Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (831)

Search Parameters:
Keywords = polyketides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4483 KiB  
Article
Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress
by Fei Zhang, Ming Sun, Daxu Li, Minghong You, Jiajun Yan and Shiqie Bai
Molecules 2024, 29(21), 5133; https://doi.org/10.3390/molecules29215133 - 30 Oct 2024
Viewed by 295
Abstract
Plants cultivated on the Qinghai-Tibet Plateau (QTP) are exposed to high ultraviolet radiation intensities, so they require effective mechanisms to adapt to these stress conditions. UV-B radiation is an abiotic stress factor that affects plant growth, development, and environmental adaptation. Elymus sibiricus is [...] Read more.
Plants cultivated on the Qinghai-Tibet Plateau (QTP) are exposed to high ultraviolet radiation intensities, so they require effective mechanisms to adapt to these stress conditions. UV-B radiation is an abiotic stress factor that affects plant growth, development, and environmental adaptation. Elymus sibiricus is a common species in the alpine meadows of the QTP, with high-stress resistance, large biomass, and high nutritional value. This species plays an important role in establishing artificial grasslands and improving degraded grasslands. In this study, UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes were subjected to simulated short-term (5 days, 10 days) and long-term (15 days, 20 days) UV-B radiation stress and the metabolite profiles evaluated to explore the mechanism underlying UV-B radiation resistance in E. sibiricus. A total of 699 metabolites were identified, including 11 primary metabolites such as lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and their derivatives, and organic oxygen compounds. Principal component analysis distinctly clustered the samples according to the cultivar, indicating that the two genotypes exhibit distinct response mechanisms to UV-B radiation stress. The results showed that 14 metabolites, including linoleic acid, LPC 18:2, xanthosine, and 23 metabolites, including 2-one heptamethoxyflavone, glycyrrhizin, and caffeic acid were differentially expressed under short-term and long-term UV-B radiation stress, respectively. Therefore, these compounds are potential biomarkers for evaluating E. sibiricus response to UV-B radiation stress. Allantoin specific and consistent expression was up-regulated in the UV-B radiation-tolerant genotype, thereby it can be used to identify varieties resistant to UV-B radiation. Different metabolic profiles and UV-B radiation response mechanisms were observed between the UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes. A model for the metabolic pathways and metabolic profiles was constructed for the two genotypes. This metabolomic study on the E. sibiricus response to UV-B radiation stress provides a reference for the breeding of new UV-B radiation-tolerant E. sibiricus cultivars. Full article
Show Figures

Figure 1

18 pages, 1544 KiB  
Article
Genomic Characterization of Lactiplantibacillus plantarum Strains: Potential Probiotics from Ethiopian Traditional Fermented Cottage Cheese
by Seyoum Gizachew and Ephrem Engidawork
Genes 2024, 15(11), 1389; https://doi.org/10.3390/genes15111389 - 29 Oct 2024
Viewed by 492
Abstract
Background: Lactiplantibacillus plantarum is a species found in a wide range of ecological niches, including vegetables and dairy products, and it may occur naturally in the human gastrointestinal tract. The precise mechanisms underlying the beneficial properties of these microbes to their host remain obscure. [...] Read more.
Background: Lactiplantibacillus plantarum is a species found in a wide range of ecological niches, including vegetables and dairy products, and it may occur naturally in the human gastrointestinal tract. The precise mechanisms underlying the beneficial properties of these microbes to their host remain obscure. Although Lactic acid bacteria are generally regarded as safe, there are rare cases of the emergence of infections and antibiotic resistance by certain probiotics. Objective: An in silico whole genome sequence analysis of putative probiotic bacteria was set up to identify strains, predict desirable functional properties, and identify potentially detrimental antibiotic resistance and virulence genes. Methods: We characterized the genomes of three L. plantarum strains (54B, 54C, and 55A) isolated from Ethiopian traditional cottage cheese. Whole-genome sequencing was performed using Illumina MiSeq sequencing. The completeness and quality of the genome of L. plantarum strains were assessed through CheckM. Results: Analyses results showed that L. plantarum 54B and 54C are closely related but different strains. The genomes studied did not harbor resistance and virulence factors. They had five classes of carbohydrate-active enzymes with several important functions. Cyclic lactone autoinducer, terpenes, Type III polyketide synthases, ribosomally synthesized and post-translationally modified peptides-like gene clusters, sactipeptides, and all genes required for riboflavin biosynthesis were identified, evidencing their promising probiotic properties. Six bacteriocin-like structures encoding genes were found in the genome of L. plantarum 55A. Conclusions: The lack of resistome and virulome and their previous functional capabilities suggest the potential applicability of these strains in food industries as bio-preservatives and in the prevention and/or treatment of infectious diseases. The results also provide insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1996 KiB  
Article
New Polyketide Congeners with Antibacterial Activities from an Endophytic Fungus Stemphylium globuliferum 17035 (China General Microbiological Culture Collection Center No. 40666)
by Yingying Li, Guoliang Zhu, Jing Wang, Junjie Yu, Ke Ye, Cuiping Xing, Biao Ren, Bin Zhu, Simin Chen, Lijun Lai, Yue Li, Tom Hsiang, Lixin Zhang, Xueting Liu and Jingyu Zhang
J. Fungi 2024, 10(11), 737; https://doi.org/10.3390/jof10110737 - 24 Oct 2024
Viewed by 531
Abstract
Four new polyketides, heterocornol Y (1), stemphyindan (2), pestalospirane C (3), and stemphyspyrane (4), along with five known ones (59) were isolated from the endophytic fungus Stemphylium globuliferum 17035 (SG17035) based [...] Read more.
Four new polyketides, heterocornol Y (1), stemphyindan (2), pestalospirane C (3), and stemphyspyrane (4), along with five known ones (59) were isolated from the endophytic fungus Stemphylium globuliferum 17035 (SG17035) based on the One Strain Many Compounds (OSMAC) strategy allied with an LC-MS approach. These structures were elucidated through extensive spectroscopic analyses, single-crystal X-ray diffraction, and 13C NMR-DP4 analysis. Pestalospirane C (3) and stemphyspyrane (4) featured unprecedented spiroketal skeletons. In addition, the putative biosynthetic logic for compounds 14 was proposed. Antibacterial and cytotoxic activities of compounds 19 were evaluated. Stemphyspyrane (4) displayed promising antibacterial activity against different pathogens, especially against Staphylococcus aureus, Porphyromonas gingivalis, and methicillin-resistant Staphylococcus aureus (MRSA) with MIC values of 3.125 μM, 6.25 μM, and 12.5 μM, respectively. It is promising as an antibacterial agent for further optimization. Full article
(This article belongs to the Special Issue Advances in Fungal Endophyte Research)
Show Figures

Figure 1

15 pages, 2401 KiB  
Article
Diversity and Anti-Infectious Components of Cultivable Rhizosphere Fungi Derived from Three Species of Astragalus Plants in Northwestern Yunnan, China
by Guo-Jun Zhou, Wei-Jia Xiong, Wei Xu, Zheng-Rong Dou, Bo-Chao Liu, Xue-Li Li, Hao Du, Hai-Feng Li, Yong-Zeng Zhang, Bei Jiang and Kai-Ling Wang
J. Fungi 2024, 10(11), 736; https://doi.org/10.3390/jof10110736 - 24 Oct 2024
Viewed by 415
Abstract
Astragalus, a group of legume plants, has a pronounced rhizosphere effect. Many species of Astragalus with limited resource reserves are distributed in the high-altitude area of northern Yunnan, China. Although some of these plants have high medicinal value, the recognition of them [...] Read more.
Astragalus, a group of legume plants, has a pronounced rhizosphere effect. Many species of Astragalus with limited resource reserves are distributed in the high-altitude area of northern Yunnan, China. Although some of these plants have high medicinal value, the recognition of them is still at a low level. The aim of this research is to explore the species diversity of cultivable rhizofungi derived from Astragalus acaulis, A. forrestii and A. ernestii growing in a special high–cold environment of northwest Yunnan and discover anti-infective components from these fungi. A total of 93 fungal strains belonging to 38 species in 18 genera were isolated and identified. Antibacterial and antimalarial screening yielded 10 target strains. Among them, the ethyl acetate crude extract of the fermented substrate of the rhizofungus Aspergillus calidoustus AA12 derived from the plant A. acaulis showed broad-spectrum antibacterial activity and the best antimalarial activity. Further chemical investigation led to the first discovery of seven compounds from the species A. calidoustus, including sesterterpine 6-epi-ophiobolin G; three sesquiterpenes, penicisochroman A, pergillin and 7-methyl-2-(1-methylethylethlidene)-furo [3,2-H]isoquinoline-3-one; and three polyketides, trypacidin, 1,2-seco-trypacidin and questin. Among them, the compound 6-epi-ophiobolin G exhibited moderate to strong antibacterial activity against six Gram-positive pathogens with the minimum inhibitory concentration (MIC) ranging from 25 to 6.25 μg/mL and a prominent inhibitory effect on the biofilm of Streptococcus agalactiae at an MIC value of 3.125 μg/mL. This compound also displayed potent antimalarial activity against Plasmodium falciparum strains 3D7 and chloroquine-resistant Dd2 at the half-maximal inhibitory concentration (IC50) values of 3.319 and 4.340 µmol/L at 72 h, respectively. This study contributed to our understanding of the cultivable rhizofungi from characteristic Astragalus plants in special high–cold environments and further increased the library of fungi available for natural anti-infectious product screening. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

13 pages, 2230 KiB  
Article
Goondapyrones A–J: Polyketide α and γ Pyrone Anthelmintics from an Australian Soil-Derived Streptomyces sp.
by Shengbin Jin, David F. Bruhn, Cynthia T. Childs, Erica Burkman, Yovany Moreno, Angela A. Salim, Zeinab G. Khalil and Robert J. Capon
Antibiotics 2024, 13(10), 989; https://doi.org/10.3390/antibiotics13100989 - 18 Oct 2024
Viewed by 693
Abstract
An investigation of ×19 soil samples collected under the auspices of the Australian citizen science initiative, Soils for Science, returned ×559 chemically dereplicated microbial isolates, of which ×54 exhibited noteworthy anthelmintic activity against either the heartworm Dirofilaria immitis microfilaria and/or the gastrointestinal parasite [...] Read more.
An investigation of ×19 soil samples collected under the auspices of the Australian citizen science initiative, Soils for Science, returned ×559 chemically dereplicated microbial isolates, of which ×54 exhibited noteworthy anthelmintic activity against either the heartworm Dirofilaria immitis microfilaria and/or the gastrointestinal parasite Haemonchus contortus L1–L3 larvae. Chemical (GNPS and UPLC-DAD) and cultivation (MATRIX) profiling prompted a detailed chemical investigation of Streptomyces sp. S4S-00196A10, which yielded new anthelmintic polyketide goondapyrones A–J (110), together with the known actinopyrones A (11) and C (12). Structures for 112 were assigned on the basis of detailed spectroscopic and chemical analysis, with preliminary structure activity relationship analysis revealing selected γ-pyrones >50-fold and >13-fold more potent than isomeric α-pyrones against D. immitis mf motility (e.g., EC50 0.05 μM for 1; EC50 2.7 μM for 5) and H. contortus L1–L3 larvae development (e.g., EC50 0.58 μM for 1; EC50 8.2 μM for 5), respectively. Full article
Show Figures

Graphical abstract

11 pages, 1467 KiB  
Article
The Insecticidal Activity of Secondary Metabolites Produced by Streptomyces sp. SA61 against Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)
by Fei Liu, Ning Wang, Yinan Wang and Zhiguo Yu
Microorganisms 2024, 12(10), 2031; https://doi.org/10.3390/microorganisms12102031 - 8 Oct 2024
Viewed by 515
Abstract
Trialeurodes vaporariorum Westwood poses a significant threat to vegetable and ornamental crops in temperate zones, resulting in notable reductions in yield and substantial economic burdens. In order to find compounds with high insecticidal activity against T. vaporariorum, five compounds were isolated and [...] Read more.
Trialeurodes vaporariorum Westwood poses a significant threat to vegetable and ornamental crops in temperate zones, resulting in notable reductions in yield and substantial economic burdens. In order to find compounds with high insecticidal activity against T. vaporariorum, five compounds were isolated and identified from the crude extract of Streptomyces sp. SA61. These include three new polyketides, named strekingmycins F–H (13); one new diterpenoid, named phenalinolactone CD8 (4); and one known compound, strekingmycin A (5). Their structures were analyzed using high-resolution electrospray ionization mass spectrometry and one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy data and by comparing them with previously reported data. The insecticidal activities of compounds 15 against T. vaporariorum were evaluated. Among them, compound 5 exhibited the highest insecticidal activity, with an LC50 of 6.949 mg/L against T. vaporariorum at 72 h using the leaf-dip method. Lower insecticidal activities were found in compounds 14, with LC50 values of 22.817, 19.150, 16.981 and 41.501 mg/L, respectively. These data indicate that strekingmycin could be a potential candidate for a novel insecticide to control T. vaporariorum. Full article
(This article belongs to the Special Issue Research on Natural Products against Pathogens)
Show Figures

Figure 1

20 pages, 7902 KiB  
Article
Analysis of the Setomimycin Biosynthetic Gene Cluster from Streptomyces nojiriensis JCM3382 and Evaluation of Its α-Glucosidase Inhibitory Activity Using Molecular Docking and Molecular Dynamics Simulations
by Kyung-A Hyun, Xuhui Liang, Yang Xu, Seung-Young Kim, Kyung-Hwan Boo, Jin-Soo Park, Won-Jae Chi and Chang-Gu Hyun
Int. J. Mol. Sci. 2024, 25(19), 10758; https://doi.org/10.3390/ijms251910758 - 6 Oct 2024
Viewed by 766
Abstract
The formation of atroposelective biaryl compounds in plants and fungi is well understood; however, polyketide aglycone synthesis and dimerization in bacteria remain unclear. Thus, the biosynthetic gene cluster (BGC) responsible for antibacterial setomimycin production from Streptomyces nojiriensis JCM3382 was examined in comparison with [...] Read more.
The formation of atroposelective biaryl compounds in plants and fungi is well understood; however, polyketide aglycone synthesis and dimerization in bacteria remain unclear. Thus, the biosynthetic gene cluster (BGC) responsible for antibacterial setomimycin production from Streptomyces nojiriensis JCM3382 was examined in comparison with the BGCs of spectomycin, julichromes, lincolnenins, and huanglongmycin. The setomimycin BGC includes post-polyketide synthase (PKS) assembly/cycling enzymes StmD (C-9 ketoreductase), StmE (aromatase), and StmF (thioesterase) as key components. The heterodimeric TcmI-like cyclases StmH and StmK are proposed to aid in forming the setomimycin monomer. In addition, StmI (P-450) is predicted to catalyze the biaryl coupling of two monomeric setomimycin units, with StmM (ferredoxin) specific to the setomimycin BGC. The roles of StmL and StmN, part of the nuclear transport factor 2 (NTF-2)-like protein family and unique to setomimycin BGCs, could particularly interest biochemists and combinatorial biologists. α-Glucosidase, a key enzyme in type 2 diabetes, hydrolyzes carbohydrates into glucose, thereby elevating blood glucose levels. This study aimed to assess the α-glucosidase inhibitory activity of EtOAc extracts of JCM 3382 and setomimycin. The JCM 3382 EtOAc extract and setomimycin exhibited greater potency than the standard inhibitor, acarbose, with IC50 values of 285.14 ± 2.04 μg/mL and 231.26 ± 0.41 μM, respectively. Molecular docking demonstrated two hydrogen bonds with maltase-glucoamylase chain A residues Thr205 and Lys480 (binding energy = −6.8 kcal·mol−1), two π–π interactions with Trp406 and Phe450, and one π–cation interaction with Asp542. Residue-energy analysis highlighted Trp406 and Phe450 as key in setomimycin’s binding to maltase-glucoamylase. These findings suggest that setomimycin is a promising candidate for further enzymological research and potential antidiabetic therapy. Full article
Show Figures

Figure 1

21 pages, 7141 KiB  
Article
Genome-Guided Identification of Surfactin-Producing Bacillus halotolerans AQ11M9 with Anti-Candida auris Potential
by J. Francis Borgio, Rahaf Alhujaily, Aqeelah Salman Alfaraj, Maryam Jawad Alabdullah, Rawan Khalid Alaqeel, Ayidah Kaabi, Rahaf Alquwaie, Norah F. Alhur, Reem AlJindan, Sarah Almofty, Dana Almohazey, Anandakumar Natarajan, Tharmathass Stalin Dhas, Sayed AbdulAzeez and Noor B. Almandil
Int. J. Mol. Sci. 2024, 25(19), 10408; https://doi.org/10.3390/ijms251910408 - 27 Sep 2024
Viewed by 829
Abstract
The emergence of multidrug-resistant fungi Candida auris is a worldwide health crisis connected with high rates of mortality. There is a critical need to find novel and unique antifungal compounds for treating infections of multidrug-resistant fungi such as C. auris. This study [...] Read more.
The emergence of multidrug-resistant fungi Candida auris is a worldwide health crisis connected with high rates of mortality. There is a critical need to find novel and unique antifungal compounds for treating infections of multidrug-resistant fungi such as C. auris. This study aimed to illustrate that biosynthetic gene clusters in native bacterial isolates are able to produce antifungal compounds against the multidrug-resistant fungus C. auris. It was successfully achieved using large-scale antifungal activity screening, cytotoxicity analysis, and whole genome sequencing integrated with genome mining-guided analysis and liquid chromatography–mass spectrometry (LC/MS). A list of possible gene candidates was initially identified with genome mining methods to predict secondary metabolite gene clusters of antifungal-compound-producing bacteria. Then, gene clusters present in the antifungal-compound-producing bacteria were identified and aligned with the reference genome using comparative genomic approaches. Bacillus halotolerans AQ11M9 was identified through large-scale antifungal activity screening as a natural compound-producer against multidrug-resistant C. auris, while it was nontoxic to normal human skin fibroblast cells (confirmed using a cell viability assay). The genome (4,197,347 bp) of B. halotolerans AQ11M9 with 2931 predicted genes was first mined for detecting and characterizing biosynthetic gene clusters, which revealed 10 candidate regions with antifungal activity. Clusters of AQ11M9 encoded non-ribosomal peptide synthase (NRPS) (bacilysin, bacillibactin, paenibactin, surfactin, plipastin, and fengycin) and polyketide (macrobrevin). The presence of gene clusters with anti-C. auris activity, and surfactin identified through LC/MS, from AQ11M9 suggests the potential of utilizing it as a source for a novel and powerful anti-C. auris compound. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

45 pages, 6883 KiB  
Review
Natural Products from Marine-Derived Fungi with Anti-Inflammatory Activity
by Yikang Qiu, Shiji Chen, Miao Yu, Jueying Shi, Jiayu Liu, Xiaoyang Li, Jiaxing Chen, Xueping Sun, Guolei Huang and Caijuan Zheng
Mar. Drugs 2024, 22(10), 433; https://doi.org/10.3390/md22100433 - 25 Sep 2024
Viewed by 2668
Abstract
Inflammation is considered as one of the most primary protective innate immunity responses, closely related to the body’s defense mechanism for responding to chemical, biological infections, or physical injuries. Furthermore, prolonged inflammation is undesirable, playing an important role in the development of various [...] Read more.
Inflammation is considered as one of the most primary protective innate immunity responses, closely related to the body’s defense mechanism for responding to chemical, biological infections, or physical injuries. Furthermore, prolonged inflammation is undesirable, playing an important role in the development of various diseases, such as heart disease, diabetes, Alzheimer’s disease, atherosclerosis, rheumatoid arthritis, and even certain cancers. Marine-derived fungi represent promising sources of structurally novel bioactive natural products, and have been a focus of research for the development of anti-inflammatory drugs. This review covers secondary metabolites with anti-inflammatory activities from marine-derived fungi, over the period spanning August 2018 to July 2024. A total of 285 anti-inflammatory metabolites, including 156 novel compounds and 11 with novel skeleton structures, are described. Their structures are categorized into five categories: terpenoids, polyketides, nitrogen-containing compounds, steroids, and other classes. The biological targets, as well as the in vitro and in vivo screening models, were surveyed and statistically summarized. This paper aims to offer valuable insights to researchers in the exploration of natural products and the discovery of anti-inflammatory drugs. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products, 2nd Edition)
Show Figures

Figure 1

27 pages, 7852 KiB  
Review
Recent Advances in Anti-Inflammatory Compounds from Marine Microorganisms
by Guihua Yang, Miaoping Lin, Kumaravel Kaliaperumal, Yaqi Lu, Xin Qi, Xiaodong Jiang, Xinya Xu, Chenghai Gao, Yonghong Liu and Xiaowei Luo
Mar. Drugs 2024, 22(9), 424; https://doi.org/10.3390/md22090424 - 18 Sep 2024
Viewed by 990
Abstract
Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021–2023). Approximately 252 [...] Read more.
Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021–2023). Approximately 252 anti-inflammatory compounds, including 129 new ones, were predominantly obtained from marine fungi and they are structurally divided into polyketides (51.2%), terpenoids (21.0%), alkaloids (18.7%), amides or peptides (4.8%), and steroids (4.3%). This review will shed light on the development of marine microbial secondary metabolites as potential anti-inflammatory lead compounds with promising clinical applications in human health. Full article
(This article belongs to the Special Issue Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition)
Show Figures

Figure 1

16 pages, 4560 KiB  
Article
The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF
by Qi Tan, Xinyu Ye, Siqi Fu, Yihao Yin, Yufeng Liu, Jianying Wu, Fei Cao, Bo Wang, Tingshun Zhu, Wencong Yang and Zhigang She
Mar. Drugs 2024, 22(9), 407; https://doi.org/10.3390/md22090407 - 5 Sep 2024
Viewed by 885
Abstract
Twelve compounds, including four undescribed cytochalasins, xylariachalasins A–D (14), four undescribed polyketides (58), and four known cytochalasins (912), were isolated from the mangrove endophytic fungus Xylaria arbuscula QYF. Their structures and [...] Read more.
Twelve compounds, including four undescribed cytochalasins, xylariachalasins A–D (14), four undescribed polyketides (58), and four known cytochalasins (912), were isolated from the mangrove endophytic fungus Xylaria arbuscula QYF. Their structures and absolute configurations were established by extensive spectroscopic analyses (1D and 2D NMR, HRESIMS), electronic circular dichroism (ECD) calculations, 13C NMR calculation and DP4+ analysis, single-crystal X-ray diffraction, and the modified Mosher ester method. Compounds 1 and 2 are rare cytochalasin hydroperoxides. In bioactivity assays, Compound 2 exhibited moderate antimicrobial activities against Staphylococcus aureus and Candida albicans with MIC values of 12.5 μM for both Compound 10 exhibited significant cytotoxic activity against MDA-MB-435 with an IC50 value of 3.61 ± 1.60 μM. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 2398 KiB  
Review
Diamine Fungal Inducers of Secondary Metabolism: 1,3-Diaminopropane and Spermidine Trigger Enzymes Involved in β-Alanine and Pantothenic Acid Biosynthesis, Precursors of Phosphopantetheine in the Activation of Multidomain Enzymes
by Juan Francisco Martín and Paloma Liras
Antibiotics 2024, 13(9), 826; https://doi.org/10.3390/antibiotics13090826 - 1 Sep 2024
Viewed by 784
Abstract
The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently [...] Read more.
The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently modulated by their interaction with specific ligand molecules. In the last decades, it was found that the biosynthesis of penicillin is induced by two different molecules, 1,3-diaminopropane and spermidine, but not by putrescine (1,4-diaminobutane) or spermine. 1,3-diaminopropane and spermidine induce the expression of penicillin biosynthetic genes in Penicillium chrysogenum. Proteomic studies clearly identified two different proteins that respond to the addition to cultures of these inducers and are involved in β-alanine and pantothenic acid biosynthesis. These compounds are intermediates in the biosynthesis of phosphopantetheine that is required for the activation of non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. These large-size multidomain enzymes are inactive in the “apo” form and are activated by covalent addition of the phosphopantetheine prosthetic group by phosphopantetheinyl transferases. Both 1,3-diaminopropane and spermidine have a similar effect on the biosynthesis of cephalosporin by Acremonium chrysogenum and lovastatin by Aspergillus terreus, suggesting that this is a common regulatory mechanism in the biosynthesis of bioactive secondary metabolites/natural products. Full article
(This article belongs to the Special Issue Anti-microbial Activity of Metabolites Isolated from Fungi)
Show Figures

Figure 1

11 pages, 960 KiB  
Article
Inverse Correlation between pks-Carrying Escherichia coli Abundance in Colorectal Cancer Liver Metastases and the Number of Organs Involved in Recurrence
by Yasuyuki Shigematsu, Rumiko Saito, Hiroaki Kanda, Yu Takahashi, Kengo Takeuchi, Shunji Takahashi and Kentaro Inamura
Cancers 2024, 16(17), 3003; https://doi.org/10.3390/cancers16173003 - 29 Aug 2024
Viewed by 3362
Abstract
Colibactin, a genotoxin produced by Escherichia coli strains harboring the polyketide synthetase (pks) gene cluster, causes DNA damage and somatic mutations. pks+ E. coli is enriched in primary colorectal cancer (CRC) and is associated with clonal driver mutations, but [...] Read more.
Colibactin, a genotoxin produced by Escherichia coli strains harboring the polyketide synthetase (pks) gene cluster, causes DNA damage and somatic mutations. pks+ E. coli is enriched in primary colorectal cancer (CRC) and is associated with clonal driver mutations, but its role in CRC liver metastasis is unclear. We assessed the association of pks+ E. coli in CRC liver metastasis tissues with systemic and local immune responses and the number of organs involved in recurrence using specimens and clinicopathological data from 239 patients with CRC liver metastasis who underwent metastasectomy. The levels of pks+ E. coli in fresh-frozen specimens were quantified as “very low” (<50th percentile), “low” (50th to 75th percentiles), and “high” (>75th percentile) using a digital PCR. Immunohistochemical analysis of tumor-infiltrating immune cells was performed using tissue microarrays. Systemic inflammation was evaluated using serum C-reactive protein (CRP) levels. pks+ E. coli was detected in 66.7% (157 of 239) liver metastasis tissues. Higher levels of pks+E. coli were associated with decreased serum CRP levels and reduced densities of CD4+ cells and CD163+ cells in the tumor-immune microenvironment. The “high” pks+ E. coli group had fewer metastatic organs involved than the “very low” pks+ E. coli group (mean number of organs: 1.00 vs. 1.23). These findings suggest that pks+ E. coli play a modulating role in CRC metastasis. Full article
(This article belongs to the Special Issue “Cancer Metastasis” in 2023–2024)
Show Figures

Figure 1

14 pages, 3593 KiB  
Article
New Bioactive Polyketides from the Mangrove-Derived Fungus Penicillium sp. SCSIO 41411
by Yi Chen, Jian Cai, Ziwei Xia, Chunmei Chen, Yonghong Liu, Lalith Jayasinghe, Xueni Wang and Xuefeng Zhou
Mar. Drugs 2024, 22(9), 384; https://doi.org/10.3390/md22090384 - 26 Aug 2024
Viewed by 815
Abstract
Three new polyketides, including three ester derivatives (1, 3, and 5) and a new natural product, which was a benzoquinone derivative, embelin A (4), together with nine known ones (2 and 613), were [...] Read more.
Three new polyketides, including three ester derivatives (1, 3, and 5) and a new natural product, which was a benzoquinone derivative, embelin A (4), together with nine known ones (2 and 613), were isolated from the mangrove-derived fungus Penicillium sp. SCSIO 41411. Their structures were determined by detailed NMR and MS spectroscopic analyses. The X-ray single-crystal diffraction analysis of 4 was described for the first time. Compound 9 displayed obvious inhibition against PDE4 with an inhibitory ratio of 40.78% at 10 μM. Compound 12 showed DPPH radical scavenging activity, with an EC50 of 16.21 µg/mL, compared to the positive control (ascorbic acid, EC50, 11.22 µg/mL). Furthermore, compound 4 exhibited cytotoxicity against PC-3 and LNCaP with IC50 values of 18.69 and 31.62 µM, respectively. Full article
(This article belongs to the Special Issue Bio-Active Products from Mangrove Ecosystems 2.0)
Show Figures

Figure 1

17 pages, 2500 KiB  
Article
Genomic Exploration of a Chitinolytic Streptomyces albogriseolus PMB5 Strain from European mantis (Mantis religiosa)
by Vesselin Baev, Ivan Iliev, Elena Apostolova, Mariyana Gozmanova, Yana Hristova, Yanitsa Ilieva, Galina Yahubyan and Velizar Gochev
Curr. Issues Mol. Biol. 2024, 46(9), 9359-9375; https://doi.org/10.3390/cimb46090554 - 24 Aug 2024
Viewed by 898
Abstract
The genus Streptomyces is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation [...] Read more.
The genus Streptomyces is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation and utilization genes in Streptomyces. A particularly compelling source of novel antimicrobials and enzymes lies in the microbiota of insects, where bacterial symbionts produce antimicrobials to protect against opportunistic pathogens and enzymes to adapt to the environment. In this study, we present the chitinolytic strain Streptomyces albogriseolus PMB5, isolated from the insectivorous Mantis religiosa (European mantis). Whole-genome sequencing revealed that PMB5 harbors a linear chromosome of 7,211,961 bp and a linear plasmid of 327,989 bp. The genome comprises 6683 genes, including 6592 protein-coding sequences and 91 RNA genes. Furthermore, genome analysis revealed 19 biosynthetic gene clusters covering polyketides, terpenes, and RiPPs, with 10 clusters showing significant gene similarity (>80%) to known clusters like antimycin, hopene, and geosmin. In the genome of S. albogriseolus PMB5, we were able to identify several antibiotic resistance genes; these included cml (resistance to phenicol), gimA (resistance to macrolides), parY (resistance to aminocoumarin), oleC/oleD (resistance to macrolides), novA (resistance to aminocoumarin) and bla/blc (resistance to beta-lactams). Additionally, three clusters displayed no similarity to known sequences, suggesting novel bioactive compound discovery potential. Remarkably, strain PMB5 is the first reported S. albogriseolus capable of thriving on a medium utilizing chitin as a carbon source, with over 50 chitin-utilizing genes identified, including five AA10 family LPMOs, five GH18 chitinases, and one GH19 chitinase. This study significantly enhances the genomic understanding of S. albogriseolus, a species previously underrepresented in research, paving the way to further exploration of the biotechnological potential of the species. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop