Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (272)

Search Parameters:
Keywords = product recommendation algorithms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7494 KiB  
Article
Structuring and Recommendations for Research on the Construction of Intelligent Multi-Industry and Multihazard Emergency Planning Systems
by Xiaolei Zhang, Kaigong Zhao, Changming Li and Yansu Li
Sustainability 2024, 16(14), 5882; https://doi.org/10.3390/su16145882 - 10 Jul 2024
Viewed by 331
Abstract
During production and operation, enterprises are faced with occurrences of production accidents. One of the prerequisites for enterprises to achieve sustainable development is building an intelligent emergency command platform. To establish a scientific and advanced emergency management information system and address the challenges [...] Read more.
During production and operation, enterprises are faced with occurrences of production accidents. One of the prerequisites for enterprises to achieve sustainable development is building an intelligent emergency command platform. To establish a scientific and advanced emergency management information system and address the challenges related to managing emergency plans to ensure production safety, such as ambiguous roles and responsibilities, inefficient application processes, independent resources, and slow responses by enterprises with multiple types of operations and disasters, an intelligent emergency command platform was built for multiple types of operations and disasters, and this platform was extended to include rescue steps. The structure and digital management of emergency plans under multiple coupled disasters and multipoint cogeneration were determined. Similar emergency plans were automatically recommended by crawler technology and an SVM algorithm based on a public information data lake, and the effectiveness of the plans was evaluated via a fuzzy analytic hierarchy process to promote the preparation of more efficient and scientific emergency plans. Finally, the analysis of pipeline leakage and emergency drill scenarios proved that the system is scientific and reliable. The results are of great significance for improving the deep integration of modern emergency-related information technology and emergency management businesses, promoting institutional and mechanical innovation, to provide a reference for other multibusiness enterprises, wchih can also be integrated into methods for urban safety and rescue. Full article
Show Figures

Figure 1

18 pages, 2974 KiB  
Article
Computer Vision Method for Automatic Detection of Microstructure Defects of Concrete
by Alexey N. Beskopylny, Sergey A. Stel’makh, Evgenii M. Shcherban’, Irina Razveeva, Alexey Kozhakin, Besarion Meskhi, Andrei Chernil’nik, Diana Elshaeva, Oksana Ananova, Mikhail Girya, Timur Nurkhabinov and Nikita Beskopylny
Sensors 2024, 24(13), 4373; https://doi.org/10.3390/s24134373 - 5 Jul 2024
Viewed by 565
Abstract
The search for structural and microstructural defects using simple human vision is associated with significant errors in determining voids, large pores, and violations of the integrity and compactness of particle packing in the micro- and macrostructure of concrete. Computer vision methods, in particular [...] Read more.
The search for structural and microstructural defects using simple human vision is associated with significant errors in determining voids, large pores, and violations of the integrity and compactness of particle packing in the micro- and macrostructure of concrete. Computer vision methods, in particular convolutional neural networks, have proven to be reliable tools for the automatic detection of defects during visual inspection of building structures. The study’s objective is to create and compare computer vision algorithms that use convolutional neural networks to identify and analyze damaged sections in concrete samples from different structures. Networks of the following architectures were selected for operation: U-Net, LinkNet, and PSPNet. The analyzed images are photos of concrete samples obtained by laboratory tests to assess the quality in terms of the defection of the integrity and compactness of the structure. During the implementation process, changes in quality metrics such as macro-averaged precision, recall, and F1-score, as well as IoU (Jaccard coefficient) and accuracy, were monitored. The best metrics were demonstrated by the U-Net model, supplemented by the cellular automaton algorithm: precision = 0.91, recall = 0.90, F1 = 0.91, IoU = 0.84, and accuracy = 0.90. The developed segmentation algorithms are universal and show a high quality in highlighting areas of interest under any shooting conditions and different volumes of defective zones, regardless of their localization. The automatization of the process of calculating the damage area and a recommendation in the “critical/uncritical” format can be used to assess the condition of concrete of various types of structures, adjust the formulation, and change the technological parameters of production. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 3761 KiB  
Article
Multi-Objective Ecological Long-Term Operation of Cascade Reservoirs Considering Hydrological Regime Alteration
by Changjiang Xu, Di Zhu, Wei Guo, Shuo Ouyang, Liping Li, Hui Bu, Lin Wang, Jian Zuo and Junhong Chen
Water 2024, 16(13), 1849; https://doi.org/10.3390/w16131849 - 28 Jun 2024
Viewed by 358
Abstract
Constructing and operating cascade reservoirs significantly contribute to comprehensive basin water resource management, while altering natural hydrological regimes of rivers, which imposes negative impacts on riverine ecology. The main aim of this study is to synergistically optimize the objectives of increasing hydropower generation [...] Read more.
Constructing and operating cascade reservoirs significantly contribute to comprehensive basin water resource management, while altering natural hydrological regimes of rivers, which imposes negative impacts on riverine ecology. The main aim of this study is to synergistically optimize the objectives of increasing hydropower generation and alleviating hydrological regime alteration for cascade reservoirs. This study first proposed a dynamic time warping scenario backward reduction (DTW-SBR) framework to extract streamflow scenarios from the historical streamflow series regarded as benchmarks for calculating deviation degrees of hydrological regimes. Then a multi-objective long-term operation model considering the hydrological regime and hydroelectricity was formed for minimizing the deviation degrees of hydrological regimes at the downstream section (O1) and maximizing the hydropower generation of cascade reservoirs (O2). The non-dominated sorting genetic algorithm-II (NSGA-II) combined with the long-term conventional operation (CO) rules of cascade reservoirs was adopted to produce the Pareto-front solutions to derive the recommended policies for guiding the long-term operation of cascade reservoirs. The six large reservoirs in the middle reaches of the Jinsha River, China with a 10-day runoff dataset spanning from 1953 to 2015 constitute a case study. The results showed that nine streamflow scenarios were extracted for calculating the O1 by the DTW-SBR framework, which could reflect the intra- and inter- annual variability of hydrological regimes at the Panzhihua hydrological station. The Pareto-front solutions obtained by the NSGA-II revealed competitive relationships between the O1 and O2. As compared to the long-term CO rules of cascade reservoirs, the O1 value could be reduced by up to 42,312 (corresponding rate of 10.51%) and the O2 value could be improved by up to 1752 × 108 kW·h (corresponding rate of 5.14%). Based on the inclination to be dominated by different objectives, three typical operation schemes, A, B and C, were chosen from the Pareto-front solutions; Scheme A could be considered as the recommended solution, which simultaneously reduced the O1 value by 23,965 with the rate of 5.95% and increased the O2 value by 1752 × 108 kW·h with the rate of 5.14%, as compared to the long-term CO rules. This study can provide references on boosting the synergies of hydropower production and hydrological regime restoration for the long-term ecological operation of cascade reservoirs. Full article
Show Figures

Figure 1

16 pages, 4185 KiB  
Article
Prediction and Optimization of Open-Pit Mine Blasting Based on Intelligent Algorithms
by Jiang Guo, Zekun Zhao, Peidong Zhao and Jingjing Chen
Appl. Sci. 2024, 14(13), 5609; https://doi.org/10.3390/app14135609 - 27 Jun 2024
Viewed by 342
Abstract
Blasting prediction and parameter optimization can effectively improve blasting effectiveness and control production energy consumption. However, the presence of multiple factors and diverse effects in open-pit blasting increases the difficulty of effective prediction and optimization. Therefore, this study takes blasting fragmentation as the [...] Read more.
Blasting prediction and parameter optimization can effectively improve blasting effectiveness and control production energy consumption. However, the presence of multiple factors and diverse effects in open-pit blasting increases the difficulty of effective prediction and optimization. Therefore, this study takes blasting fragmentation as the prediction indicator and proposes a hybrid intelligent model based on multiple parameters. The model employs a least squares support vector machine (LSSVM) optimized by a genetic algorithm (GA) for prediction. Additionally, the performance of GA-LSSVM was compared with LSSVM optimized by rime optimization algorithms (RIME-LSSVM) and by particle swarm optimization algorithms (PSO-LSSVM), unoptimized LSSVM, and the Kuz–Ram empirical model. Furthermore, considering both blasting fragmentation and blasting cost, a multi-objective particle swarm optimization (MOPSO) algorithm was used for blasting parameter optimization, followed by field validation. The results indicated that the GA-LSSVM model provided the best prediction of blasting fragmentation, achieving optimal evaluation metrics: a root mean square error (RMSE) of 1.947, a mean absolute error (MAE) of 1.688, and a correlation coefficient (r) of 0.962. Moreover, the MOPSO optimization model yielded the optimal blasting parameter combination: a burden of 5.5 m, spacing of 4.3 m, specific charge of 0.51 kg/m3, and subdrilling of 2.0 m. Field blasting tests confirmed the reliability of these parameters. This study can provide scientific recommendations for open-pit mine blasting design and cost control. Full article
Show Figures

Figure 1

29 pages, 4820 KiB  
Review
Evolution of Flood Prediction and Forecasting Models for Flood Early Warning Systems: A Scoping Review
by Nicholas Byaruhanga, Daniel Kibirige, Shaeden Gokool and Glen Mkhonta
Water 2024, 16(13), 1763; https://doi.org/10.3390/w16131763 - 21 Jun 2024
Viewed by 1442
Abstract
Floods are recognised as one of the most destructive and costliest natural disasters in the world, which impact the lives and livelihoods of millions of people. To tackle the risks associated with flood disasters, there is a need to think beyond structural interventions [...] Read more.
Floods are recognised as one of the most destructive and costliest natural disasters in the world, which impact the lives and livelihoods of millions of people. To tackle the risks associated with flood disasters, there is a need to think beyond structural interventions for flood protection and move to more non-structural ones, such as flood early warning systems (FEWSs). Firstly, this study aimed to uncover how flood forecasting models in the FEWSs have evolved over the past three decades, 1993 to 2023, and to identify challenges and unearth opportunities to assist in model selection for flood prediction. Secondly, the study aimed to assist in model selection and, in return, point to the data and other modelling components required to develop an operational flood early warning system with a focus on data-scarce regions. The scoping literature review (SLR) was carried out through a standardised procedure known as Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The SLR was conducted using the electronic databases Scopus and Web of Science (WoS) from 1993 until 2023. The results of the SLR found that between 1993 and 2010, time series models (TSMs) were the most dominant models in flood prediction and machine learning (ML) models, mostly artificial neural networks (ANNs), have been the most dominant models from 2011 to present. Additionally, the study found that coupling hydrological, hydraulic, and artificial neural networks (ANN) is the most used ensemble for flooding forecasting in FEWSs due to superior accuracy and ability to bring out uncertainties in the system. The study recognised that there is a challenge of ungauged and poorly gauged rainfall stations in developing countries. This leads to data-scarce situations where ML algorithms like ANNs are required to predict floods. On the other hand, there are opportunities to use Satellite Precipitation Products (SPP) to replace missing or poorly gauged rainfall stations. Finally, the study recommended that interdisciplinary, institutional, and multisectoral collaborations be embraced to bridge this gap so that knowledge is shared for a faster-paced advancement of flood early warning systems. Full article
(This article belongs to the Special Issue Innovative Flood Risk Management under Changing Environments)
Show Figures

Figure 1

16 pages, 1865 KiB  
Review
Variable Depth Tillage: Importance, Applicability, and Impact—An Overview
by Egidijus Šarauskis, Simas Sokas and Julija Rukaitė
AgriEngineering 2024, 6(2), 1870-1885; https://doi.org/10.3390/agriengineering6020109 - 20 Jun 2024
Viewed by 369
Abstract
Tillage, as a key agricultural operation, has an important influence on soil properties and crop productivity. However, tillage at the same depth is not always the best choice as differences in soil texture, compacted topsoil, or plow pan at different depths, crop rotation, [...] Read more.
Tillage, as a key agricultural operation, has an important influence on soil properties and crop productivity. However, tillage at the same depth is not always the best choice as differences in soil texture, compacted topsoil, or plow pan at different depths, crop rotation, and root penetration potential signal that the depth of tillage should take greater account of the factors involved. Variable depth tillage (VDT) is an important precision farming operation, linking soil, plants, tillage machinery, smart sensors, measuring devices, computer programs, algorithms, and variability maps. This topic is important from an agronomic, energy, and environmental perspective. However, the application of VDTs in practice is currently still very limited. The aim of this study was to carry out a detailed review of scientific work on variable depth tillage, highlighting the importance of soil compaction and VDT; the measurement methods and equipment used; and the impact on soil, crops, the environment, and the economy. Based on the reviewed studies, there is a lack of studies that use fully automated depth control of tillage systems based on input data obtained with on-the-go (also known as online) proximal soil sensing. In precision agriculture, rapidly developing Internet of Things technologies allow the adaptation of various farming operations—including tillage depth—to site-specific and temporal conditions. In this context, the use of proximal soil sensing technologies coupled with electromagnetic induction, gamma rays, and multi-sensor data fusion to provide input for recommended tillage depth would be beneficial in the future. The application of VTD in specific areas is promising as it helps to reduce the negative effects of soil compaction and avoid unnecessary use of this expensive and environmentally damaging technological operation. Full article
Show Figures

Figure 1

16 pages, 4556 KiB  
Article
A Cyber–Physical Production System for the Integrated Operation and Monitoring of a Continuous Manufacturing Train for the Production of Monoclonal Antibodies
by Garima Thakur, Saxena Nikita, Vinesh Balakrishnan Yezhuvath, Venkata Sudheendra Buddhiraju and Anurag S. Rathore
Bioengineering 2024, 11(6), 610; https://doi.org/10.3390/bioengineering11060610 - 13 Jun 2024
Viewed by 674
Abstract
The continuous manufacturing of biologics offers significant advantages in terms of reducing manufacturing costs and increasing capacity, but it is not yet widely implemented by the industry due to major challenges in the automation, scheduling, process monitoring, continued process verification, and real-time control [...] Read more.
The continuous manufacturing of biologics offers significant advantages in terms of reducing manufacturing costs and increasing capacity, but it is not yet widely implemented by the industry due to major challenges in the automation, scheduling, process monitoring, continued process verification, and real-time control of multiple interconnected processing steps, which must be tightly controlled to produce a safe and efficacious product. The process produces a large amount of data from different sensors, analytical instruments, and offline analyses, requiring organization, storage, and analyses for process monitoring and control without compromising accuracy. We present a case study of a cyber–physical production system (CPPS) for the continuous manufacturing of mAbs that provides an automation infrastructure for data collection and storage in a data historian, along with data management tools that enable real-time analysis of the ongoing process using multivariate algorithms. The CPPS also facilitates process control and provides support in handling deviations at the process level by allowing the continuous train to re-adjust itself via a series of interconnected surge tanks and by recommending corrective actions to the operator. Successful steady-state operation is demonstrated for 55 h with end-to-end process automation and data collection via a range of in-line and at-line sensors. Following this, a series of deviations in the downstream unit operations, including affinity capture chromatography, cation exchange chromatography, and ultrafiltration, are monitored and tracked using multivariate approaches and in-process controls. The system is in line with Industry 4.0 and smart manufacturing concepts and is the first end-to-end CPPS for the continuous manufacturing of mAbs. Full article
(This article belongs to the Special Issue 10th Anniversary of Bioengineering: Biochemical Engineering)
Show Figures

Figure 1

15 pages, 9334 KiB  
Article
Intraday Electricity Price Forecasting via LSTM and Trading Strategy for the Power Market: A Case Study of the West Denmark DK1 Grid Region
by Deniz Kenan Kılıç, Peter Nielsen and Amila Thibbotuwawa
Energies 2024, 17(12), 2909; https://doi.org/10.3390/en17122909 - 13 Jun 2024
Viewed by 419
Abstract
For several stakeholders, including market players, customers, grid operators, policy-makers, investors, and energy efficiency initiatives, having a precise estimate of power pricing is crucial. It is easier for traders to plan, purchase, and sell power transactions with access to accurate electricity price forecasting [...] Read more.
For several stakeholders, including market players, customers, grid operators, policy-makers, investors, and energy efficiency initiatives, having a precise estimate of power pricing is crucial. It is easier for traders to plan, purchase, and sell power transactions with access to accurate electricity price forecasting (EPF). Although energy production and consumption topics are widely discussed in the literature, EPF and renewable energy trading studies receive less attention, especially for intraday market modeling and forecasting. Considering the rapid development of renewable energy sources, the article highlights the significance of integrating the deep learning model, long short-term memory (LSTM), with the proper trading strategy for short-term hourly renewable energy trading by utilizing two different spot markets. Day-ahead and intraday markets are taken into account for the West Denmark grid region (DK1). The time series analysis indicates that LSTM yields superior results compared to other benchmark machine learning algorithms. Using the predictions obtained by LSTM and the recommended trading strategy, promising profit values are achieved for the DK1 wind and solar energy use case, which ensures future motivation to develop a general and flexible model for global data. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

22 pages, 14584 KiB  
Article
An Integrated Smart Pond Water Quality Monitoring and Fish Farming Recommendation Aquabot System
by Md. Moniruzzaman Hemal, Atiqur Rahman, Nurjahan, Farhana Islam, Samsuddin Ahmed, M. Shamim Kaiser and Muhammad Raisuddin Ahmed
Sensors 2024, 24(11), 3682; https://doi.org/10.3390/s24113682 - 6 Jun 2024
Viewed by 1374
Abstract
The integration of cutting-edge technologies such as the Internet of Things (IoT), robotics, and machine learning (ML) has the potential to significantly enhance the productivity and profitability of traditional fish farming. Farmers using traditional fish farming methods incur enormous economic costs owing to [...] Read more.
The integration of cutting-edge technologies such as the Internet of Things (IoT), robotics, and machine learning (ML) has the potential to significantly enhance the productivity and profitability of traditional fish farming. Farmers using traditional fish farming methods incur enormous economic costs owing to labor-intensive schedule monitoring and care, illnesses, and sudden fish deaths. Another ongoing issue is automated fish species recommendation based on water quality. On the one hand, the effective monitoring of abrupt changes in water quality may minimize the daily operating costs and boost fish productivity, while an accurate automatic fish recommender may aid the farmer in selecting profitable fish species for farming. In this paper, we present AquaBot, an IoT-based system that can automatically collect, monitor, and evaluate the water quality and recommend appropriate fish to farm depending on the values of various water quality indicators. A mobile robot has been designed to collect parameter values such as the pH, temperature, and turbidity from all around the pond. To facilitate monitoring, we have developed web and mobile interfaces. For the analysis and recommendation of suitable fish based on water quality, we have trained and tested several ML algorithms, such as the proposed custom ensemble model, random forest (RF), support vector machine (SVM), decision tree (DT), K-nearest neighbor (KNN), logistic regression (LR), bagging, boosting, and stacking, on a real-time pond water dataset. The dataset has been preprocessed with feature scaling and dataset balancing. We have evaluated the algorithms based on several performance metrics. In our experiment, our proposed ensemble model has delivered the best result, with 94% accuracy, 94% precision, 94% recall, a 94% F1-score, 93% MCC, and the best AUC score for multi-class classification. Finally, we have deployed the best-performing model in a web interface to provide cultivators with recommendations for suitable fish farming. Our proposed system is projected to not only boost production and save money but also reduce the time and intensity of the producer’s manual labor. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture)
Show Figures

Figure 1

23 pages, 2866 KiB  
Article
Exploiting Rating Prediction Certainty for Recommendation Formulation in Collaborative Filtering
by Dionisis Margaris, Kiriakos Sgardelis, Dimitris Spiliotopoulos and Costas Vassilakis
Big Data Cogn. Comput. 2024, 8(6), 53; https://doi.org/10.3390/bdcc8060053 - 27 May 2024
Viewed by 526
Abstract
Collaborative filtering is a popular recommender system (RecSys) method that produces rating prediction values for products by combining the ratings that close users have already given to the same products. Afterwards, the products that achieve the highest prediction values are recommended to the [...] Read more.
Collaborative filtering is a popular recommender system (RecSys) method that produces rating prediction values for products by combining the ratings that close users have already given to the same products. Afterwards, the products that achieve the highest prediction values are recommended to the user. However, as expected, prediction estimation may contain errors, which, in the case of RecSys, will lead to either not recommending a product that the user would actually like (i.e., purchase, watch, or listen) or to recommending a product that the user would not like, with both cases leading to degraded recommendation quality. Especially in the latter case, the RecSys would be deemed unreliable. In this work, we design and develop a recommendation algorithm that considers both the rating prediction values and the prediction confidence, derived from features associated with rating prediction accuracy in collaborative filtering. The presented algorithm is based on the rationale that it is preferable to recommend an item with a slightly lower prediction value, if that prediction seems to be certain and safe, over another that has a higher value but of lower certainty. The proposed algorithm prevents low-confidence rating predictions from being included in recommendations, ensuring the recommendation quality and reliability of the RecSys. Full article
(This article belongs to the Special Issue Business Intelligence and Big Data in E-commerce)
Show Figures

Figure 1

9 pages, 780 KiB  
Article
Benefits of Biosimilars in the Management of Patients with Inflammatory Bowel Disease: An International Survey
by Ferdinando D’Amico, Laurent Peyrin-Biroulet and Silvio Danese
J. Clin. Med. 2024, 13(11), 3069; https://doi.org/10.3390/jcm13113069 - 24 May 2024
Viewed by 676
Abstract
Background/Objectives: The development of biosimilar drugs has revolutionized the management of patients with inflammatory bowel diseases (IBD), significantly reducing healthcare costs. However, the impact of biosimilar availability on patient care is unknown. We conducted a survey to investigate the benefits of using [...] Read more.
Background/Objectives: The development of biosimilar drugs has revolutionized the management of patients with inflammatory bowel diseases (IBD), significantly reducing healthcare costs. However, the impact of biosimilar availability on patient care is unknown. We conducted a survey to investigate the benefits of using biosimilars in patients with IBD. Methods: Physicians involved in the IBD care were invited to participate in an anonymous online survey. The questionnaire consisted of 42 questions addressing availability, cost, recommendations, and positioning regarding the use of biosimilars. Results: A total of 233 physicians (88.4% gastroenterologists) from 63 countries worldwide participated in the survey. Most respondents had >10 years of practice (202/233, 85.9%). Biosimilars were available in almost all cases (221, 94.8%), and over two-thirds of respondents had more than one biosimilar of adalimumab or infliximab on hospital formulary. In most cases, adalimumab and infliximab biosimilars had a reduced cost of at least 30% compared to the originators. The savings resulting from the use of biosimilars allowed physicians to improve patient care (3/233, 1.3%) or to improve research (2/233, 0.8%) in only a few cases. Interestingly, for about 50% of respondents, the cost of biologics was a limitation for patient access to therapy. For the majority of participants, the availability of biosimilars did not influence treatment decisions in Crohn’s disease (70/165, 42.4%) and ulcerative colitis (83/165, 50.3%). Conclusions: The reduced cost of biosimilars compared to reference products is the main driver of choice in IBD. The impact of biosimilars of ustekinumab and vedolizumab in improving access to therapies and changing the treatment algorithm remains to be defined. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

19 pages, 5672 KiB  
Article
Where Are Business Incubators Built? County-Level Spatial Distribution and Rationales Based on the Big Data of Chinese Yangtze River Delta Region
by Tianhe Jiang and Zixuan Zhou
ISPRS Int. J. Geo-Inf. 2024, 13(6), 169; https://doi.org/10.3390/ijgi13060169 - 21 May 2024
Viewed by 718
Abstract
Business incubators (BIs) in China have predominantly exhibited a government-led characteristic, recently broadening their spatial and temporal scope and extending reach to the county level. Regarding the inadequacies of county-level analysis scale, this study leverages Points of Interest (POI) big data to overcome [...] Read more.
Business incubators (BIs) in China have predominantly exhibited a government-led characteristic, recently broadening their spatial and temporal scope and extending reach to the county level. Regarding the inadequacies of county-level analysis scale, this study leverages Points of Interest (POI) big data to overcome them. To comprehend the governmental rationale in the construction of BIs, we examine the evolution dynamics of BIs in conjunction with policies. An economic geography framework is developed, conceptualizing BIs as quasi-public goods and productive services, and incorporating considerations of county-level fiscal operations and industrial structures. Focusing on the Yangtze River Delta (YRD) region as a case study, our findings reveal that over 98% of County Administrative Units (CAUs) have built BIs. Using kernel density estimation and Moran’s I, the spatial patterns of CAUs are identified. The CAUs are further classified into three categories of economic levels using the k-means algorithm, uncovering differentiated relationships between industry, finance, and their respective BI. Additionally, we analyze the density relationship between BIs and other facilities at a micro-level, showcasing various site selection rationales. The discussions highlight that while BIs tend to align with wealthier areas and advanced industries, affluent CAUs offer location advantages on BIs, whereas less wealthy CAUs prioritize quantity for political achievements. This paper concludes with recommendations about aligning BIs based on conditions and outlooks on future research. Full article
Show Figures

Figure 1

9 pages, 534 KiB  
Perspective
Proposed Screening for Congenital Hyperinsulinism in Newborns: Perspective from a Neonatal–Perinatal Medicine Group
by Jeffrey R. Kaiser, Shaili Amatya, Rebecca J. Burke, Tammy E. Corr, Nada Darwish, Chintan K. Gandhi, Adrienne Gasda, Kristen M. Glass, Mitchell J. Kresch, Sarah M. Mahdally, Maria T. McGarvey, Sara J. Mola, Yuanyi L. Murray, Katie Nissly, Nanyaly M. Santiago-Aponte, Jazmine C. Valencia and Timothy W. Palmer
J. Clin. Med. 2024, 13(10), 2953; https://doi.org/10.3390/jcm13102953 - 17 May 2024
Viewed by 1649
Abstract
This perspective work by academic neonatal providers is written specifically for the audience of newborn care providers and neonatologists involved in neonatal hypoglycemia screening. Herein, we propose adding a screen for congenital hyperinsulinism (CHI) by measuring glucose and ketone (i.e., β-hydroxybutyrate (BOHB)) concentrations [...] Read more.
This perspective work by academic neonatal providers is written specifically for the audience of newborn care providers and neonatologists involved in neonatal hypoglycemia screening. Herein, we propose adding a screen for congenital hyperinsulinism (CHI) by measuring glucose and ketone (i.e., β-hydroxybutyrate (BOHB)) concentrations just prior to newborn hospital discharge and as close to 48 h after birth as possible, at the same time that the mandated state Newborn Dried Blood Spot Screen is obtained. In the proposed protocol, we do not recommend specific metabolite cutoffs, as our primary objective is to simply highlight the concept of screening for CHI in newborns to newborn caregivers. The premise for our proposed screen is based on the known effect of hyperinsulinism in suppressing ketogenesis, thereby limiting ketone production. We will briefly discuss genetic CHI, other forms of neonatal hypoglycemia, and their shared mechanisms; the mechanism of insulin regulation by functional pancreatic islet cell membrane KATP channels; adverse neurodevelopmental sequelae and brain injury due to missing or delaying the CHI diagnosis; the principles of a good screening test; how current neonatal hypoglycemia screening programs do not fulfill the criteria for being effective screening tests; and our proposed algorithm for screening for CHI in newborns. Full article
(This article belongs to the Special Issue Current Trends in Pediatric Endocrinology)
Show Figures

Figure 1

21 pages, 4333 KiB  
Article
Tracking Water Quality and Macrophyte Changes in Lake Trasimeno (Italy) from Spaceborne Hyperspectral Imagery
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Krista Alikas, Monica Pinardi, Salvatore Mangano, Rosalba Padula and Claudia Giardino
Remote Sens. 2024, 16(10), 1704; https://doi.org/10.3390/rs16101704 - 11 May 2024
Viewed by 1194
Abstract
This work aims to show the potential of imaging spectroscopy in assessing water quality and aquatic vegetation in Lake Trasimeno, Italy. Hyperspectral reflectance data from the PRISMA, DESIS and EnMAP missions (2019–2022, summer periods) were compared with in situ measurements from WISPStation and [...] Read more.
This work aims to show the potential of imaging spectroscopy in assessing water quality and aquatic vegetation in Lake Trasimeno, Italy. Hyperspectral reflectance data from the PRISMA, DESIS and EnMAP missions (2019–2022, summer periods) were compared with in situ measurements from WISPStation and used as inputs for water quality product generation algorithms. The bio-optical model BOMBER was run to simultaneously retrieve water quality parameters (Chlorophyll-a (Chl-a) and Total Suspended Matter, (TSM)) and the coverage of submerged and emergent macrophytes (SM, EM); value-added products, such as Phycocyanin concentration maps, were generated through a machine learning approach. The results showed radiometric agreement between satellite and in situ data, with R2 > 0.9, a Spectral Angle < 10° and water quality mapping errors < 30%. Both SM and EM coverage varied significantly from 2019 (135 ha, 0 ha, respectively) to 2022 (2672 ha, 343 ha), likely influenced by changes in rainfall and lake levels. The areas of greatest variability in Chl-a and TSM were identified in the littoral zones in the western side of the lake, while the highest variation in the fractional cover of SM and density of EM were observed in the south-eastern region; this information could support the water authorities’ monitoring activities. To this end, further developments to improve the reference field data for the validation of water quality products are recommended. Full article
Show Figures

Figure 1

21 pages, 1302 KiB  
Article
Enhancing Autonomous Underwater Vehicle Decision Making through Intelligent Task Planning and Behavior Tree Optimization
by Dan Yu, Hongjian Wang, Xu Cao, Zhao Wang, Jingfei Ren and Kai Zhang
J. Mar. Sci. Eng. 2024, 12(5), 791; https://doi.org/10.3390/jmse12050791 - 8 May 2024
Viewed by 757
Abstract
The expansion of underwater scenarios and missions highlights the crucial need for autonomous underwater vehicles (AUVs) to make informed decisions. Therefore, developing an efficient decision-making framework is vital to enhance productivity in executing complex tasks within tight time constraints. This paper delves into [...] Read more.
The expansion of underwater scenarios and missions highlights the crucial need for autonomous underwater vehicles (AUVs) to make informed decisions. Therefore, developing an efficient decision-making framework is vital to enhance productivity in executing complex tasks within tight time constraints. This paper delves into task planning and reconstruction within the AUV control decision system to enable intelligent completion of intricate underwater tasks. Behavior trees (BTs) offer a structured approach to organizing the switching structure of a hybrid dynamical system (HDS), originally introduced in the computer game programming community. In this research, an intelligent search algorithm, MCTS-QPSO (Monte Carlo tree search and quantum particle swarm optimization), is proposed to bolster the AUV’s capacity in planning complex task decision control systems. This algorithm tackles the issue of the time-consuming manual design of control systems by effectively integrating BTs. By assessing a predefined set of subtasks and actions in tandem with the complex task scenario, a reward function is formulated for MCTS to pinpoint the optimal subtree set. The QPSO algorithm is then leveraged for subtree integration, treating it as an optimal path search problem from the root node to the leaf node. This process optimizes the search subtree, thereby enhancing the robustness and security of the control architecture. To expedite search speed and algorithm convergence, this paper recommends reducing the search space by pre-grouping conditions and states within the behavior tree. The efficacy and superiority of the proposed algorithm are validated through security and timeliness evaluations of the BT, along with comparisons with other algorithms for automatic AUV decision control behavior tree design. Ultimately, the effectiveness and superiority of the proposed algorithm are corroborated through simulations on a multi-AUV complex task platform, showcasing its practical applicability and efficiency in real-world underwater scenarios. Full article
(This article belongs to the Special Issue Unmanned Marine Vehicles: Perception, Planning, Control and Swarm)
Show Figures

Figure 1

Back to TopTop