithms capable of finding the highest value of a function are employed. Since the PV power output is a complex function with multiple local maximum power points (LMPPs), conventional algorithms struggle to handle partial shading conditions (PSC). As a result, nature-inspired algorithms, also known as metaheuristic algorithms, are used to maximize the power output of solar PV arrays. In this study, we introduced a novel metaheuristic algorithm called atomic orbital search for maximum power point tracking (MPPT) under PSC. The primary motivation behind this research is to enhance the efficiency and effectiveness of MPPT techniques in challenging scenarios. The proposed algorithm offers several advantages, including higher efficiency, shorter tracking time, reduced output variations, and improved duty ratios, resulting in faster convergence to the maximum power point (MPP). To evaluate the algorithm’s performance, we conducted extensive experiments using Typhoon HIL and compared it with other existing algorithms commonly employed for MPPT. The results clearly demonstrated that the proposed atomic orbital search algorithm outperformed the alternatives in terms of rapid convergence and efficient MPP tracking, particularly for complex shading patterns. This makes it a suitable choice for developing an MPP tracker applicable in various settings, such as industrial, commercial, and residential applications. In conclusion, our research addresses the pressing need for effective MPPT methods in solar PV systems operating under challenging conditions. The atomic orbital search algorithm showcases its potential in significantly improving the efficiency and performance of MPPT, ultimately contributing to the optimization of solar energy extraction and utilization. Full article
(This article belongs to the Special Issue Recent Advances in Sustainable Electrical Energy Technologies)
Show Figures

Figure 1

16 pages, 4606 KiB  
Article
Impact of Deep Convolutional Neural Network Structure on Photovoltaic Array Extraction from High Spatial Resolution Remote Sensing Images
by Liang Li, Ning Lu, Hou Jiang and Jun Qin
Remote Sens. 2023, 15(18), 4554; https://doi.org/10.3390/rs15184554 - 15 Sep 2023
Cited by 6 | Viewed by 1212
Abstract
Accurate information on the location, shape, and size of photovoltaic (PV) arrays is essential for optimal power system planning and energy system development. In this study, we explore the potential of deep convolutional neural networks (DCNNs) for extracting PV arrays from high spatial [...] Read more.
Accurate information on the location, shape, and size of photovoltaic (PV) arrays is essential for optimal power system planning and energy system development. In this study, we explore the potential of deep convolutional neural networks (DCNNs) for extracting PV arrays from high spatial resolution remote sensing (HSRRS) images. While previous research has mainly focused on the application of DCNNs, little attention has been paid to investigating the influence of different DCNN structures on the accuracy of PV array extraction. To address this gap, we compare the performance of seven popular DCNNs—AlexNet, VGG16, ResNet50, ResNeXt50, Xception, DenseNet121, and EfficientNetB6—based on a PV array dataset containing 2072 images of 1024 × 1024 size. We evaluate their intersection over union (IoU) values and highlight four DCNNs (EfficientNetB6, Xception, ResNeXt50, and VGG16) that consistently achieve IoU values above 94%. Furthermore, through analyzing the difference in the structure and features of these four DCNNs, we identify structural factors that contribute to the extraction of low-level spatial features (LFs) and high-level semantic features (HFs) of PV arrays. We find that the first feature extraction block without downsampling enhances the LFs’ extraction capability of the DCNNs, resulting in an increase in IoU values of approximately 0.25%. In addition, the use of separable convolution and attention mechanisms plays a crucial role in improving the HFs’ extraction, resulting in a 0.7% and 0.4% increase in IoU values, respectively. Overall, our study provides valuable insights into the impact of DCNN structures on the extraction of PV arrays from HSRRS images. These findings have significant implications for the selection of appropriate DCNNs and the design of robust DCNNs tailored for the accurate and efficient extraction of PV arrays. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

20 pages, 716 KiB  
Article
One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations
by Zahra Yahyaoui, Mansour Hajji, Majdi Mansouri and Kais Bouzrara
Sustainability 2023, 15(18), 13758; https://doi.org/10.3390/su151813758 - 15 Sep 2023
Cited by 4 | Viewed by 1008
Abstract
In recent years, photovoltaic (PV) energy production has witnessed overwhelming growth, which has inspired the search for more effective operations. Nevertheless, different PV faults may appear, which leads to various degradation stages. Furthermore, under different irradiance levels, these faults may be misclassified as [...] Read more.
In recent years, photovoltaic (PV) energy production has witnessed overwhelming growth, which has inspired the search for more effective operations. Nevertheless, different PV faults may appear, which leads to various degradation stages. Furthermore, under different irradiance levels, these faults may be misclassified as a healthy mode owing to the high resemblances between them, thus provoking serious challenges in terms of power losses and maintenance costs. Hence, interposing the irradiance variation in grid-connected PV (GCPV) systems modeling is important for monitoring tasks to ensure the effective operation of these systems, to increase their reliability and to prevent false alarms. Therefore, in this paper, a fault detection and diagnosis (FDD) method for the GCPV systems using machine learning (ML) based on principal component analysis (PCA) is proposed in order to ensure the reliability and security of the whole system under irradiance variations. The proposed strategy consists of three main steps: (i) introduce the irradiance variations in PV system modeling because of its great impact on power production; (ii) feature extraction and selection through PCA; and (iii) fault classification using ML techniques. In this study, we generate a database that is used to compare the proposed strategy with the standard strategy (considering a fixed irradiance during FDD), to make, at first, a complete and significant comparative assessment of fault diagnosis and to demonstrate the efficiency of the proposed strategy. The achieved results show the high effectiveness of the proposed one-class classification-based approach to detect and diagnose PV array anomalies, reaching an accuracy up to 99.68%. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 6040 KiB  
Article
A Novel Hybrid Optimization Approach for Fault Detection in Photovoltaic Arrays and Inverters Using AI and Statistical Learning Techniques: A Focus on Sustainable Environment
by Ahmad Abubakar, Mahmud M. Jibril, Carlos F. M. Almeida, Matheus Gemignani, Mukhtar N. Yahya and Sani I. Abba
Processes 2023, 11(9), 2549; https://doi.org/10.3390/pr11092549 - 25 Aug 2023
Cited by 8 | Viewed by 2406
Abstract
Fault detection in PV arrays and inverters is critical for ensuring maximum efficiency and performance. Artificial intelligence (AI) learning can be used to quickly identify issues, resulting in a sustainable environment with reduced downtime and maintenance costs. As the use of solar energy [...] Read more.
Fault detection in PV arrays and inverters is critical for ensuring maximum efficiency and performance. Artificial intelligence (AI) learning can be used to quickly identify issues, resulting in a sustainable environment with reduced downtime and maintenance costs. As the use of solar energy systems continues to grow, the need for reliable and efficient fault detection and diagnosis techniques becomes more critical. This paper presents a novel approach for fault detection in photovoltaic (PV) arrays and inverters, combining AI techniques. It integrates Elman neural network (ENN), boosted tree algorithms (BTA), multi-layer perceptron (MLP), and Gaussian processes regression (GPR) for enhanced accuracy and reliability in fault diagnosis. It leverages its strengths for the accuracy and reliability of fault diagnosis. Feature engineering-based sensitivity analysis was utilized for feature extraction. The fault detection and diagnosis were assessed using several statistical criteria including PBAIS, MAE, NSE, RMSE, and MAPE. Two intelligent learning scenarios are carried out. The first scenario is conducted for PV array fault detection with DC power (DCP) as output. The second scenario is conducted for inverter fault detection with AC power (ACP) as the output. The proposed technique is capable of detecting faults in PV arrays and inverters, providing a reliable solution for enhancing the performance and reliability of solar energy systems. A real-world solar energy dataset is used to evaluate the proposed technique with results compared to existing detection techniques and obtained results showing that it outperforms existing fault detection techniques, achieving higher accuracy and better performance. The GPR-M4 optimization justified its reliably among all the models with MAPE = 0.0393 and MAE = 0.002 for inverter fault detection, and MAPE = 0.091 and MAE = 0.000 for PV array fault detection. Full article
(This article belongs to the Section Advanced Digital and Other Processes)
Show Figures

Figure 1

22 pages, 6116 KiB  
Article
Modern Optimization Algorithm for Improved Performance of Maximum Power Point Tracker of Partially Shaded PV Systems
by Ali M. Eltamaly, Zeyad A. Almutairi and Mohamed A. Abdelhamid
Energies 2023, 16(13), 5228; https://doi.org/10.3390/en16135228 - 7 Jul 2023
Cited by 5 | Viewed by 1106
Abstract
Due to the rapid advancement in the use of photovoltaic (PV) energy systems, it has become critical to look for ways to improve the energy generated by them. The extracted power from the PV modules is proportional to the output voltage. The relationship [...] Read more.
Due to the rapid advancement in the use of photovoltaic (PV) energy systems, it has become critical to look for ways to improve the energy generated by them. The extracted power from the PV modules is proportional to the output voltage. The relationship between output power and array voltage has only one peak under uniform irradiance, whereas it has multiple peaks under partial shade conditions (PSCs). There is only one global peak (GP) and many local peaks (LPs), where the typical maximum power point trackers (MPPTs) may become locked in one of the LPs, significantly reducing the PV system’s generated power and efficiency. The metaheuristic optimization algorithms (MOAs) solved this problem, albeit at the expense of the convergence time, which is one of these algorithms’ key shortcomings. Most MOAs attempt to lower the convergence time at the cost of the failure rate and the accuracy of the findings because these two factors are interdependent. To address these issues, this work introduces the dandelion optimization algorithm (DOA), a novel optimization algorithm. The DOA’s convergence time and failure rate are compared to other modern MOAs in critical scenarios of partial shade PV systems to demonstrate the DOA’s superiority. The results obtained from this study showed substantial performance improvement compared to other MOAs, where the convergence time was reduced to 0.4 s with zero failure rate compared to 0.9 s, 1.25 s, and 0.43 s for other MOAs under study. The optimal number of search agents in the swarm, the best initialization of search agents, and the optimal design of the dc–dc converter are introduced for optimal MPPT performance. Full article
(This article belongs to the Section B2: Clean Energy)
Show Figures

Figure 1

16 pages, 5330 KiB  
Article
Disperse Partial Shading Effect of Photovoltaic Array by Means of the Modified Complementary SuDoKu Puzzle Topology
by Cheng-En Ye, Cheng-Chi Tai and Yu-Pei Huang
Energies 2023, 16(13), 4910; https://doi.org/10.3390/en16134910 - 24 Jun 2023
Cited by 3 | Viewed by 943
Abstract
This paper presents a novel modified Complementary SuDoKu puzzle (MC-SDKP) topology for the static reconfiguration of photovoltaic (PV) arrays. It was developed with the aim of enhancing the power output of a PV array which is exposed to partially shaded conditions (PSCs). To [...] Read more.
This paper presents a novel modified Complementary SuDoKu puzzle (MC-SDKP) topology for the static reconfiguration of photovoltaic (PV) arrays. It was developed with the aim of enhancing the power output of a PV array which is exposed to partially shaded conditions (PSCs). To disperse patterns of both center shading and corner shading, the MC-SDKP technique modified and combined the Optimal SDKP and the Complementary SDKP (C-SDKP) topologies. An 8 × 8 PV array configured with the MC-SDKP topology was exposed to nine different shading patterns, and its performance was compared with that of the other four topologies. The results of the performance evaluation confirmed that, when configured according to the MC-SDKP, the PV array produced the highest average power output among all five topologies, with a 15.07% higher output on average than the total-cross tied. The PV array with the MC-SDKP topology also exhibited the lowest average power loss (1.34%). This study clearly established the effectiveness of the MC-SDKP topology at mitigating the effects of both center and corner shading. The advantages of the MC-SDKP reconfiguration technique are: an increase in extracted power, a reduction in current mismatch losses, an improvement in shade dispersion under conditions of center shading, and good scalability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

31 pages, 56329 KiB  
Article
A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions
by Khaled Osmani, Ahmad Haddad, Mohammad Alkhedher, Thierry Lemenand, Bruno Castanier and Mohamad Ramadan
Sustainability 2023, 15(12), 9839; https://doi.org/10.3390/su15129839 - 20 Jun 2023
Cited by 5 | Viewed by 2287
Abstract
Fluctuant irradiance conditions constitute a challenge in front of a proper battery charging process, when originated from a PhotoVoltaic Array (PVA). The behavior of the PVA under such conditions (i.e., reflected by a disturbed PV characteristic curve) increases the complexity of the total [...] Read more.
Fluctuant irradiance conditions constitute a challenge in front of a proper battery charging process, when originated from a PhotoVoltaic Array (PVA). The behavior of the PVA under such conditions (i.e., reflected by a disturbed PV characteristic curve) increases the complexity of the total available power’s extraction process. This inconvenient fact yields eventually to a decreased overall efficiency of PV systems, especially with the presence of imprecise power-electronics involved circuits. Accordingly, the purpose of this paper is to design a complete battery solar charger, with Maximum Power Point Tracking ability, emerged from a PVA of 1.918 kWp, arranged in Series-Parallel topology. The targeted battery is of Lithium-Ion (Li-I) type, with 24 VDC operating voltage and 150 Ah rated current. The design began by configuring an interleaved synchronous DC-DC converter to produce a desired voltage level, with low inductor ripple current and low output ripple voltage. The DC-DC converter is in turns condemned by a modified Perturb and Observe (P&O) algorithm, to ensure efficient maximum power tracking. Progressively, the design encountered a layout of the bi-directional DC-DC converter to ensure safe current charging values for the battery. Under the same manner, the role of the bi-directional converter was to plug the battery out of the system, in case when the Depth of Discharge (DoD) is below 25%, thus sustaining the life span of the battery. The entire setup of the proposed sub-systems then leads to the relatively fastest, safest, and most reliable battery charging process. Results show an effectiveness (in terms of PV power tracking) ranging from 87% to 100% under four swiftly changing irradiance conditions. Moreover, this paper suggested the design’s future industrialization process, leading to an effective PV solar charger prototype. Full article
Show Figures

Figure 1

20 pages, 905 KiB  
Article
Enhanced Neural Network Method-Based Multiscale PCA for Fault Diagnosis: Application to Grid-Connected PV Systems
by Khadija Attouri, Majdi Mansouri, Mansour Hajji, Abdelmalek Kouadri, Kais Bouzrara and Hazem Nounou
Signals 2023, 4(2), 381-400; https://doi.org/10.3390/signals4020020 - 30 May 2023
Viewed by 1444
Abstract
In this work, an effective Fault Detection and Diagnosis (FDD) strategy designed to increase the performance and accuracy of fault diagnosis in grid-connected photovoltaic (GCPV) systems is developed. The evolved approach is threefold: first, a pre-processing of the training dataset is applied using [...] Read more.
In this work, an effective Fault Detection and Diagnosis (FDD) strategy designed to increase the performance and accuracy of fault diagnosis in grid-connected photovoltaic (GCPV) systems is developed. The evolved approach is threefold: first, a pre-processing of the training dataset is applied using a multiscale scheme that decomposes the data at multiple scales using high-pass/low-pass filters to separate the noise from the informative attributes and prevent the stochastic samples. Second, a principal component analysis (PCA) technique is applied to the newly obtained data to select, extract, and preserve only the more relevant, informative, and uncorrelated attributes; and finally, to distinguish between the diverse conditions, the extracted attributes are utilized to train the NNs classifiers. In this study, an effort is made to take into consideration all potential and frequent faults that might occur in PV systems. Thus, twenty-one faulty scenarios (line-to-line, line-to-ground, connectivity faults, and faults that can affect the normal operation of the bay-pass diodes) have been introduced and treated at different levels and locations; each scenario comprises various and diverse conditions, including the occurrence of simple faults in the PV1 array, simple faults in the PV2 array, multiple faults in PV1, multiple faults in PV2, and mixed faults in both PV arrays, in order to ensure a complete and global analysis, thereby reducing the loss of generated energy and maintaining the reliability and efficiency of such systems. The obtained outcomes demonstrate that the proposed approach not only achieves good accuracies but also reduces runtimes during the diagnosis process by avoiding noisy and stochastic data, thereby removing irrelevant and correlated samples from the original dataset. Full article
Show Figures

Figure 1

20 pages, 28080 KiB  
Article
A Novel Hybrid Maximum Power Point Tracking Technique for PV System under Complex Partial Shading Conditions in Campus Microgrid
by Yanbo Li, Linyi Li, Yechao Jiang, Yinghao Gan, Jianfeng Zhang and Shibo Yuan
Appl. Sci. 2023, 13(8), 4998; https://doi.org/10.3390/app13084998 - 16 Apr 2023
Cited by 3 | Viewed by 1269
Abstract
Solar generation has become increasingly important in grid applications. In order to improve the energy efficiency of the photovoltaic array (PV), factors such as temperature, nonlinear characteristics, and partial shadow conditions (PSCs) of the PV must be fully considered. An excellent maximum power [...] Read more.
Solar generation has become increasingly important in grid applications. In order to improve the energy efficiency of the photovoltaic array (PV), factors such as temperature, nonlinear characteristics, and partial shadow conditions (PSCs) of the PV must be fully considered. An excellent maximum power point tracking (MPPT) control strategy can effectively improve the energy utilization efficiency of photovoltaic cells and provide strong support for the construction of smart campuses in terms of environmental protection and energy saving. A traditional method such as Perturb & Observe (P&O) and incremental conductance (INC) will fall into the local maximum power point (LMPP). In the past decade, researchers have proposed many MPPT methods to solve the difficulties of the PV system. However, they have failed to fully consider dynamic changes in irradiance conditions. Changes in the irradiance of photovoltaic arrays can lead to an extension of the convergence time and an increase in the oscillation amplitude. Many current MPPT methods have shortcomings such as requiring a long convergence time, large oscillation amplitude, and being prone to falling into LMPP. In order to reduce the oscillation amplitude and improve the convergence speed, a novel Multi-strategy Improved Tuna Swarm Optimization hybrid INC (ITSO-INC) method is introduced in this article. This strategy involves improving the Tuna Swarm Optimization (TSO) through Levy Flight and a linear weight coefficient. In addition, the INC method is added in the later stage to improve the accuracy of MPPT tracking. The proposed algorithm can extract the global maximum power point under different partial shading. In order to verify the effectiveness of the proposed method, the proposed method was compared with other metaheuristic algorithms such as Cuckoo Search (CS) and TSO. The proposed ITSO-INC technique was tested over four different patterns of partial shading conditions. Modulation was performed by tracking the sudden change in the shadow pattern of the MPP. These simulation results confirm that the proposed method has fast convergence, high accuracy, zero steady state oscillation, and a rapid response to dynamic change. Full article
Show Figures

Figure 1

13 pages, 1626 KiB  
Article
Nonlinear Lyapunov Control of a Photovoltaic Water Pumping System
by Khalil Jouili and Adel Madani
Energies 2023, 16(5), 2241; https://doi.org/10.3390/en16052241 - 25 Feb 2023
Cited by 4 | Viewed by 1293
Abstract
In this study, we present an alternative maximum power point tracking technique used in a solar water pumping system to produce the maximum power for modifying the amount of pumped water. This technique was actually created primarily to regulate the duty ratio of [...] Read more.
In this study, we present an alternative maximum power point tracking technique used in a solar water pumping system to produce the maximum power for modifying the amount of pumped water. This technique was actually created primarily to regulate the duty ratio of the buck converter. In order to control the solar array operating point in order to track the maximum power point, a nonlinear control approach based on the input–output feedback linearizing technique and the Lyapunov stability theory is used. By adjusting the irradiation level, the introduced controller-containing photovoltaic generator direct current (DC) motor pump system was put to the test. Our control method was modeled in Matlab-Simulink, and simulation results were used to show that it significantly outperformed a directly connected solar generator-energized pumps operational system in terms of power extraction performance under various sunlight conditions. Full article
Show Figures

Figure 1

Back to TopTop