Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,032)

Search Parameters:
Keywords = rat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 652 KiB  
Article
Anti-Hyperlipidemic Effect of Ruta chalepensis Ethanolic Extract in Triton WR-1339-Induced Hyperlipidemia in Rats
by Arwa R. Althaher, Mohammad Alwahsh, Aya Hasan, Dima Al-Majali, Mirna W. Awadallah and Tariq Al-Qirim
Appl. Sci. 2024, 14(19), 9017; https://doi.org/10.3390/app14199017 (registering DOI) - 6 Oct 2024
Abstract
High levels of fats like triglycerides and cholesterol in the blood can cause cardiovascular diseases, prompting the search for safer, natural treatments. This study investigates the efficacy of Ruta chalepensis ethanol extract in lowering cholesterol levels using a rat model of hyperlipidemia induced [...] Read more.
High levels of fats like triglycerides and cholesterol in the blood can cause cardiovascular diseases, prompting the search for safer, natural treatments. This study investigates the efficacy of Ruta chalepensis ethanol extract in lowering cholesterol levels using a rat model of hyperlipidemia induced by Triton WR-1339. Leaves and flowers of R. chalepensis were extracted with ethanol, and LC-MS analysis revealed high levels of quercetin (9.5%), 2,2-Dimethyl-3-methylidenebicyclo [2.2.1] heptane (8.1%), and other compounds, with monoterpenes being the most common class. Male Wistar rats received doses of the extract at 20 and 40 mg/kg, while fenofibrate (100 mg/kg) was the positive control. After 20 h, plasma lipid levels were significantly affected, showing a 72.1% reduction in total cholesterol for the 40 mg/kg group (p < 0.01) and a 67.6% reduction for the 20 mg/kg group (p < 0.01). High-density lipoprotein cholesterol levels decreased by 68.8% in the 40 mg/kg group (p < 0.01) and 58.6% in the 20 mg/kg group (p < 0.01). Low-density lipoprotein cholesterol saw reductions of 67.3% (p < 0.001) in the 40 mg/kg group and 60.4% (p < 0.01) in the 20 mg/kg group. Triglycerides dropped by 90.6% in the 40 mg/kg group (p < 0.001) and 86.7% in the 20 mg/kg group (p < 0.001). Overall, the results highlighted a stronger anti-hyperlipidemic effect in the 40 mg/kg group across all lipid parameters measured. The extract outperformed fenofibrate, particularly at the higher dose. These results imply that R. chalepensis extract is a promising natural alternative for managing hyperlipidemia. Full article
Show Figures

Figure 1

20 pages, 8996 KiB  
Article
Platelet Proteomics and Tissue Metabolomics Investigation for the Mechanism of Aspirin Eugenol Ester on Preventive Thrombosis Mechanism in a Rat Thrombosis Model
by Qi Tao, Li-Ping Fan, Ji Feng, Zhi-Jie Zhang, Xi-Wang Liu, Zhe Qin, Jian-Yong Li and Ya-Jun Yang
Int. J. Mol. Sci. 2024, 25(19), 10747; https://doi.org/10.3390/ijms251910747 (registering DOI) - 6 Oct 2024
Viewed by 41
Abstract
Platelet activation is closely related to thrombosis. Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterifying aspirin with eugenol using the pro-drug principle. Pharmacological and pharmacodynamic experiments showed that AEE has excellent anti-inflammatory, antioxidant, and inhibitory platelet activation effects, preventing [...] Read more.
Platelet activation is closely related to thrombosis. Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterifying aspirin with eugenol using the pro-drug principle. Pharmacological and pharmacodynamic experiments showed that AEE has excellent anti-inflammatory, antioxidant, and inhibitory platelet activation effects, preventing thrombosis. However, the regulatory network and action target of AEE in inhibiting platelet activation remain unknown. This study aimed to investigate the effects of AEE on platelets of thrombosed rats to reveal its regulatory mechanism via a multi-omics approach. The platelet proteomic results showed that 348 DEPs were identified in the AEE group compared with the model group, of which 87 were up- and 261 down-regulated. The pathways in this result were different from previous results, including mTOR signaling and ADP signaling at P2Y purinoceptor 12. The metabolomics of heart and abdominal aortic tissue results showed that the differential metabolites were mainly involved in steroid biosynthesis, the citric acid cycle, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and glutathione metabolism. Molecular docking results showed that AEE had a better binding force to both the COX-1 and P2Y12 protein. AEE could effectively inhibit platelet activation by inhibiting COX-1 protein and P2Y12 protein activity, thereby inhibiting platelet aggregation. Therefore, AEE can have a positive effect on inhibiting platelet activation. Full article
Show Figures

Figure 1

15 pages, 2082 KiB  
Article
Effect of Endurance Exercise Training on Gut Microbiota and ER Stress
by Eun Ji Yoon, So Rok Lee, Beulah Favour Ortutu, Jong-Oh Kim, Varun Jaiswal, Sooyeon Baek, Su-In Yoon, Sang Ki Lee, Jin Hwan Yoon, Hae-Jeung Lee and Jin Ah Cho
Int. J. Mol. Sci. 2024, 25(19), 10742; https://doi.org/10.3390/ijms251910742 (registering DOI) - 5 Oct 2024
Viewed by 278
Abstract
Regular exercise as part of one’s lifestyle is well-recognized for its beneficial effect on several diseases such as cardiovascular disease and obesity; however, many questions remain unanswered regarding the effects of exercise on the gut environment. This study aimed to investigate the impact [...] Read more.
Regular exercise as part of one’s lifestyle is well-recognized for its beneficial effect on several diseases such as cardiovascular disease and obesity; however, many questions remain unanswered regarding the effects of exercise on the gut environment. This study aimed to investigate the impact of long-term endurance exercise on modulating inflammation and endoplasmic reticulum (ER) stress. Fifteen-week-old male Sprague-Dawley (SD) rats were subjected to six months of endurance treadmill training, while age-matched controls remained sedentary. Results showed that IL-6 mRNA levels in colon tissues were significantly higher in the exercise group compared to the sedentary group. Exercise activated a significant ER stress-induced survival pathway by increasing BiP and phosphorylation of eIF2α (p-eIF2α) expressions in the liver and colon, while decreasing CHOP in the liver. Gene expressions of MUC2, Occludin, and Claudin-2 were increased in the colon of the exercise group, indicating enhanced intestinal integrity. Furthermore, the data showed a positive correlation between microbiota α-diversity and BiP (r = 0.464~0.677, p < 0.05). Populations of Desulfovibrio C21 c20 were significantly greater in the exercise group than the sedentary group. Additionally, predicted functions of the gut microbial community in terms of enzymes and pathways supported the enhancement of fatty-acid-related processes by exercise. These findings suggest that prolonged endurance exercise can affect the colon environment, which is likely related to changes in inflammation, ER stress, mucin layers and tight junctions, associated with modifications in the gut microbiome. Full article
(This article belongs to the Special Issue Molecular Insights into the Role of Exercise in Disease and Health)
Show Figures

Figure 1

19 pages, 6470 KiB  
Article
Sodium Hydrosulfide Protects Rats from Hypobaric-Hypoxia-Induced Acute Lung Injury
by Renjie Wang, Shuhe Ma, Jun Yang, Kai Luo, Qingyuan Qian, Jinchao Pan, Keke Liang, Yihao Wang, Yue Gao and Maoxing Li
Int. J. Mol. Sci. 2024, 25(19), 10734; https://doi.org/10.3390/ijms251910734 (registering DOI) - 5 Oct 2024
Viewed by 277
Abstract
Hydrogen sulfide (H2S), as a key gas signaling molecule, plays an important role in regulating various diseases, with appropriate concentrations providing antioxidative, anti-inflammatory, and anti-apoptotic effects. The specific role of H2S in acute hypoxic injury remains to be clarified. [...] Read more.
Hydrogen sulfide (H2S), as a key gas signaling molecule, plays an important role in regulating various diseases, with appropriate concentrations providing antioxidative, anti-inflammatory, and anti-apoptotic effects. The specific role of H2S in acute hypoxic injury remains to be clarified. This study focuses on the H2S donor sodium hydrosulfide (NaHS) and explores its protective effects and mechanisms against acute hypoxic lung injury. First, various mouse hypoxia models were established to evaluate H2S’s protection in hypoxia tolerance. Next, a rat model of acute lung injury (ALI) induced by hypoxia at 6500 m above sea level for 72 h was created to assess H2S’s protective effects and mechanisms. Evaluation metrics included blood gas analysis, blood routine indicators, lung water content, and lung tissue pathology. Additionally, LC-MS/MS and bioinformatic analyses were combined in performing quantitative proteomics on lung tissues from the normoxic control group, the hypoxia model group, and the hypoxia model group with NaHS treatment to preliminarily explore the protective mechanisms of H2S. Further, enzyme-linked immunosorbent assays (ELISA) were used to measure oxidative stress markers and inflammatory factors in rat lung tissues. Lastly, Western blot analysis was performed to detect Nrf2, HO-1, P-NF-κB, NF-κB, HIF-1α, Bcl-2, and Bax proteins in lung tissues. Results showed that H2S exhibited significant anti-hypoxic effects in various hypoxia models, effectively modulating blood gas and blood routine indicators in ALI rats, reducing pulmonary edema, improving lung tissue pathology, and alleviating oxidative stress, inflammatory responses, and apoptosis levels. Full article
(This article belongs to the Special Issue Natural Products and Synthetic Compounds for Drug Development 2.0)
Show Figures

Figure 1

14 pages, 1724 KiB  
Article
A Synbiotic Combining Chitin–Glucan and Lactobacillus acidophilus NCFM Induces a Colonic Molecular Signature Soothing Intestinal Pain and Inflammation in an Animal Model of IBS
by Lena Capirchio, Christel Rousseaux, Caroline Dubuquoy, Arthur C. Ouwehand, Véronique Maquet, Salvatore Modica, Edouard Louis, Pierre Desreumaux and Jan Tack
Int. J. Mol. Sci. 2024, 25(19), 10732; https://doi.org/10.3390/ijms251910732 (registering DOI) - 5 Oct 2024
Viewed by 267
Abstract
Chitin–glucan (CG) is a new generation of prebiotic. Lactobacillus acidophilus NCFM® (NCFM) is a probiotic with the ability to decrease abdominal pain. We evaluate the functional and molecular gastrointestinal responses to a synbiotic administration combining CG and NCFM in a rat model [...] Read more.
Chitin–glucan (CG) is a new generation of prebiotic. Lactobacillus acidophilus NCFM® (NCFM) is a probiotic with the ability to decrease abdominal pain. We evaluate the functional and molecular gastrointestinal responses to a synbiotic administration combining CG and NCFM in a rat model of long-lasting colon hypersensitivity. The intracolonic pressure was assessed during the 9-week experiment in animals receiving CG in association or not with NCFM and compared to that in Lacticaseibacillus paracasei Lpc-37®-treated animals and control rats receiving tap water. The effects of the synbiotic were evaluated using the Wallace score, the quantification of colon myeloperoxidase (MPO) and the master genes driving analgesia and inflammation. CG 1.5 alone and NCFM 109 colony forming units (CFU) alone similarly decreased the visceral pain sensitivity. Lpc-37 had no significant effect. The best profile of pain perception inhibition was obtained with the combination of CG 1.5 g and NCFM 109 CFU, confirming a synbiotic property. This synbiotic treatment significantly reduced macroscopic colonic lesions and MPO concentrations, and induced master genes involved in analgesia (CB1, CB2, MOR, PPARα), with a downregulation of inflammatory cytokines (IL-1β, TNFα) and an induction of IL-10 and PPARγ. In conclusion, CG 1.5 g + NCFM 109 CFU significantly decreased visceral pain perception and intestinal inflammation through the regulation of master genes. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 2739 KiB  
Article
ZnO Nanoparticles-Induced MRI Alterations to the Rat Olfactory Epithelium and Olfactory Bulb after Intranasal Instillation
by Lifeng Gao, Yuguang Meng, Xiaowen Luo, Jiangyuan Chen and Xuxia Wang
Toxics 2024, 12(10), 724; https://doi.org/10.3390/toxics12100724 (registering DOI) - 5 Oct 2024
Viewed by 232
Abstract
Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance [...] Read more.
Since zinc oxide (ZnO) nanoparticles (NPs) have been widely applied, the nano community and the general public have paid great attention to the toxicity of ZnO NPs. We detected 20-nm ZnO NPs biotoxicity following nasal exposure utilizing the non-invasive and real-time magnetic resonance imaging (MRI) technique. MR images were scanned in the rat olfactory epithelium (OE) and olfactory bulb (OB) on a 4.7 T scanner following the treatment (as early as 1 day and up to 21 days after), and the histological changes were evaluated. The influence of the size of the ZnO NPs and chemical components was also investigated. Our study revealed that 20-nm ZnO NPs induced obvious structural disruption and inflammation in the OE and OB at the acute stage. The results suggest that the real-time and non-invasive advantages of MRI allow it to observe and assess, directly and dynamically, the potential toxicity of long-term exposure to ZnO NPs in the olfactory system. These findings indicate the size-dependent toxicity of ZnO NPs with respect to the olfactory bulb. Further study is needed to reveal the mechanism behind ZnO NPs’ toxicity. Full article
(This article belongs to the Special Issue Health Effects of Exposure to Environmental Pollutants)
Show Figures

Figure 1

20 pages, 12359 KiB  
Article
A Thermosensitive and Degradable Chitin-Based Hydrogel as a Brucellosis Vaccine Adjuvant
by Ruibao Ju, Yanjing Lu, Zhiwen Jiang, Jinhua Chi, Shuo Wang, Wanshun Liu, Yanbo Yin and Baoqin Han
Polymers 2024, 16(19), 2815; https://doi.org/10.3390/polym16192815 - 4 Oct 2024
Viewed by 309
Abstract
Brucellosis is a zoonotic infectious disease that has long endangered the development of animal husbandry and human health. Currently, vaccination stands as the most efficacious method for preventing and managing brucellosis. Alum, as the most commonly used adjuvant for the brucellosis vaccine, has [...] Read more.
Brucellosis is a zoonotic infectious disease that has long endangered the development of animal husbandry and human health. Currently, vaccination stands as the most efficacious method for preventing and managing brucellosis. Alum, as the most commonly used adjuvant for the brucellosis vaccine, has obvious disadvantages, such as the formation of granulomas and its non-degradability. Therefore, the aims of this study were to prepare an absorbable, injectable, and biocompatible hydroxypropyl chitin (HPCT) thermosensitive hydrogel and to evaluate its immunization efficacy as an adjuvant for Brucella antigens. Specifically, etherification modification of marine natural polysaccharide chitin was carried out to obtain a hydroxypropyl chitin. Rheological studies demonstrated the reversible temperature sensitivity of HPCT hydrogel. Notably, 5 mg/mL of bovine serum albumin can be loaded in HPCT hydrogels and released continuously for more than one week. Furthermore, the L929 cytotoxicity test and in vivo degradation test in rats proved that an HPCT hydrogel had good cytocompatibility and histocompatibility and can be degraded and absorbed in vivo. In mouse functional experiments, as adjuvants for Brucella antigens, an HPCT hydrogel showed better specific antibody expression levels and cytokine (Interleukin-4, Interferon-γ) expression levels than alum. Thus, we believe that HPCT hydrogels hold much promise in the development of adjuvants. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 4000 KiB  
Article
Protective Effects of Cervus elaphus and Eucommia ulmoides Mixture (KGC01CE) on Muscle Loss and Function in Aged Rats
by Gi-Bang Koo, Han Ol Kwon, Jong Han Kim, Seung Ho Lee, Sung Lye Shim and Kyoung Hwa Jang
Curr. Issues Mol. Biol. 2024, 46(10), 11190-11206; https://doi.org/10.3390/cimb46100664 - 4 Oct 2024
Viewed by 252
Abstract
Sarcopenia is a condition characterized by a progressive loss of muscle mass and function which are influenced by certain factors such as aging, nutritional deficiencies, and chronic diseases. Despite numerous efforts to prevent or treat sarcopenia, effective therapeutic options for this disease remain [...] Read more.
Sarcopenia is a condition characterized by a progressive loss of muscle mass and function which are influenced by certain factors such as aging, nutritional deficiencies, and chronic diseases. Despite numerous efforts to prevent or treat sarcopenia, effective therapeutic options for this disease remain limited. This study aims to evaluate the effects of KGC01CE treatment, a mixture of Cervus elaphus (Ce) and Eucommia ulmoides (Eu), which are well-known traditional herbal medicines in Asia, on age-related muscle loss and functional decline in aged rats. KGC01CE has been found to be more effective than the individual extracts in inhibiting dexamethasone (DEX)-induced muscle atrophy and improving muscle mass and grip strength in C2C12 cells and aged rats. Moreover, animal studies were conducted to determine the minimum effective dose, and a 12-week oral administration of KGC01CE treatment at doses of 50, 100, and 200 mg/kg to 15-month-old aged rats resulted in a dose-dependent increase in lean mass, muscle mass, grip strength, and muscle cross-sectional area (CSA), which had decreased due to aging. Furthermore, it was shown that KGC01CE activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and inhibited the expression of muscle-degrading proteins MuRF, Atrogin-1, and myostatin. These results suggest that KGC01CE treatment may effectively prevent muscle loss and functional decline, providing a novel therapeutic strategy for sarcopenia. Full article
Show Figures

Figure 1

22 pages, 4031 KiB  
Article
N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs)
by Mikhail Y. Stepanichev, Mikhail V. Onufriev, Yulia V. Moiseeva, Olga A. Nedogreeva, Margarita R. Novikova, Pavel A. Kostryukov, Natalia A. Lazareva, Anna O. Manolova, Diana I. Mamedova, Victoria O. Ovchinnikova, Birgit Kastberger, Stefan Winter and Natalia V. Gulyaeva
Biomedicines 2024, 12(10), 2261; https://doi.org/10.3390/biomedicines12102261 - 4 Oct 2024
Viewed by 309
Abstract
Background/Objectives: Aging and chronic stress are regarded as the most important risk factors of cognitive decline. Aged spontaneously hypertensive rats (SHRs) represent a suitable model of age-related vascular brain diseases. The aim of this study was to explore the effects of chronic isolation [...] Read more.
Background/Objectives: Aging and chronic stress are regarded as the most important risk factors of cognitive decline. Aged spontaneously hypertensive rats (SHRs) represent a suitable model of age-related vascular brain diseases. The aim of this study was to explore the effects of chronic isolation stress in aging SHRs on their cognitive functions and response to acute stress, as well as the influence of the chronic oral intake of N-Pep-Zn, the Zn derivative of N-PEP-12. Methods: Nine-month-old SHRs were subjected to social isolation for 3 months (SHRiso group), and one group received N-pep-Zn orally (SHRisoP, 1.5 mg/100 g BW). SHRs housed in groups served as the control (SHRsoc). The behavioral study included the following tests: sucrose preference, open field, elevated plus maze, three-chamber sociability and social novelty and spatial learning and memory in a Barnes maze. Levels of corticosterone, glucose and proinflammatory cytokines in blood plasma as well as salivary amylase activity were measured. Restraint (60 min) was used to test acute stress response. Results: Isolation negatively affected the SHRs learning and memory in the Barnes maze, while the treatment of isolated rats with N-Pep-Zn improved their long-term memory and working memory impairments, making the SHRisoP comparable to the SHRsoc group. Acute stress induced a decrease in the relative thymus weight in the SHRiso group (but not SHRsoc), whereas treatment with N-Pep-Zn prevented thymus involution. N-pep-Zn mitigated the increment in blood cortisol and glucose levels induced by acute stress. Conclusions: N-pep-Zn enhanced the adaptive capabilities towards chronic (isolation) and acute (immobilization) stress in aged SHRs and prevented cognitive disturbances induced by chronic isolation, probably affecting the hypothalamo–pituitary–adrenal, sympathetic, and immune systems. Full article
(This article belongs to the Special Issue Health-Related Applications of Natural Molecule Derived Structures)
Show Figures

Figure 1

13 pages, 861 KiB  
Article
A Proposal for a Noxious Stimuli-Free, Moderate-Intensity Treadmill Running Protocol to Improve Aerobic Performance in Experimental Research on Rats
by Gilmara Gomes de Assis, Elda Olivia Nobre de Souza, Paulo Francisco de Almeida-Neto, Halil İbrahim Ceylan and Nicola Luigi Bragazzi
Metabolites 2024, 14(10), 534; https://doi.org/10.3390/metabo14100534 - 4 Oct 2024
Viewed by 277
Abstract
Background/Objectives: Animal models can help understand human physiological responses, including the response to exercise and physical activity. However, many of these models incorporate noxious stimuli for various scientific purposes. We propose a noxious stimuli-free treadmill running training program for Rattus norvegicus species to [...] Read more.
Background/Objectives: Animal models can help understand human physiological responses, including the response to exercise and physical activity. However, many of these models incorporate noxious stimuli for various scientific purposes. We propose a noxious stimuli-free treadmill running training program for Rattus norvegicus species to study adaptations to aerobic exercise. Methods: In this study, rats were randomly allocated to training (n = 20) and sedentary (n = 20) groups. The training group underwent a program consisting of 30–50 min of treadmill running at 60% intensity, three times per week for 8 weeks. Maximum speed tasks (Tmax) were conducted to determine, adjust, and evaluate changes in fitness conditions. The rats had one week of familiarization with the treadmill, and a rubber ball was used at the back wall of the lane as a painless stimulus to encourage running. All assessments were conducted by two independent researchers in a double-blind manner, with data analysis conducted by a third-blind investigator. Results: A significant effect of time (η2p = 0.430, p < 0.001, large effect) could be found, showing differences between Tmax1 and Tmax2, and between Tmax1 and Tmax3 in both groups. The training group significantly outperformed the sedentary group (η2p = 0.266, p < 0.001, large effect). There was a significant interaction between time and condition (η2p = 0.152, p < 0.001, large effect). Conclusions: The proposed moderate-intensity treadmill running program could effectively differentiate between trained and sedentary conditions within both the short period of 4 weeks and the extended period of 8 weeks. This protocol can be used as a model for running on a treadmill for Rattus norvegicus species without the use of noxious stimuli. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

31 pages, 6392 KiB  
Article
Evaluating the Root Extract of Reynoutria ciliinervis (Nakai) Moldenke: An Analysis of Active Constituents, Antioxidant Potential, and Investigation of Hepatoprotective Effects in Rats
by Zheng Xing, Yang Han, Hao Pang, Li Li, Guangqing Xia, Junyi Zhu, Jing Han and Hao Zang
Molecules 2024, 29(19), 4701; https://doi.org/10.3390/molecules29194701 (registering DOI) - 4 Oct 2024
Viewed by 198
Abstract
Reynoutria ciliinervis (Nakai) Moldenke (R. ciliinervis) root, a traditional Chinese medicine, was found to exhibit remarkable pharmacological properties through a series of comprehensive investigations. Our study commenced with a qualitative phytochemical analysis that identified 12 bioactive compounds within the plant. Subsequently, [...] Read more.
Reynoutria ciliinervis (Nakai) Moldenke (R. ciliinervis) root, a traditional Chinese medicine, was found to exhibit remarkable pharmacological properties through a series of comprehensive investigations. Our study commenced with a qualitative phytochemical analysis that identified 12 bioactive compounds within the plant. Subsequently, utilizing ultraviolet-visible spectrophotometry, the methanol extract emerged as the optimal solvent extract, which was abundant in diverse classes of compounds such as carbohydrates, phenolics, steroids, alkaloids, phenolic acids, and tannins. In vitro antioxidant assays underscored the exceptional free radical scavenging, metal ion chelation, hydrogen peroxide scavenging, singlet oxygen quenching, and β-carotene bleaching capabilities of the methanol extract, significantly outperforming other solvent extracts. Further ultra high-performance liquid chromatography–electrospray ionization–quadrupole time of flight–mass spectrometry analysis revealed the presence of 45 compounds, predominantly anthraquinones and phenolics, in the methanol extract. The extract demonstrated robust stability under various conditions, including high temperatures, varying pH levels, and simulated gastrointestinal digestion as well as efficacy in inhibiting the oxidation in edible oils. Acute toxicity tests in mice confirmed the safety of the methanol extract and provided a valuable dosage reference for future studies. Importantly, high-dose methanol extract exhibited a significant pre-protective effect against D-galactosamine-induced liver injury in rats, as evidenced by reduced alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, malondialdehyde levels, and elevated catalase and albumin levels. These findings suggest a potential role for the methanol extract of R. ciliinervis root in treating oxidative stress-related disorders, highlighting the plant’s immense medicinal potential. Our research offers a thorough evaluation of the bioactive components, antioxidant properties, stability, and liver-protecting effects of the methanol extract, setting the stage for deeper investigation and potential clinical applications. Full article
(This article belongs to the Special Issue Medicinal Value of Natural Bioactive Compounds and Plant Extracts II)
Show Figures

Figure 1

23 pages, 3361 KiB  
Article
Development and Validation of HSPiP- and Optimization-Assisted Method to Analyze Tolterodine Tartrate in Pharmacokinetic Study
by Tosh Patil, Mohd Usman Mohd Siddique, Madhav Shelke, Mohhammad Ramzan, Mrunali Patil and Mudassar Shahid
Processes 2024, 12(10), 2164; https://doi.org/10.3390/pr12102164 - 4 Oct 2024
Viewed by 313
Abstract
A new approach was applied for the development of a precise, simple, and economic analytical process for the accurate analysis of tolterodine tartrate (TOT) in its bulk and tablet using HSPiP- and quality by design (QbD)-assisted methods. The HSPiP program predicted several solvents [...] Read more.
A new approach was applied for the development of a precise, simple, and economic analytical process for the accurate analysis of tolterodine tartrate (TOT) in its bulk and tablet using HSPiP- and quality by design (QbD)-assisted methods. The HSPiP program predicted several solvents and their right ratios for the mobile phase, followed by simulating the experimental solubility data in various predicted solvents. QbD was used to identify the impact of the composition and the mobile phase flow rate on the peak area and retention time. TOT was estimated using an Agilent TC C18 column employing an optimized mobile phase. The HSPiP shortened the solvent selection time with high reliability, whereas QbD identified critical factors. The optimized composition and process variables were used to develop an analytical method for TOT estimation. Various analytical validation parameters were estimated with constructed linearity of 5–30 μg/mL and a percent recovery yield value of 100.36%. To ensure the reliability of the optimized method, we estimated validation parameters (linearity, specificity, precision, accuracy, robustness, and ruggedness) to comply with the ICH guidelines. Considering the high recovery yield, good regression coefficient, low detection limit, and low noise ratio, the optimized method was accurate and precise with a high degree of specificity, rapid process, and reproducibility for the quantitative estimation of tolterodine from both oral analytes (I and II). The validated method was implemented for pharmacokinetic study in rats for quantitative estimation of the analytes with high accuracy, sensitivity, and reproducibility. Full article
(This article belongs to the Special Issue Modeling, Simulation, Control, and Optimization of Processes)
Show Figures

Figure 1

14 pages, 2309 KiB  
Article
GABALAGEN Facilitates Pentobarbital-Induced Sleep by Modulating the Serotonergic System in Rats
by Minsook Ye, Kyoung-min Rheu, Bae-jin Lee and Insop Shim
Curr. Issues Mol. Biol. 2024, 46(10), 11176-11189; https://doi.org/10.3390/cimb46100663 - 4 Oct 2024
Viewed by 254
Abstract
Gamma-aminobutyric acid (GABA) is one of the inhibitory neurotransmitters with beneficial effects including sedative properties. However, despite various clinical trials, scientific evidence regarding the impact on sleep of orally ingested GABA, whether natural or synthesized through biological pathways, is not clear. GABALAGEN (GBL) [...] Read more.
Gamma-aminobutyric acid (GABA) is one of the inhibitory neurotransmitters with beneficial effects including sedative properties. However, despite various clinical trials, scientific evidence regarding the impact on sleep of orally ingested GABA, whether natural or synthesized through biological pathways, is not clear. GABALAGEN (GBL) is the product of fermented collagen by Lactobacillus brevis BJ20 (L. brevis BJ20) and Lactobacillus plantarum BJ21 (L. plantarum BJ21), enriched with GABA and characterized by low molecular weight. The aim of this study was to investigate the effect of GBL on sleep improvement via a receptor binding assay in a pentobarbital-induced sleep-related rat model. We utilized a pentobarbital-induced sleep-related rat model to conduct this research. The present study investigated the sedative effects of GBL through electroencephalography (EEG) analysis in the pentobarbital-induced sleep animal model. Exploration of the neural basis of these positive effects involved evaluating orexin in the brain via immunohistochemical methods and 5-HT in the serum using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we conducted a binding assay for 5-HT2C receptors, as these are considered pivotal targets in the mechanism of action for sleep aids. Diazepam (DZP) was used as a positive control to compare the efficacy of GBL. Results: In the binding assay, GBL displayed binding affinity to the 5-HT2C receptor (IC50 value, 5.911 µg/mL). Administration of a low dose of GBL (GBL_L; 100 mg/kg) increased non-rapid eye movement sleep time and decreased wake time based on EEG data in pentobarbital-induced rats. Administration of a high dose of GBL (GBL_H; 250 mg/kg) increased non-rapid eye movement sleep time. Additionally, GBL groups significantly increased concentration of the 5-HT level in the serum. GBL_H decreased orexin expression in the lateral hypothalamus. Conclusion: Overall, the sedative effect of GBL may be linked to the activation of serotonergic systems, as indicated by the heightened affinity of the 5-HT2C receptor binding and elevated levels of 5-HT observed in the serum. This suggests that GBL holds promise as a novel compound for inducing sleep in natural products. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

18 pages, 4150 KiB  
Article
Comparative Analysis of the Protective Effect of Naringenin on Cardiovascular Parameters of Normotensive and Hypertensive Rats Subjected to the Myocardial Infarction Model
by Anelize Dada, Rita de Cássia Vilhena da Silva, Mariana Zanovello, Jeniffer C. Moser, Sabrina L. D. Orengo, Martina O. Cavichiolo, Eleine R. Bidinha, Thaise Boeing, Valdir Cechinel-Filho and Priscila de Souza
Pharmaceuticals 2024, 17(10), 1324; https://doi.org/10.3390/ph17101324 - 4 Oct 2024
Viewed by 311
Abstract
Background: Cardiovascular diseases rank as the top global cause of mortality, particularly acute myocardial infarction (MI). MI arises from the blockage of a coronary artery, which disrupts blood flow and results in tissue death. Among therapeutic approaches, bioactives from medicinal plants emerge as [...] Read more.
Background: Cardiovascular diseases rank as the top global cause of mortality, particularly acute myocardial infarction (MI). MI arises from the blockage of a coronary artery, which disrupts blood flow and results in tissue death. Among therapeutic approaches, bioactives from medicinal plants emerge as promising for the development of new medicines. Objectives: This study explored the effects of naringenin (NAR 100 mg/kg), a flavonoid found in citrus fruits, in normotensive (NTR) and spontaneously hypertensive (SHR) rats, both subjected to isoproterenol (ISO 85 mg/kg)-induced MI. Results: Post-treatment assessments indicated that NAR reduced blood pressure and minimized clot formation, particularly notable in the SHR group, which helps mitigate damage related to hypertension and ISO exposure. Additionally, NAR effectively restored KCl-induced contractility in the aortas of both NTR and SHR groups. NAR treatment reduced reduced glutathione (GSH) and lipid hydroperoxides (LOOH) values and recovered the activity of the antioxidant enzymes catalase (CAT) and glutathione-s-transferase (GST) in NTR groups. Moreover, myocardial damage assessed through histological analyses was reduced in groups treated with NAR. Conclusions: The results highlight significant pathophysiological differences between the groups, suggesting that NAR has protective potential against ISO-induced cardiac damage, warranting further investigation into its protective effects and mechanisms. Full article
(This article belongs to the Special Issue Plant-Based Therapies for Circulatory Disorders)
Show Figures

Figure 1

18 pages, 3487 KiB  
Article
C5a Induces Inflammatory Signaling and Apoptosis in PC12 Cells through C5aR-Dependent Signaling: A Potential Mechanism for Adrenal Damage in Sepsis
by Lucas Mrozewski, Sujeenthar Tharmalingam, Paul Michael, Aseem Kumar and T. C. Tai
Int. J. Mol. Sci. 2024, 25(19), 10673; https://doi.org/10.3390/ijms251910673 - 3 Oct 2024
Viewed by 402
Abstract
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary [...] Read more.
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary cells. Currently, the mechanisms by which C5a impacts adrenal cell function are poorly understood. The PC12 cell model was used to examine the cellular effects following treatment with recombinant rat C5a. The levels of caspase activation and cell death, protein kinase signaling pathway activation, and changes in inflammatory protein expression were examined following treatment with C5a. There was an increase in apoptosis of PC12 cells following treatment with high-dose C5a. Ten inflammatory proteins, primarily involved in apoptosis, cell survival, and cell proliferation, were upregulated following treatment with high-dose C5a. Five inflammatory proteins, involved primarily in chemotaxis and anti-inflammatory functions, were downregulated. The ERK/MAPK, p38/MAPK, JNK/MAPK, and AKT protein kinase signaling pathways were upregulated in a C5aR-dependent manner. These results demonstrate an apoptotic effect and cellular signaling effect of high-dose C5a. Taken together, the overall data suggest that high levels of C5a may play a role in C5aR-dependent apoptosis of adrenal medullary cells in sepsis. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Sepsis)
Show Figures

Figure 1

Back to TopTop