Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,333)

Search Parameters:
Keywords = protein engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7308 KiB  
Article
Dual-Self-Crosslinking Effect of Alginate-Di-Aldehyde with Natural and Synthetic Co-Polymers as Injectable In Situ-Forming Biodegradable Hydrogel
by Bushra Begum, Trideva Sastri Koduru, Syeda Noor Madni, Noor Fathima Anjum, Shanmuganathan Seetharaman, Balamuralidhara Veeranna and Vishal Kumar Gupta
Gels 2024, 10(10), 649; https://doi.org/10.3390/gels10100649 - 11 Oct 2024
Abstract
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, [...] Read more.
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, sodium alginate was used to synthesize alginate di-aldehyde (ADA) through periodate oxidation, resulting in a lower molecular weight and reduced viscosity, with different degrees of oxidation (54% and 70%). The dual-crosslinking mechanism produced an injectable in situ hydrogel. Initially, physical crosslinking occurred between ADA and borax via borax complexation, followed by chemical crosslinking with gelatin through a Schiff’s base reaction, which takes place between the amino groups of gelatin and the aldehyde groups of ADA, without requiring an external crosslinking agent. The formation of Schiff’s base was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. At the same time, the aldehyde groups in ADA were characterized using FT-IR, proton nuclear magnetic resonance (¹H NMR), and gel permeation chromatography (GPC), which determined its molecular weight. Furthermore, borax complexation was validated through boron-11 nuclear magnetic resonance (¹¹B NMR). The hydrogel formulation containing 70% ADA, polyethylene glycol (PEG), and 9% gelatin exhibited a decreased gelation time at physiological temperature, attributed to the increased gelatin content and higher degree of oxidation. Rheological analysis mirrored these findings, showing a correlation with gelation time. The swelling capacity was also enhanced due to the increased oxidation degree of PEG and the system’s elevated gelatin content and hydrophilicity. The hydrogel demonstrated an average pore size of 40–60 µm and a compressive strength of 376.80 kPa. The lower molecular weight and varied pH conditions influenced its degradation behavior. Notably, the hydrogel’s syringeability was deemed sufficient for practical applications, further enhancing its potential in tissue engineering. Given these properties, the 70% ADA/gelatin/PEG hydrogel is a promising candidate and a potential game-changer for injectable, self-crosslinking applications in tissue engineering. Its potential to revolutionize the field is inspiring and should motivate further exploration. Full article
Show Figures

Figure 1

10 pages, 1500 KiB  
Communication
Inverse-Nanoemulsion-Derived Protein Hydrogels (NanoTrans-Gels) Can Outperform DOSPA/DOPE Lipid-Complex Transfection Agent
by Michael Kohler, Markus Krämer, Bastian Draphoen, Felicitas Schmitt, Mika Lindén, Ann-Kathrin Kissmann, Ulrich Ziener and Frank Rosenau
Appl. Sci. 2024, 14(20), 9151; https://doi.org/10.3390/app14209151 - 10 Oct 2024
Abstract
Transfection of mammalian and human cell lines in medical research both are key technologies in molecular biology and genetic engineering. A vast variety of techniques to facilitate transfection exists including different chemical and nanoparticle-based agents as mediators of nucleic acid uptake, with nanoparticles [...] Read more.
Transfection of mammalian and human cell lines in medical research both are key technologies in molecular biology and genetic engineering. A vast variety of techniques to facilitate transfection exists including different chemical and nanoparticle-based agents as mediators of nucleic acid uptake, with nanoparticles composed of the lipids DOSPA/DOPE belonging to the established type of agents. We show that inverse-nanoemulsion-derived protein nanohydrogels (NanoTrans-gels), prepared by a simple synthesis protocol, are suited to transfect two model cancer cell lines (MCF7 and A549) with high efficiency. The transfection efficiency was analyzed in comparison to the DOSPA/DOPE-dependent protocols as a reference method. Since nanogel-based transfection outperformed the Lipofectamine-dependent technique in our experiments, we believe that the NanoTrans-gels loaded with plasmid DNA may open new avenues for simple and efficient transfection for humans and probably also other mammalian cell lines and may develop into a general tool for standard transfection procedures in cell biology laboratories. Full article
Show Figures

Figure 1

15 pages, 3505 KiB  
Article
Enhanced Oncolytic Potential of Engineered Newcastle Disease Virus Lasota Strain through Modification of Its F Protein Cleavage Site
by Zedian Li, Weifeng Qian, Yuhao Zhang, Chengshui Liao, Jian Chen, Ke Ding, Qingzhong Yu, Yanyan Jia and Lei He
Microorganisms 2024, 12(10), 2029; https://doi.org/10.3390/microorganisms12102029 - 8 Oct 2024
Abstract
Newcastle disease virus (NDV) is an oncolytic virus whose F protein cleavage activity is associated with viral infectivity. To explore the potential of modifying F protein cleavage activity to enhance antitumor effects, we constructed a recombinant NDV LaSota strain by replacing its F [...] Read more.
Newcastle disease virus (NDV) is an oncolytic virus whose F protein cleavage activity is associated with viral infectivity. To explore the potential of modifying F protein cleavage activity to enhance antitumor effects, we constructed a recombinant NDV LaSota strain by replacing its F protein cleavage site with that from the mesogenic Beaudette C (BC) strain using reverse genetics techniques. The resulting virus, rLaSota-BC-RFP, demonstrated significantly enhanced infectivity and tumor cell suppression on the murine melanoma B16F10 cell, characterized by higher cytotoxicity and increased apoptosis compared to its parental strain, rLaSota-RFP. In vivo, rLaSota-BC-RFP treatment of B16F10 tumors in C57BL/6 mice resulted in significant tumor growth inhibition, improved survival rate, and induction of tumor-specific apoptosis and necrosis. Additionally, the rLaSota-BC-RFP treatment enhanced immunostimulatory effects within the tumor microenvironment (TME), characterized by increased infiltration of CD4+ and CD8+ T cells and elevated levels of antitumor immune modulator cytokines, including mouse IL-12, IFN-γ, IL-15, and TNF-α, in the rLaSota-BC-RFP-treated tumor tissues. Collectively, these findings demonstrate that the mesogenic F protein cleavage site enhances the oncolytic potential of the NDV LaSota strain, suggesting that rLaSota-BC-RFP is a promising oncolytic viral vector for gene delivery in cancer immunotherapy. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

24 pages, 3637 KiB  
Article
Stabilization of Picea abies Spruce Bark Extracts within Ice-Templated Porous Dextran Hydrogels
by Roxana Petronela Damaschin, Maria Marinela Lazar, Claudiu-Augustin Ghiorghita, Ana Clara Aprotosoaie, Irina Volf and Maria Valentina Dinu
Polymers 2024, 16(19), 2834; https://doi.org/10.3390/polym16192834 - 7 Oct 2024
Abstract
Porous hydrogels have brought more advantages than conventional hydrogels when used as chromatographic materials, controlled release vehicles for drugs and proteins, matrices for immobilization or separation of molecules and cells, or as scaffolds in tissue engineering. Polysaccharide-based porous hydrogels, in particular, can address [...] Read more.
Porous hydrogels have brought more advantages than conventional hydrogels when used as chromatographic materials, controlled release vehicles for drugs and proteins, matrices for immobilization or separation of molecules and cells, or as scaffolds in tissue engineering. Polysaccharide-based porous hydrogels, in particular, can address challenges related to bioavailability, solubility, stability, and targeted delivery of natural antioxidant compounds. Their porous structure enables the facile encapsulation and controlled release of these compounds, enhancing their therapeutic effectiveness. In this context, in the present study, the cryogelation technique has been adopted to prepare novel dextran (Dx)-based porous hydrogels embedding polyphenol-rich natural extract from Picea abies spruce bark (SBE). The entrapment of the SBE within the Dx network was proved by FTIR, SEM, and energy-dispersive X-ray spectroscopy (EDX). SEM analysis showed that entrapment of SBE resulted in denser cryogels with smaller and more uniform pores. Swelling kinetics confirmed that higher concentrations of Dx, EGDGE, and SBE reduced water uptake. The release studies demonstrated the effective stabilization of SBE in the Dx-based cryogels, with minimal release irrespective of the approach selected for SBE incorporation, i.e., during synthesis (~3–4%) or post-synthesis (~15–16%). In addition, the encapsulation of SBE within the Dx network endowed the hydrogels with remarkable antioxidant and antimicrobial properties. These porous biomaterials could have broad applications in areas such as biomedical engineering, food preservation, and environmental protection, where stability, efficacy, and safety are paramount. Full article
(This article belongs to the Special Issue Drug-Loaded Polymer Colloidal Systems in Nanomedicine III)
Show Figures

Figure 1

15 pages, 6375 KiB  
Article
Metabolic Engineering of Glycofusion Bispecific Antibodies for α-Dystroglycanopathies
by Xiaotian Zhong, Guoying Grace Yan, Apurva Chaturvedi, Xiuling Li, Yijie Gao, Mahasweta Girgenrath, Chris J. Corcoran, Liz Diblasio-Smith, Edward R. LaVallie, Teresse de Rham, Jing Zhou, Molica Abel, Logan Riegel, Sean K.H. Lim, Laird Bloom, Laura Lin and Aaron M. D’Antona
Antibodies 2024, 13(4), 83; https://doi.org/10.3390/antib13040083 - 7 Oct 2024
Abstract
Background: α-dystroglycanopathies are congenital muscular dystrophies in which genetic mutations cause the decrease or absence of a unique and complex O-linked glycan called matriglycan. This hypoglycosylation of O-linked matriglycan on the α-dystroglycan (α-DG) protein subunit abolishes or reduces the protein binding to extracellular [...] Read more.
Background: α-dystroglycanopathies are congenital muscular dystrophies in which genetic mutations cause the decrease or absence of a unique and complex O-linked glycan called matriglycan. This hypoglycosylation of O-linked matriglycan on the α-dystroglycan (α-DG) protein subunit abolishes or reduces the protein binding to extracellular ligands such as laminins in skeletal muscles, leading to compromised survival of muscle cells after contraction. Methods: Surrogate molecular linkers reconnecting laminin-211 and the dystroglycan β-subunit through bispecific antibodies can be engineered to improve muscle function in the α-dystroglycanopathies. This study reports the metabolic engineering of a novel glycofusion bispecific (GBi) antibody that fuses the mucin-like domain of the α-DG to the light chain of an anti-β-DG subunit antibody. Results: Transient HEK production with the co-transfection of LARGE1, the glycoenzyme responsible for the matriglycan modification, produced the GBi antibody only with a light matriglycan modification and a weak laminin-211 binding activity. However, when a sugar feed mixture of uridine, galactose, and manganese ion (Mn2+) was added to the culture medium, the GBi antibody produced exhibited a dramatically enhanced matriglycan modification and a much stronger laminin-binding activity. Conclusions: Further investigation has revealed that Mn2+ in the sugar feeds played a critical role in increasing the matriglycan modification of the GBi antibody, key for the function of the resulting bispecific antibody. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

16 pages, 6338 KiB  
Article
Bayesian Optimization Using Simulation-Based Multiple Information Sources over Combinatorial Structures
by Antonio Sabbatella, Andrea Ponti, Antonio Candelieri and Francesco Archetti
Mach. Learn. Knowl. Extr. 2024, 6(4), 2232-2247; https://doi.org/10.3390/make6040110 - 5 Oct 2024
Abstract
Bayesian optimization due to its flexibility and sample efficiency has become a standard approach for simulation optimization. To reduce this problem, one can resort to cheaper surrogates of the objective function. Examples are ubiquitous, from protein engineering or material science to tuning machine [...] Read more.
Bayesian optimization due to its flexibility and sample efficiency has become a standard approach for simulation optimization. To reduce this problem, one can resort to cheaper surrogates of the objective function. Examples are ubiquitous, from protein engineering or material science to tuning machine learning algorithms, where one could use a subset of the full training set or even a smaller related dataset. Cheap information sources in the optimization scheme have been studied in the literature as the multi-fidelity optimization problem. Of course, cheaper sources may hold some promise toward tractability, but cheaper models offer an incomplete model inducing unknown bias and epistemic uncertainty. In this manuscript, we are concerned with the discrete case, where fx,wi is the value of the performance measure associated with the environmental condition wi and p(wi) represents the relevance of the condition wi (i.e., the probability of occurrence or the fraction of time this condition occurs). The main contribution of this paper is the proposal of a Gaussian-based framework, called augmented Gaussian process (AGP), based on sparsification, originally proposed for continuous functions and its generalization in this paper to stochastic optimization using different risk profiles for combinatorial optimization. The AGP leverages sample and cost-efficient Bayesian optimization (BO) of multiple information sources and supports a new acquisition function to select the new source–location pair considering the cost of the source and the (location-dependent) model discrepancy. An extensive set of computational results supports risk-aware optimization based on CVaR (conditional value-at-risk). Computational experiments confirm the actual performance of the MISO-AGP method and the hyperparameter optimization on benchmark functions and real-world problems. Full article
Show Figures

Figure 1

18 pages, 4850 KiB  
Article
In Vivo Biocompatibility of Synechococcus sp. PCC 7002-Integrated Scaffolds for Skin Regeneration
by Benedikt Fuchs, Sinan Mert, Constanze Kuhlmann, Alexandra Birt, Daniel Hofmann, Paul Severin Wiggenhauser, Riccardo E. Giunta, Myra N. Chavez, Jörg Nickelsen, Thilo Ludwig Schenck and Nicholas Moellhoff
J. Funct. Biomater. 2024, 15(10), 295; https://doi.org/10.3390/jfb15100295 - 3 Oct 2024
Abstract
Cyanobacteria, commonly known as blue-green algae, are prevalent in freshwater systems and have gained interest for their potential in medical applications, particularly in skin regeneration. Among these, Synechococcus sp. strain PCC 7002 stands out because of its rapid proliferation and capacity to be [...] Read more.
Cyanobacteria, commonly known as blue-green algae, are prevalent in freshwater systems and have gained interest for their potential in medical applications, particularly in skin regeneration. Among these, Synechococcus sp. strain PCC 7002 stands out because of its rapid proliferation and capacity to be genetically modified to produce growth factors. This study investigates the safety of Synechococcus sp. PCC 7002 when used in scaffolds for skin regeneration, focusing on systemic inflammatory responses in a murine model. We evaluated the following three groups: scaffolds colonized with genetically engineered bacteria producing hyaluronic acid, scaffolds with wild-type bacteria, and control scaffolds without bacteria. After seven days, we assessed systemic inflammation by measuring changes in cytokine profiles and lymphatic organ sizes. The results showed no significant differences in spleen, thymus, and lymph node weights, indicating a lack of overt systemic toxicity. Blood cytokine analysis revealed elevated levels of IL-6 and IL-1β in scaffolds with bacteria, suggesting a systemic inflammatory response, while TNF-α levels remained unaffected. Proteome profiling identified distinct cytokine patterns associated with bacterial colonization, including elevated inflammatory proteins and products, indicative of acute inflammation. Conversely, control scaffolds exhibited protein profiles suggestive of a rejection response, characterized by increased levels of cytokines involved in T and B cell activation. Our findings suggest that Synechococcus sp. PCC 7002 does not appear to cause significant systemic toxicity, supporting its potential use in biomedical applications. Further research is necessary to explore the long-term effects and clinical implications of these responses. Full article
(This article belongs to the Special Issue Scaffold for Tissue Engineering)
Show Figures

Figure 1

18 pages, 3141 KiB  
Article
GPX5-Enriched Exosomes Improve Sperm Quality and Fertilization Ability
by Jian Huang, Shuangshuang Li, Yuxuan Yang, Chen Li, Zixi Zuo, Rong Zheng, Jin Chai and Siwen Jiang
Int. J. Mol. Sci. 2024, 25(19), 10569; https://doi.org/10.3390/ijms251910569 - 30 Sep 2024
Abstract
Semen preservation quality affects the artificial insemination success rate, and seminal exosomes are rich in various proteins that are transferable to sperm and conducive to sperm-function preservation during storage. However, the specific effects of these proteins remain unclear. In this study, the specific [...] Read more.
Semen preservation quality affects the artificial insemination success rate, and seminal exosomes are rich in various proteins that are transferable to sperm and conducive to sperm-function preservation during storage. However, the specific effects of these proteins remain unclear. In this study, the specific effects of these proteins on semen preservation quality and fertilization capacity were investigated through a proteomic analysis of seminal exosomes from boars with high conception rates (HCRs) and low conception rates (LCRs). The results revealed significant differences in the expression of 161 proteins between the two groups, with the GPX5 level being significantly higher in the HCR group (p < 0.05). The role of GPX5 was further investigated by constructing engineered exosomes enriched with GPX5 (Exo-GPX5), which could successfully transfer GPX5 to sperm. Compared to the control group, Exo-GPX5 could significantly improve sperm motility on storage days 4 and 5 and enhance the acrosome integrity on day 5 (p < 0.05). Additionally, Exo-GPX5 increased the total antioxidant capacity (T-AOC) of sperm, reduced the malondialdehyde (MDA) level, and decreased the expression of antioxidant proteins SOD1 and CAT (p < 0.05). In simulated fertilization experiments, Exo-GPX5-treated sperm exhibited higher capacitation ability and a significant increase in the acrosome reaction rate (p < 0.05). Overall, Exo-GPX5 can improve boar semen quality under 17 °C storage conditions and enhance sperm fertilization capacity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 19206 KiB  
Article
Bioinformatics Analysis of the Panax ginseng Cyclophilin Gene and Its Anti-Phytophthora cactorum Activity
by Yu Zhao, Jiahong Lu, Yuming Wang, Kaiwen Hao, Zhimei Liu, Ge Hui and Tianxia Sun
Plants 2024, 13(19), 2731; https://doi.org/10.3390/plants13192731 - 29 Sep 2024
Abstract
In this paper, Panax ginseng cyclophilin (PgCyP) was successfully obtained through a genetic engineering technique. A bioinformatics method was used to analyze the physicochemical properties and structure of PgCyP. The results showed that PgCyP belongs to the cyclophilin gene family. The protein [...] Read more.
In this paper, Panax ginseng cyclophilin (PgCyP) was successfully obtained through a genetic engineering technique. A bioinformatics method was used to analyze the physicochemical properties and structure of PgCyP. The results showed that PgCyP belongs to the cyclophilin gene family. The protein encoded by the PgCyP gene contains the active site of PPIase (R62, F67, and H133) and a binding site for cyclosporine A (W128). The relative molecular weight of PgCyP is 187.11 bp; its theoretical isoelectric point is 7.67, and it encodes 174 amino acids. The promoter region of PgCyP mainly contains the low-temperature environmental stress response (LTR) element, abscisic acid-responsive cis-acting element (ABRE), and light-responsive cis-acting element (G-Box). PgCyP includes a total of nine phosphorylation sites, comprising four serine phosphorylation sites, three threonine phosphorylation sites, and two tyrosine phosphorylation sites. PgCyP was recombined and expressed in vitro, and its recombinant expression was investigated. Furthermore, it was found that the recombinant PgCyP protein could effectively inhibit the germination of Phytophthora cactorum spores and the normal growth of Phytophthora cactorum mycelia in vitro. Further experiments on the roots of susceptible Arabidopsis thaliana showed that the PgCyP protein could improve the resistance of arabidopsis to Phytophthora cactorum. The findings of this study provide a basis for the use of the PgCyP protein as a new type of green biopesticide. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

40 pages, 6030 KiB  
Review
Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence
by Ahrum Son, Jongham Park, Woojin Kim, Yoonki Yoon, Sangwoon Lee, Yongho Park and Hyunsoo Kim
Molecules 2024, 29(19), 4626; https://doi.org/10.3390/molecules29194626 - 29 Sep 2024
Abstract
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and [...] Read more.
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology. Full article
(This article belongs to the Special Issue Computational Insights into Protein Engineering and Molecular Design)
Show Figures

Figure 1

14 pages, 12752 KiB  
Article
Establishment of Translational Luciferase-Based Cancer Models to Evaluate Antitumoral Therapies
by Martin R. Ramos-Gonzalez, Nagabhishek Sirpu Natesh, Satyanarayana Rachagani, James Amos-Landgraf, Haval Shirwan, Esma S. Yolcu and Jorge G. Gomez-Gutierrez
Int. J. Mol. Sci. 2024, 25(19), 10418; https://doi.org/10.3390/ijms251910418 - 27 Sep 2024
Abstract
Luciferase (luc) bioluminescence (BL) is the most used light-emitting protein that has been engineered to be expressed in multiple cancer cell lines, allowing for the detection of tumor nodules in vivo as it can penetrate most tissues. The goal of this study was [...] Read more.
Luciferase (luc) bioluminescence (BL) is the most used light-emitting protein that has been engineered to be expressed in multiple cancer cell lines, allowing for the detection of tumor nodules in vivo as it can penetrate most tissues. The goal of this study was to develop an oncolytic adenovirus (OAd)-resistant human triple-negative breast cancer (TNBC) that could express luciferase. Thus, when combining an OAd with chemotherapies or targeted therapies, we would be able to monitor the ability of these compounds to enhance OAd antitumor efficacy using BL in real time. The TNBC cell line HCC1937 was stably transfected with the plasmid pGL4.50[luc2/CMV/Hygro] (HCC1937/luc2). Once established, HCC1937/luc2 was orthotopically implanted in the 4th mammary gland fat pad of NSG (non-obese diabetic severe combined immunodeficiency disease gamma) female mice. Bioluminescence imaging (BLI) revealed that the HCC1937/luc2 cell line developed orthotopic breast tumor and lung metastasis over time. However, the integration of luc plasmid modified the HCC1937 phenotype, making HCC1937/luc2 more sensitive to OAdmCherry compared to the parental cell line and blunting the interferon (IFN) antiviral response. Testing two additional luc cell lines revealed that this was not a universal response; however, proper controls would need to be evaluated, as the integration of luciferase could affect the cells’ response to different treatments. Full article
(This article belongs to the Special Issue Advances in Luciferase)
Show Figures

Figure 1

17 pages, 3223 KiB  
Article
Exploring the Role and Pathophysiological Significance of Aldehyde Dehydrogenase 1B1 (ALDH1B1) in Human Lung Adenocarcinoma
by Ilias Tsochantaridis, Dimitris Brisimis, Margaritis Tsifintaris, Anastasia Anastasiadou, Efthymios Lazos, Antreas Ermogenous, Sylia Christou, Nefeli Antonopoulou, Mihalis I. Panayiotidis, Michail I. Koukourakis, Alexandra Giatromanolaki and Aglaia Pappa
Int. J. Mol. Sci. 2024, 25(19), 10301; https://doi.org/10.3390/ijms251910301 - 25 Sep 2024
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a diverse superfamily of NAD(P)+-dependent enzymes pivotal in oxidizing endogenous and exogenous aldehydes to carboxylic acids. Beyond metabolic roles, ALDHs participate in essential biological processes, including differentiation, embryogenesis and the DNA damage response, while also serving as [...] Read more.
Aldehyde dehydrogenases (ALDHs) constitute a diverse superfamily of NAD(P)+-dependent enzymes pivotal in oxidizing endogenous and exogenous aldehydes to carboxylic acids. Beyond metabolic roles, ALDHs participate in essential biological processes, including differentiation, embryogenesis and the DNA damage response, while also serving as markers for cancer stem cells (CSCs). Aldehyde dehydrogenase 1B1 (ALDH1B1) is a mitochondrial enzyme involved in the detoxification of lipid peroxidation by-products and metabolism of various aldehyde substrates. This study examines the potential role of ALDH1B1 in human lung adenocarcinoma and its association with the CSC phenotype. To this end, we utilized the lung adenocarcinoma cell line A549, engineered to stably express the human ALDH1B1 protein tagged with green fluorescent protein (GFP). Overexpression of ALDH1B1 led to notable changes in cell morphology, proliferation rate and clonogenic efficiency. Furthermore, ALDH1B1-overexpressing A549 cells exhibited enhanced resistance to the chemotherapeutic agents etoposide and cisplatin. Additionally, ALDH1B1 overexpression correlated with increased migratory potential and epithelial–mesenchymal transition (EMT), mediated by the upregulation of transcription factors such as SNAI2, ZEB2 and TWIST1, alongside the downregulation of E-cadherin. Moreover, Spearman’s rank correlation coefficient analysis using data from 507 publicly available lung adenocarcinoma clinical samples revealed a significant correlation between ALDH1B1 and various molecules implicated in CSC-related signaling pathways, including Wnt, Notch, hypoxia, Hedgehog, retinoic acid, Hippo, NF-κΒ, TGF-β, PI3K/PTEN-AKT and glycolysis/gluconeogenesis. These findings provide insights into the role of ALDH1B1 in lung tumor progression and its relation to the lung CSC phenotype, thereby offering potential therapeutic targets in the clinical management of lung adenocarcinoma. Full article
Show Figures

Figure 1

23 pages, 14658 KiB  
Article
MCPIP1 Elicits a Therapeutic Effect on Cervical Cancer by Facilitating XIAP mRNA Decay via Its Endoribonuclease Activity
by Junyun Luo, Ling He, Yanxia Guo, Junzhi Wang, Hui Liu and Zhaoyong Li
Int. J. Mol. Sci. 2024, 25(19), 10285; https://doi.org/10.3390/ijms251910285 - 24 Sep 2024
Abstract
Cervical cancer is the fourth most common malignancy in women globally. Chemotherapies, targeted therapies, and immunotherapies in the treatment of cervical cancer are usually accompanied by effective and adverse effects. Therefore, finding other efficient and accurate molecular targets remains essential to improve the [...] Read more.
Cervical cancer is the fourth most common malignancy in women globally. Chemotherapies, targeted therapies, and immunotherapies in the treatment of cervical cancer are usually accompanied by effective and adverse effects. Therefore, finding other efficient and accurate molecular targets remains essential to improve the treatment benefits of cervical cancer patients. MCPIP1 (monocyte chemoattractant protein-induced protein 1) is a kind of endonuclease with a CCCH zinc finger domain and a PilT-N-terminal (PIN) domain, and its function in cervical cancer is unknown. We found that MCPIP1 inhibits cell proliferation and promotes cell apoptosis of cervical cancer. Additionally, MCPIP1 suppresses mRNA and protein expression of the apoptotic inhibitor XIAP by decreasing its mRNA stability. Mechanically, MCPIP1 binds to the XIAP mRNA via its CCCH zinc finger domain and degrades the XIAP mRNA via the endonuclease activity coming from its PIN domain. Our study clarifies that MCPIP1 promotes cervical cancer cell apoptosis by suppressing the expression of XIAP, thereby impeding cervical cancer progression. Moreover, targeted delivery of MCPIP1 with engineered Salmonella typhimurium leads to tumor growth retardation in the HeLa xenograft tumor model in mice. Therefore, our study may provide a theoretical basis for formulating clinical treatment strategies for cervical cancer. Full article
(This article belongs to the Special Issue Targeting Epigenetics in Cancer Therapy)
Show Figures

Figure 1

10 pages, 603 KiB  
Article
Influence of Intraocular Pressure on the Expression and Activity of Sodium–Potassium Pumps in the Corneal Endothelium
by Princia Anney, Pascale Charpentier and Stéphanie Proulx
Int. J. Mol. Sci. 2024, 25(18), 10227; https://doi.org/10.3390/ijms251810227 - 23 Sep 2024
Abstract
The corneal endothelium is responsible for pumping fluid out of the stroma in order to maintain corneal transparency, which depends in part on the expression and activity of sodium–potassium pumps. In this study, we evaluated how physiologic pressure and flow influence transcription, protein [...] Read more.
The corneal endothelium is responsible for pumping fluid out of the stroma in order to maintain corneal transparency, which depends in part on the expression and activity of sodium–potassium pumps. In this study, we evaluated how physiologic pressure and flow influence transcription, protein expression, and activity of Na+/K+-ATPase. Native and engineered corneal endothelia were cultured in a bioreactor in the presence of pressure and flow (hydrodynamic culture condition) or in a Petri dish (static culture condition). Transcription of ATP1A1 was assessed using qPCR, the expression of the α1 subunit of Na+/K+-ATPase was measured using Western blots and ELISA assays, and Na+/K+-ATPase activity was evaluated using an ATPase assay in the presence of ouabain. Results show that physiologic pressure and flow increase the transcription and the protein expression of Na+/K+-ATPase α1 in engineered corneal endothelia, while they remain stable in native corneal endothelia. Interestingly, the activity of Na+/K+-ATPase was increased in the presence of physiologic pressure and flow in both native and engineered corneal endothelia. These findings highlight the role of the in vivo environment on the functionality of the corneal endothelium. Full article
(This article belongs to the Special Issue Functional Roles of Epithelial and Endothelial Cells)
Show Figures

Figure 1

31 pages, 1994 KiB  
Review
Graphene-Oxide Peptide-Containing Materials for Biomedical Applications
by Andreea Gostaviceanu, Simona Gavrilaş, Lucian Copolovici and Dana Maria Copolovici
Int. J. Mol. Sci. 2024, 25(18), 10174; https://doi.org/10.3390/ijms251810174 - 22 Sep 2024
Abstract
This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity [...] Read more.
This review explores the application of graphene-based materials (GBMs) in biomedicine, focusing on graphene oxide (GO) and its interactions with peptides and proteins. GO, a versatile nanomaterial with oxygen-containing functional groups, holds significant potential for biomedical applications but faces challenges related to toxicity and environmental impact. Peptides and proteins can be functionalized on GO surfaces through various methods, including non-covalent interactions such as π–π stacking, electrostatic forces, hydrophobic interactions, hydrogen bonding, and van der Waals forces, as well as covalent bonding through reactions involving amide bond formation, esterification, thiol chemistry, and click chemistry. These approaches enhance GO’s functionality in several key areas: biosensing for sensitive biomarker detection, theranostic imaging that integrates diagnostics and therapy for real-time treatment monitoring, and targeted cancer therapy where GO can deliver drugs directly to tumor sites while being tracked by imaging techniques like MRI and photoacoustic imaging. Additionally, GO-based scaffolds are advancing tissue engineering and aiding tissues’ bone, muscle, and nerve tissue regeneration, while their antimicrobial properties are improving infection-resistant medical devices. Despite its potential, addressing challenges related to stability and scalability is essential to fully harness the benefits of GBMs in healthcare. Full article
Show Figures

Figure 1

Back to TopTop