Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = pool boiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1818 KiB  
Article
An Experimental Methodology for Automated Detection of Surface Turbulence Features in Tidal Stream Environments
by James Slingsby, Beth E. Scott, Louise Kregting, Jason McIlvenny, Jared Wilson, Fanny Helleux and Benjamin J. Williamson
Sensors 2024, 24(19), 6170; https://doi.org/10.3390/s24196170 - 24 Sep 2024
Viewed by 254
Abstract
Tidal stream environments are important areas of marine habitat for the development of marine renewable energy (MRE) sources and as foraging hotspots for megafaunal species (seabirds and marine mammals). Hydrodynamic features can promote prey availability and foraging efficiency that influences megafaunal foraging success [...] Read more.
Tidal stream environments are important areas of marine habitat for the development of marine renewable energy (MRE) sources and as foraging hotspots for megafaunal species (seabirds and marine mammals). Hydrodynamic features can promote prey availability and foraging efficiency that influences megafaunal foraging success and behaviour, with the potential for animal interactions with MRE devices. Uncrewed aerial vehicles (UAVs) offer a novel tool for the fine-scale data collection of surface turbulence features and animals, which is not possible through other techniques, to provide information on the potential environmental impacts of anthropogenic developments. However, large imagery datasets are time-consuming to manually review and analyse. This study demonstrates an experimental methodology for the automated detection of turbulence features within UAV imagery. A deep learning architecture, specifically a Faster R-CNN model, was used to autonomously detect kolk-boils within UAV imagery of a tidal stream environment. The model was trained on pre-existing, labelled images of kolk-boils that were pre-treated using a suite of image enhancement techniques based on the environmental conditions present within each image. A 75-epoch model variant provided the highest average recall and precision values; however, it appeared to be limited by sub-optimal detections of false positive values. Although further development is required, including the creation of standardised image data pools, increased model benchmarking and the advancement of tailored pre-processing techniques, this work demonstrates the viability of utilising deep learning to automate the detection of surface turbulence features within a tidal stream environment. Full article
(This article belongs to the Special Issue Airborne Unmanned Sensor System for UAVs)
Show Figures

Figure 1

21 pages, 1023 KiB  
Review
A Meta-Analysis Review: Nanoparticles as a Gateway to Optimized Boiling Surfaces
by Giulia Motta and Antonis Sergis
Nanomaterials 2024, 14(12), 1012; https://doi.org/10.3390/nano14121012 - 11 Jun 2024
Viewed by 879
Abstract
Pool boiling is essential in many industrial manufacturing applications. In addition, it can become critical in the journey towards improving energy generation efficiency and accomplishing the goal of net-zero carbon emissions by 2050 via new or traditional power generation applications. The effectiveness of [...] Read more.
Pool boiling is essential in many industrial manufacturing applications. In addition, it can become critical in the journey towards improving energy generation efficiency and accomplishing the goal of net-zero carbon emissions by 2050 via new or traditional power generation applications. The effectiveness of boiling is governed by the bubble cycle. The chemistry and topographical features of the surface being heated have been found to highly impact the boiling performance, such as in the case of pool boiling enhancement when employing hydrophilic and hydrophobic surfaces via nano/micro heater surface modification. Nevertheless, it is questionable how feasible it is to create these surfaces for large-scale applications due to their manufacturing and maintenance cost and complexity. The current work assesses whether the use of nanoparticles in traditional coolants could potentially unlock the mass production of optimised heating surface modification through a metadata literature review analysis. It was discovered that self-assembled layers created as a result of the deposition of nanoparticles in coolants undergoing pool boiling seem to behave most similarly to manufactured hydrophilic surfaces. The creation of enhanced patterned-heat transfer surfaces is shown to be possible via the use of a combination of different nanoparticle suspensions in coolants. Full article
Show Figures

Figure 1

16 pages, 4567 KiB  
Article
Experimental Investigation of the Effects of Grooves in Fe2O4/Water Nanofluid Pool Boiling
by Marwa khaleel Rashid, Bashar Mahmood Ali, Mohammed Zorah and Tariq J. Al-Musawi
Fluids 2024, 9(5), 110; https://doi.org/10.3390/fluids9050110 - 8 May 2024
Viewed by 954
Abstract
In this study, we systematically explored how changing groove surfaces of iron oxide/water nanofluid could affect the pool boiling heat transfer. We aimed to investigate the effect of three types of grooves, namely rectangular, circular, and triangular, on the boiling heat transfer. The [...] Read more.
In this study, we systematically explored how changing groove surfaces of iron oxide/water nanofluid could affect the pool boiling heat transfer. We aimed to investigate the effect of three types of grooves, namely rectangular, circular, and triangular, on the boiling heat transfer. The goal was to improve heat transfer performance by consciously changing surface structure. Comparative analyses were conducted with deionized water to provide valuable insights. Notably, the heat transfer coefficient (HTC) exhibited a significant increase in the presence of grooves. For deionized water, the HTC rose by 91.7% and 48.7% on circular and rectangular grooved surfaces, respectively. Surprisingly, the triangular-grooved surface showed a decrease of 32.9% in HTC compared to the flat surface. On the other hand, the performance of the nanofluid displayed intriguing trends. The HTC for the nanofluid diminished by 89.2% and 22.3% on rectangular and triangular grooved surfaces, while the circular-grooved surface exhibited a notable 41.2% increase in HTC. These results underscore the complex interplay between groove geometry, fluid properties, and heat transfer enhancement in nanofluid-based boiling. Hence, we thoroughly examine the underlying mechanisms and elements influencing these observed patterns in this research. The results provide important insights for further developments in this area by shedding light on how surface changes and groove geometry may greatly affect heat transfer in nanofluid-based pool boiling systems. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

17 pages, 3526 KiB  
Article
An Experimental Study of Heat Transfer in Pool Boiling to Investigate the Effect of Surface Roughness on Critical Heat Flux
by Bashar Mahmood Ali
ChemEngineering 2024, 8(2), 44; https://doi.org/10.3390/chemengineering8020044 - 16 Apr 2024
Viewed by 1759
Abstract
Utilizing pool boiling as a cooling method holds significant importance within power plant industries due to its ability to effectively manage temperature differentials amidst high heat flux conditions. This study delves into the impact of surface modifications on the pool boiling process by [...] Read more.
Utilizing pool boiling as a cooling method holds significant importance within power plant industries due to its ability to effectively manage temperature differentials amidst high heat flux conditions. This study delves into the impact of surface modifications on the pool boiling process by conducting experiments on four distinct boiling surfaces under various conditions. An experimental setup tailored for this investigation is meticulously designed and implemented. The primary objective is to discern the optimal surface configuration capable of efficiently absorbing maximum heat flux while minimizing temperature differentials. In addition, this study scrutinizes bubble dynamics, pivotal in nucleation processes. Notably, surfaces polished unidirectionally (ROD), exhibiting lower roughness, demonstrate superior performance in critical heat flux (CHF) compared to surfaces with circular roughness (RCD). Moreover, the integration of bubble liquid separation methodology along with the introduction of a bubble micro-layer yields a microchannel surface. Remarkably, this modification results in a noteworthy enhancement of 131% in CHF and a substantial 211% increase in the heat transfer coefficient (HTC) without resorting to particle incorporation onto the surface. This indicates promising avenues for enhancing cooling efficiency through surface engineering without additional additives. Full article
Show Figures

Figure 1

20 pages, 6868 KiB  
Article
Aluminum Micropillar Surfaces with Hierarchical Micro- and Nanoscale Features for Enhancement of Boiling Heat Transfer Coefficient and Critical Heat Flux
by Armin Hadžić, Matic Može, Matevž Zupančič and Iztok Golobič
Nanomaterials 2024, 14(8), 667; https://doi.org/10.3390/nano14080667 - 11 Apr 2024
Viewed by 1292
Abstract
The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have [...] Read more.
The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have been developed and have shown significant boiling performance improvements, such enhancement approaches on aluminum surfaces are not broadly investigated, despite their industrial applicability. This study introduces a scalable approach to engineering hierarchical micro-nano structures on aluminum surfaces, aiming to simultaneously increase HTC and CHF. One set of samples was produced using a combination of nanosecond laser texturing and chemical etching in hydrochloric acid, while another set underwent an additional laser texturing step. Three distinct micropillar patterns were tested under saturated pool boiling conditions using water at atmospheric pressure. Our findings reveal that microcavities created atop pillars successfully facilitate nucleation and micropillars representing nucleation site areas on a microscale, leading to an enhanced HTC up to 242 kW m−2 K−1. At the same time, the combination of the surrounding hydrophilic porous area enables increased wicking and pillar patterning, defining the vapor–liquid pathways on a macroscale, which leads to an increase in CHF of up to 2609 kW m−2. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

57 pages, 13215 KiB  
Review
An Overview of Innovative Surface-Modification Routes for Pool Boiling Enhancement
by José Pereira, Reinaldo Souza, António Moreira and Ana Moita
Micromachines 2024, 15(3), 302; https://doi.org/10.3390/mi15030302 - 22 Feb 2024
Cited by 2 | Viewed by 1375
Abstract
This overview intends to provide a comprehensive assessment of the novel fluids and the current techniques for surface modification for pool boiling enhancement. The surface modification at macro-, micro-, and nanoscales is assessed concerning the underlying fluid routing and capability to eliminate the [...] Read more.
This overview intends to provide a comprehensive assessment of the novel fluids and the current techniques for surface modification for pool boiling enhancement. The surface modification at macro-, micro-, and nanoscales is assessed concerning the underlying fluid routing and capability to eliminate the incipient boiling hysteresis and ameliorate the pool boiling heat-transfer ability, particularly when employed together with self-rewetting fluids and nanofluids with enriched thermophysical properties. Considering the nanofluids, it is viable to take the profit of their high thermal conductivity and their specific heat simultaneously and to produce a film of deposited nanoparticles onto the heating surface, which possesses enhanced surface roughness and an increased density of nucleation sites. Whilst the diverse improvement scales are found to achieve distinct levels of success regarding the nucleate boiling heat-transfer capability enhancement, it is also shown that the micro–nanoscale boiling surface features are susceptible to blockage, leading to the degradation of the improvement with time. Furthermore, topics relating to the heat transfer thermal behavior, ease of manufacture, cost-effectiveness, reliability, and durability are reviewed whenever available and challenges and recommendations for further research are highlighted. Full article
(This article belongs to the Special Issue Micro Thermal Devices and Their Applications)
Show Figures

Figure 1

53 pages, 5520 KiB  
Review
An Overview of the Recent Advances in Pool Boiling Enhancement Materials, Structrure, and Devices
by José Pereira, Reinaldo Souza, Rui Lima, António Moreira and Ana Moita
Micromachines 2024, 15(2), 281; https://doi.org/10.3390/mi15020281 - 17 Feb 2024
Viewed by 1663
Abstract
This review attempts to provide a comprehensive assessment of recent methodologies, structures, and devices for pool boiling heat transfer enhancement. Several enhancement approaches relating to the underlying fluid route and the capability to eliminate incipient boiling hysteresis, augment the nucleate boiling heat transfer [...] Read more.
This review attempts to provide a comprehensive assessment of recent methodologies, structures, and devices for pool boiling heat transfer enhancement. Several enhancement approaches relating to the underlying fluid route and the capability to eliminate incipient boiling hysteresis, augment the nucleate boiling heat transfer coefficient, and improve the critical heat flux are assessed. Hence, this study addresses the most relevant issues related to active and passive enhancement techniques and compound enhancement schemes. Passive heat transfer enhancement techniques encompass multiscale surface modification of the heating surface, such as modification with nanoparticles, tunnels, grooves, porous coatings, and enhanced nanostructured surfaces. Also, there are already studies on the employment of a wide range of passive enhancement techniques, like displaced enhancement, swirl flow aids, and bi-thermally conductive surfaces. Moreover, the combined usage of two or more enhancement techniques, commonly known as compound enhancement approaches, is also addressed in this survey. Additionally, the present work highlights the existing scarcity of sufficiently large available databases for a given enhancement methodology regarding the influencing factors derived from the implementation of innovative thermal management systems for temperature-sensitive electronic and power devices, for instance, material, morphology, relative positioning and orientation of the boiling surface, and nucleate boiling heat transfer enhancement pattern and scale. Such scarcity means the available findings are not totally accurate and suitable for the design and implementation of new thermal management systems. The analysis of more than 100 studies in this field shows that all such improvement methodologies aim to enhance the nucleate boiling heat transfer parameters of the critical heat flux and nucleate heat transfer coefficient in pool boiling scenarios. Finally, diverse challenges and prospects for further studies are also pointed out, aimed at developing important in-depth knowledge of the underlying enhancement mechanisms of such techniques. Full article
(This article belongs to the Special Issue Feature Reviews in Micromachines 2023)
Show Figures

Figure 1

18 pages, 6612 KiB  
Article
Investigation of Heat Transfer Performance in Deionized Water–Ethylene Glycol Binary Mixtures during Nucleate Pool Boiling
by Chen Xu, Jie Ren, Zuoqin Qian and Lumei Zhao
Processes 2024, 12(2), 368; https://doi.org/10.3390/pr12020368 - 10 Feb 2024
Viewed by 901
Abstract
Pool boiling heat transfer is recognized as an exceptionally effective method, widely applied across various industries. The adoption of non-azeotropic binary mixtures aligns with the environmental objectives of modern industrial development and enhances the coefficient of performance (COP) in numerous systems. Therefore, investigating [...] Read more.
Pool boiling heat transfer is recognized as an exceptionally effective method, widely applied across various industries. The adoption of non-azeotropic binary mixtures aligns with the environmental objectives of modern industrial development and enhances the coefficient of performance (COP) in numerous systems. Therefore, investigating the boiling heat transfer characteristics of these mixtures is crucial to improving their industrial usability. In this study, mixtures of ethylene glycol and deionized water (EG/DW) in varying concentrations were chosen as the working fluids. A comprehensive experimental setup was developed, followed by a series of experiments to assess their pool boiling performance. Simultaneously, the thermophysical parameters of these mixtures underwent detailed examination and analysis. The research revealed that the concentration of EG in the mixture markedly affects its thermal properties and temperature glide, both of which are crucial in influencing the heat transfer coefficient. Additionally, six established heat transfer coefficient prediction correlations, primarily designed for pure fluids, have been employed. However, their application to non-azeotropic mixtures under experimental conditions revealed significant deviations. To address this issue, the present study modified existing correlations with the temperature slip characteristics of non-azeotropic mixtures. This process involved recalibrating the wall superheat values in the correlations to reflect the local temperature differential at the boiling point, thereby customizing them for application to non-azeotropic mixtures. The modified correlations highlighted the unique behaviors of non-azeotropic mixtures in boiling heat transfer, demonstrating improved compatibility with these mixtures in a deviation within a permissible 20% range compared with experimental results. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

17 pages, 25355 KiB  
Article
Effect of Surface Wettability on Nanoparticle Deposition during Pool Boiling on Laser-Textured Copper Surfaces
by Jure Berce, Armin Hadžić, Matic Može, Klara Arhar, Henrik Gjerkeš, Matevž Zupančič and Iztok Golobič
Nanomaterials 2024, 14(3), 311; https://doi.org/10.3390/nano14030311 - 4 Feb 2024
Cited by 1 | Viewed by 1406
Abstract
Prior studies have evidenced the potential for enhancing boiling heat transfer through modifications of surface or fluid properties. The deployment of nanofluids in pool boiling systems is challenging due to the deposition of nanoparticles on structured surfaces, which may result in performance deterioration. [...] Read more.
Prior studies have evidenced the potential for enhancing boiling heat transfer through modifications of surface or fluid properties. The deployment of nanofluids in pool boiling systems is challenging due to the deposition of nanoparticles on structured surfaces, which may result in performance deterioration. This study addresses the use of TiO2–water nanofluids (mass concentrations of 0.001 wt.% and 0.1 wt.%) in pool boiling heat transfer and concurrent mitigation of nanoparticle deposition on superhydrophobic laser-textured copper surfaces. Samples, modified through nanosecond laser texturing, were subjected to boiling in an as-prepared superhydrophilic (SHPI) state and in a superhydrophobic state (SHPO) following hydrophobization with a self-assembled monolayer of fluorinated silane. The boiling performance assessment involved five consecutive boiling curve runs under saturated conditions at atmospheric pressure. Results on superhydrophilic surfaces reveal that the use of nanofluids always led to a deterioration of the heat transfer coefficient (up to 90%) compared to pure water due to high nanoparticle deposition. The latter was largely mitigated on superhydrophobic surfaces, yet their performance was still inferior to that of the same surface in water. On the other hand, CHF values of 1209 kW m−2 and 1462 kW m−2 were recorded at 0.1 wt.% concentration on both superhydrophobic and superhydrophilic surfaces, respectively, representing a slight enhancement of 16% and 27% compared to the results obtained on their counterparts investigated in water. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Applications)
Show Figures

Figure 1

13 pages, 9878 KiB  
Article
An Experimental Investigation on the Pool Boiling Heat Transfer of R-134a on Microporous Cu-MWCNT Composite Surfaces
by Ajay D. Pingale, Anil S. Katarkar, Mahadev Madgule, Swapan Bhaumik and Sachin U. Belgamwar
Thermo 2024, 4(1), 16-28; https://doi.org/10.3390/thermo4010002 - 17 Jan 2024
Viewed by 926
Abstract
Multiwalled carbon nanotubes (MWCNTs) exhibit outstanding physical properties, including high thermal conductivity, excellent mechanical strength, and low electrical resistivity, which make them suitable candidates for a variety of applications. The work presented in this paper focuses on the pool boiling performance of refrigerant [...] Read more.
Multiwalled carbon nanotubes (MWCNTs) exhibit outstanding physical properties, including high thermal conductivity, excellent mechanical strength, and low electrical resistivity, which make them suitable candidates for a variety of applications. The work presented in this paper focuses on the pool boiling performance of refrigerant R-134a on microporous Cu-MWCNT composite surface layers. A two-stage electrodeposition technique was used to fabricate Cu-MWCNT composite coatings. In order to achieve variation in the surface properties of the Cu-MWCNT composite surface layer, electrodeposition was carried out at various bath temperatures (25 °C, 30 °C, 35 °C, and 40 °C). All surfaces coated with the Cu-MWCNT composite demonstrated superior boiling performance compared to the uncoated surface. Heat transfer coefficient (HTC) values for Cu-MWCNT composite surface layers, prepared at bath temperatures of 25 °C, 30 °C, 35 °C, and 40 °C, exhibited improvements of up to 1.75, 1.88, 2.06, and 2.22, respectively, in comparison to the plain Cu surface. Full article
Show Figures

Figure 1

24 pages, 9141 KiB  
Article
Saturated Boiling Enhancement of Novec-7100 on Microgrooved Surfaces with Groove-Induced Anisotropic Properties
by Ho-Ching Lin, Cheng-Hsin Kang, Hui-Chung Cheng, Tien-Li Chang and Ping-Hei Chen
Appl. Sci. 2024, 14(2), 495; https://doi.org/10.3390/app14020495 - 5 Jan 2024
Cited by 1 | Viewed by 1173
Abstract
The effects of the anisotropic properties (wettability and roughness) of microgrooved surfaces on heat transfer were experimentally investigated during pool boiling using Novec-7100 as a working fluid. The idea for introducing the concept of anisotropic wettability in boiling experiments draws inspiration from biphilic [...] Read more.
The effects of the anisotropic properties (wettability and roughness) of microgrooved surfaces on heat transfer were experimentally investigated during pool boiling using Novec-7100 as a working fluid. The idea for introducing the concept of anisotropic wettability in boiling experiments draws inspiration from biphilic surfaces. The investigation is also motivated by two-phase immersion cooling, which involves phase-change heat transfer, using a dielectric liquid as a working fluid. Very few studies have focused on the effects of surfaces with anisotropic properties on boiling performance. Thus, this study aims to examine the pool-boiling heat transfer performance on surfaces with microgroove-induced anisotropic properties under the saturation condition. A femtosecond-laser texturing method was employed to create microgrooved surfaces with different groove spacings. The results indicated that anisotropic properties affected the heat transfer coefficient and critical heat flux. Relative to the plain surface, microgrooved surfaces enhanced the heat transfer performance due to the increased number of bubble nucleation sites and higher bubble detachment frequency. An analysis of bubble dynamics under different surface conditions was conducted with the assistance of high-speed images. The microgrooved surface with a groove spacing of 100 μm maximally increased the BHTC by 37% compared with that of the plain surface. Finally, the CHF results derived from experiments were compared with related empirical correlations. Good agreement was achieved between the results and the prediction correlation. Full article
(This article belongs to the Special Issue Fluid Flow and Heat Transfer: Latest Advances and Prospects)
Show Figures

Figure 1

27 pages, 2582 KiB  
Article
Prevalence and Antimicrobial Resistance of Escherichia coli O157:H7 and Salmonella, and the Prevalence of Staphylococcus aureus in Dairy Cattle and Camels under Pastoral Production System
by Diriba Hunduma, Kebede Amenu, Hiwot Desta, Delia Grace, Getahun E. Agga and Oudessa Kerro Dego
Antibiotics 2024, 13(1), 26; https://doi.org/10.3390/antibiotics13010026 - 27 Dec 2023
Cited by 1 | Viewed by 2922
Abstract
Escherichia coli O157:H7, Salmonella and Staphylococcus aureus are common foodborne pathogens. We determined the prevalence of E. coli O157:H7 and Salmonella in feces and milk and the prevalence of S. aureus in milk from dairy cattle and camels in the Borana pastoral community [...] Read more.
Escherichia coli O157:H7, Salmonella and Staphylococcus aureus are common foodborne pathogens. We determined the prevalence of E. coli O157:H7 and Salmonella in feces and milk and the prevalence of S. aureus in milk from dairy cattle and camels in the Borana pastoral community in the Southern Oromia Region of Ethiopia. Paired individual cow composite (pooled from all quarters in equal proportions) milk and fecal samples were collected from cows (n = 154) and camels (n = 158). Samples were cultured on bacterial isolation and identification media. E. coli O157:H7 and Salmonella isolates were further tested for susceptibility against nine antimicrobial drugs. Different risk factors associated with hygienic milking practices were recorded and analyzed for their influence on the prevalence of these bacteria in milk and feces. The prevalence of E. coli O157:H7 and Salmonella in feces were 3.9% and 8.4%, respectively, in cows, and 0.6% and 2.5%, respectively, in camels. E. coli O157:H7 and Salmonella were detected in the composite milk samples of 2.6% and 3.9% of the cows, respectively, and 0% and 1.3% of the camels, respectively. S. aureus was detected in composite milk samples of 33.4% of the cows and 41.7% of the camels. All E. coli O157:H7 (n = 11) and Salmonella (n = 25) isolates from both animal species and sample types were resistant to at least one antimicrobial drug. Multidrug resistance was observed in 70% (7/10) of the E. coli O157:H7 fecal and milk isolates from cows and 33.3% (2/6) of the Salmonella fecal and milk isolates from camels. The prevalence of these bacteria in feces and milk was not affected by risk factors associated with milking practices. Given the very close contact between herders and their animals and the limited availability of water for hand washing and udder cleaning, these bacteria are most likely present in all niches in the community. Improving community awareness of the need to boil milk before consumption is a realistic public health approach to reducing the risk of these bacteria. Full article
(This article belongs to the Special Issue Mastitis: Causative Agents, Drug Resistance, and Treatment Approaches)
Show Figures

Figure 1

19 pages, 4623 KiB  
Article
Pool Boiling of Ethanol on Copper Surfaces with Rectangular Microchannels
by Robert Kaniowski, Robert Pastuszko, Egidijus Dragašius and Saulius Baskutis
Energies 2023, 16(23), 7883; https://doi.org/10.3390/en16237883 - 2 Dec 2023
Cited by 1 | Viewed by 1185
Abstract
In this paper, pool boiling of ethanol at atmospheric pressure was analyzed. The enhanced surfaces were made of copper, on which grooves with a depth ranging from 0.2 to 0.5 mm were milled in parallel. The widths of the microchannels and the distances [...] Read more.
In this paper, pool boiling of ethanol at atmospheric pressure was analyzed. The enhanced surfaces were made of copper, on which grooves with a depth ranging from 0.2 to 0.5 mm were milled in parallel. The widths of the microchannels and the distances between them were 0.2 mm, 0.3 mm and 0.4 mm, respectively. The highest heat transfer coefficient, 90.3 kW/m2K, was obtained for the surface with a microchannel depth of 0.5 mm and a width of 0.2 mm. The maximum heat flux was 1035 kW/m2. For the analyzed surfaces, the maximum heat flux increase of two and a half times was obtained, while the heat transfer coefficient increased three-fold in relation to the smooth surface. In the given range of heat flux 21.2–1035 kW/m2, the impact of geometric parameters on the heat transfer process was presented. The diameters of the departing bubbles were determined experimentally with the use of a high-speed camera. A simplified model was proposed to determine the diameter of the departure bubble for the studied surfaces. Full article
Show Figures

Figure 1

32 pages, 9646 KiB  
Review
A Review of Pool-Boiling Processes Based on Bubble-Dynamics Parameters
by Longhuang Xiao, Yuan Zhuang, Xilei Wu, Jialiang Yang, Yongjie Lu, Ying Liu and Xiaohong Han
Appl. Sci. 2023, 13(21), 12026; https://doi.org/10.3390/app132112026 - 3 Nov 2023
Cited by 4 | Viewed by 2014
Abstract
Immersion cooling is widely used for thermal management of servers. The two-phase immersion cooling, which transfers heat by boiling, possesses efficient temperature control ability under intensive heat generation. In the process of temperature control through boiling, the generation and transportation of bubbles play [...] Read more.
Immersion cooling is widely used for thermal management of servers. The two-phase immersion cooling, which transfers heat by boiling, possesses efficient temperature control ability under intensive heat generation. In the process of temperature control through boiling, the generation and transportation of bubbles play a crucial role in calculating the heat-transfer capacity. Therefore, it holds immense significance to obtain a profound understanding of the mechanisms underlying bubble formation and detachment. Currently, numerous mechanistic explanations and empirical correlations have been proposed to elucidate the various parameters of bubbles during the boiling process. These findings were considered to be valuable references when selecting appropriate boiling media and designing efficient heating surfaces. To comprehensively present the progress of bubble formation and heat transfer in the boiling system, the forces exerted on the bubbles are highlighted in this article. A meticulous review of bubble-force analysis and correlation formulae pertaining to various relevant parameters (e.g., nucleation sites density, bubble growth rate, bubble growth period, and detachment frequency) was conducted. This review article was also expected to provide a novel foundation for further exploration of enhanced boiling heat transfer. Full article
Show Figures

Figure 1

13 pages, 3552 KiB  
Article
Study on Boiling Heat Transfer Characteristics of Composite Porous Structure Fabricated by Selective Laser Melting
by Houli Liu, Zhonghao Gu and Jun Liang
Materials 2023, 16(19), 6391; https://doi.org/10.3390/ma16196391 - 25 Sep 2023
Viewed by 1197
Abstract
Surface porosity is an important means of enhancing boiling heat transfer. In this paper, two kinds of composite porous structures of surface micropore + square channel and framework micropore + square channel were prepared by selective laser melting technology using AlSi10Mg as the [...] Read more.
Surface porosity is an important means of enhancing boiling heat transfer. In this paper, two kinds of composite porous structures of surface micropore + square channel and framework micropore + square channel were prepared by selective laser melting technology using AlSi10Mg as the powder material. The effect of composites with different pore forms on boiling heat transfer was investigated in pool boiling experiments. It was found that controlling the thickness of the powder layer manufactured by selective laser melting can change the surface roughness of the sample, and the sandblasting treatment reduced the surface roughness of the samples. The average heat transfer coefficient of the rough surface composite porous structure sample was increased by 40% compared to the sandblasted sample. The micropores on the surface of the sample and inside the framework significantly enhanced the heat transfer coefficient of the composite porous structure. The presence of surface micropores increased the heat transfer area and the vaporization core density of the composite porous structure and exhibited excellent heat transfer coefficient improvement in the low heat flux region. The framework microporous composite porous structure can form effective gas–liquid diversion at high heat flux and obtain higher heat transfer performance. The large channel in the composite porous structure is the key control factor of the critical heat flux. Full article
Show Figures

Figure 1

Back to TopTop