Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,829)

Search Parameters:
Keywords = residual structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5127 KiB  
Article
Deep Geological Structure Analysis of the Dongyang Area, Fujian, China: Insights from Integrated Gravity and Magnetic Data
by Zhenyu Zhang, Yongbo Li, Liang Chen, Qiang Zhang and Yue Sun
Minerals 2024, 14(8), 837; https://doi.org/10.3390/min14080837 (registering DOI) - 19 Aug 2024
Abstract
To explore the deep geological structure of the Dongyang area in Fujian, China, gravity data from the area and its surroundings were collected and processed. Additionally, a high-precision magnetic survey was conducted in the Zhongxian region of this area, with subsequent analysis of [...] Read more.
To explore the deep geological structure of the Dongyang area in Fujian, China, gravity data from the area and its surroundings were collected and processed. Additionally, a high-precision magnetic survey was conducted in the Zhongxian region of this area, with subsequent analysis of the magnetic anomalies. Through the integration of regional geological data, a comprehensive analysis was carried out on the characteristics of gravity–magnetic anomalies and deep geological structures in the Dongyang area. The study indicates that the primary portion of the Dongyang area lies southwest of the expansive circular volcanic structure spanning Dehua to Yongtai. Two significant residual gravity anomalies were identified within the region, interpreted as the Xiaoban-Shuangqishan and Dongyang-Lingtouping residual gravity-positive anomalies. In the Zhongxian region, the magnetic field exhibits complexity with notable amplitude variations. Positive anomalies predominate in the western and northern sectors, while localized positive anomalies are prominent in the eastern region. The central area portrays a circular and disordered mix of positive and negative anomalies. Particularly distinctive are the band-shaped and fan-shaped negative anomalies curving from northeast to southeast through the central region. Various positive and negative anomalies of varying strengths, gradients, and orientations overlay both positive and negative magnetic backgrounds in specific locales. Moreover, the Dongyang area showcases well-developed fault structures, primarily oriented in northeast and northwest directions. Leveraging the regional magnetic attributes in conjunction with regional geological data, 39 faults were deduced in the Zhongxian region of the Dongyang area, delineating three promising mineralization zones. Full article
Show Figures

Figure 1

17 pages, 2706 KiB  
Article
Study on Dynamic Modulus Prediction Model of In-Service Asphalt Pavement
by Duanyi Wang, Chuanxi Luo, Jian Li and Jun He
Buildings 2024, 14(8), 2550; https://doi.org/10.3390/buildings14082550 - 19 Aug 2024
Abstract
The dynamic modulus of in-service asphalt pavements serves as a critical parameter for the computation of residual life and the design of overlays. However, its acquisition is currently limited to laboratory dynamic modulus testing using a limited number of core samples, necessitating a [...] Read more.
The dynamic modulus of in-service asphalt pavements serves as a critical parameter for the computation of residual life and the design of overlays. However, its acquisition is currently limited to laboratory dynamic modulus testing using a limited number of core samples, necessitating a reassessment of its representativeness. To facilitate the prediction of dynamic modulus design parameters through Falling Weight Deflectometer (FWD) back-calculated modulus data, an integrated approach encompassing FWD testing, modulus back-calculation, core sample dynamic modulus testing, and asphalt DSR testing was employed to concurrently acquire dynamic modulus at identical locations under varying temperatures and frequencies. Dynamic modulus prediction models for in-service asphalt pavements were developed utilizing fundamental model deduction and gene expression programming (GEP) techniques. The findings indicate that GEP exhibits superior efficacy in the development of dynamic modulus prediction models. The dynamic modulus prediction model developed can enhance both the precision and representativeness of asphalt pavement’s dynamic modulus design parameters, as well as refine the accuracy of residual life estimations for in-service asphalt pavements. Concurrently, the modulus derived from FWD back-calculation can be transmuted into the dynamic modulus adhering to a uniform standard criterion, facilitating the identification of problematic segments within the asphalt structural layer. This is of paramount importance for the maintenance or reconstruction of in-service asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Asphalt Pavement Materials and Design)
Show Figures

Figure 1

17 pages, 1893 KiB  
Review
The Disorderly Nature of Caliciviruses
by Vivienne L. Young, Alice M. McSweeney, Matthew J. Edwards and Vernon K. Ward
Viruses 2024, 16(8), 1324; https://doi.org/10.3390/v16081324 - 19 Aug 2024
Abstract
An intrinsically disordered protein (IDP) or region (IDR) lacks or has little protein structure but still maintains function. This lack of structure creates flexibility and fluidity, allowing multiple protein conformations and potentially transient interactions with more than one partner. Caliciviruses are positive-sense ssRNA [...] Read more.
An intrinsically disordered protein (IDP) or region (IDR) lacks or has little protein structure but still maintains function. This lack of structure creates flexibility and fluidity, allowing multiple protein conformations and potentially transient interactions with more than one partner. Caliciviruses are positive-sense ssRNA viruses, containing a relatively small genome of 7.6–8.6 kb and have a broad host range. Many viral proteins are known to contain IDRs, which benefit smaller viral genomes by expanding the functional proteome through the multifunctional nature of the IDR. The percentage of intrinsically disordered residues within the total proteome for each calicivirus type species can range between 8 and 23%, and IDRs have been experimentally identified in NS1-2, VPg and RdRP proteins. The IDRs within a protein are not well conserved across the genera, and whether this correlates to different activities or increased tolerance to mutations, driving virus adaptation to new selection pressures, is unknown. The function of norovirus NS1-2 has not yet been fully elucidated but includes involvement in host cell tropism, the promotion of viral spread and the suppression of host interferon-λ responses. These functions and the presence of host cell-like linear motifs that interact with host cell caspases and VAPA/B are all found or affected by the disordered region of norovirus NS1-2. The IDRs of calicivirus VPg are involved in viral transcription and translation, RNA binding, nucleotidylylation and cell cycle arrest, and the N-terminal IDR within the human norovirus RdRP could potentially drive liquid–liquid phase separation. This review identifies and summarises the IDRs of proteins within the Caliciviridae family and their importance during viral replication and subsequent host interactions. Full article
(This article belongs to the Special Issue Caliciviruses)
Show Figures

Figure 1

16 pages, 9184 KiB  
Article
Study on the Durability of High-Content Oil Shale Concrete
by Yunyi Wang, Cong Zeng, Yingshuang Wang, Mingyi Tang and Mengqiu Gao
Buildings 2024, 14(8), 2547; https://doi.org/10.3390/buildings14082547 - 19 Aug 2024
Abstract
This study evaluated the potential and environmental benefits of using oil shale residue as a replacement for fine aggregate in concrete through a series of experiments. Initially, the crushing value test confirmed the oil shale residue’s value at 16.7%, meeting the load-bearing standards [...] Read more.
This study evaluated the potential and environmental benefits of using oil shale residue as a replacement for fine aggregate in concrete through a series of experiments. Initially, the crushing value test confirmed the oil shale residue’s value at 16.7%, meeting the load-bearing standards for fine aggregates, thus proving its viability as a complete substitute. Further, the oil shale residue was treated with a 60 mg/L concentration of Tween 80 and other surfactants for oil removal. The treated concrete specimens demonstrated excellent compressive performance and a dense internal structure. Building on this, the mechanical properties of the oil shale residue concrete were explored across different replacement ratios (from 40% to 100%), revealing an increase in compressive strength with higher replacement ratios. In the durability tests, compared to the JZ group, the oil shale residue concrete modified with desulfurization gypsum exhibited a 0.03% reduction in mass loss rate and a 10.13% reduction in relative moving elasticity modulus loss rate, particularly noticeable after 175 freeze–thaw cycles where specimens B1 to B4 exhibited no significant damage, highlighting its remarkable durability. Overall analysis indicated that using oil-removed oil shale residue as a substitute for fine aggregate in concrete, combined with desulfurization gypsum modification, not only enhances concrete performance but also significantly reduces the consumption of natural aggregates and environmental pollution, promoting resource utilization and sustainable development. Full article
(This article belongs to the Special Issue Sustainable and Low-Carbon Building Materials and Structures)
Show Figures

Figure 1

17 pages, 5247 KiB  
Article
Intra-Pulse Modulation Recognition of Radar Signals Based on Efficient Cross-Scale Aware Network
by Jingyue Liang, Zhongtao Luo and Renlong Liao
Sensors 2024, 24(16), 5344; https://doi.org/10.3390/s24165344 - 18 Aug 2024
Viewed by 394
Abstract
Radar signal intra-pulse modulation recognition can be addressed with convolutional neural networks (CNNs) and time–frequency images (TFIs). However, current CNNs have high computational complexity and do not perform well in low-signal-to-noise ratio (SNR) scenarios. In this paper, we propose a lightweight CNN known [...] Read more.
Radar signal intra-pulse modulation recognition can be addressed with convolutional neural networks (CNNs) and time–frequency images (TFIs). However, current CNNs have high computational complexity and do not perform well in low-signal-to-noise ratio (SNR) scenarios. In this paper, we propose a lightweight CNN known as the cross-scale aware network (CSANet) to recognize intra-pulse modulation based on three types of TFIs. The cross-scale aware (CSA) module, designed as a residual and parallel architecture, comprises a depthwise dilated convolution group (DDConv Group), a cross-channel interaction (CCI) mechanism, and spatial information focus (SIF). DDConv Group produces multiple-scale features with a dynamic receptive field, CCI fuses the features and mitigates noise in multiple channels, and SIF is aware of the cross-scale details of TFI structures. Furthermore, we develop a novel time–frequency fusion (TFF) feature based on three types of TFIs by employing image preprocessing techniques, i.e., adaptive binarization, morphological processing, and feature fusion. Experiments demonstrate that CSANet achieves higher accuracy with our TFF compared to other TFIs. Meanwhile, CSANet outperforms cutting-edge networks across twelve radar signal datasets, providing an efficient solution for high-precision recognition in low-SNR scenarios. Full article
(This article belongs to the Special Issue Radar Signal Detection, Recognition and Identification)
Show Figures

Figure 1

23 pages, 6560 KiB  
Article
Development of a Portable Residual Chlorine Detection Device with a Combination of Microfluidic Chips and LS-BP Algorithm to Achieve Accurate Detection of Residual Chlorine in Water
by Tongfei Wang, Jiping Niu, Haoran Pang, Xiaoyu Meng, Ruqian Sun and Jiaqing Xie
Micromachines 2024, 15(8), 1045; https://doi.org/10.3390/mi15081045 - 18 Aug 2024
Viewed by 216
Abstract
Chlorine is widely used for sterilization and disinfection of water, but the presence of excess residual chlorine in water poses a substantial threat to human health. At present, there is no portable device which can achieve accurate, rapid, low-cost, and convenient detection of [...] Read more.
Chlorine is widely used for sterilization and disinfection of water, but the presence of excess residual chlorine in water poses a substantial threat to human health. At present, there is no portable device which can achieve accurate, rapid, low-cost, and convenient detection of residual chlorine in water. Therefore, it is necessary to develop a device that can perform accurate, rapid, low-cost, and convenient detection of residual chlorine in water. In this study, a portable residual chlorine detection device was developed. A microfluidic chip was studied to achieve efficient mixing of two-phase flow. This microfluidic chip was used for rapid mixing of reagents in the portable residual chlorine detection device, reducing the consumption of reagents, detection time, and device volume. A deep learning algorithm was proposed for predicting residual chlorine concentration in water, achieving precise detection. Firstly, the microfluidic chip structure for detecting mixed reagents was optimized, and the microfluidic chip was fabricated by a 3D-printing method. Secondly, a deep learning (LS-BP) algorithm was constructed and proposed for predicting residual chlorine concentration in water, which can realize dual-channel signal reading. Thirdly, the corresponding portable residual chlorine detection device was developed, and the detection device was compared with residual chlorine detection devices and methods in other studies. The comparison results indicate that the portable residual chlorine detection device has high detection accuracy, fast detection speed, low cost, and good convenience. The excellent performance of the portable residual chlorine detection device makes it suitable for detecting residual chlorine in drinking water, swimming pool water, aquaculture and other fields. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

12 pages, 2370 KiB  
Article
The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes
by Emanuel-Gheorghita Armanu, Marius Sebastian Secula, Bogdan-Marian Tofanica and Irina Volf
Polymers 2024, 16(16), 2334; https://doi.org/10.3390/polym16162334 - 18 Aug 2024
Viewed by 565
Abstract
This paper explores the intricate relations between biomass polymeric composition, thermochemical conversion routes, char yields and features in order to advance the knowledge on biomass conversion processes and customize them to meet specific requirements. An exhaustive characterization has been performed for three types [...] Read more.
This paper explores the intricate relations between biomass polymeric composition, thermochemical conversion routes, char yields and features in order to advance the knowledge on biomass conversion processes and customize them to meet specific requirements. An exhaustive characterization has been performed for three types of biomasses: (i) spruce bark, a woody primary and secondary residue from forestry and wood processing; (ii) wheat straws—agricultural waste harvest from arable and permanent cropland; and (iii) vine shoots, a woody biomass resulting from vineyard waste. Chemical (proximate and ultimate analysis), biochemical, trace elements, and thermal analyses were performed. Also, Fourier transform infrared spectroscopy, Scanning Electron Microscopy, and thermogravimetric analysis were conducted to establish the compositional and structural characteristics of feedstock. The main polymeric components influence the amount and quality of char. The high hemicellulose content recommends wheat straws as a good candidate especially for hydrothermal carbonization. Cellulose is a primary contributor to char formation during pyrolysis, suggesting that vine shoots may yield higher-quality char compared to that converted from wheat straws. It was shown that the char yield can be predicted and is strongly dependent on the polymeric composition. While in the case of spruce bark and wheat straws, lignin has a major contribution in the char formation, cellulose and secondary lignin are main contributors for vine shoots char. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Figure 1

12 pages, 7139 KiB  
Article
Properties of Red-Mud-Modified Basic Magnesium Sulfate Cement
by Yanrong Wang and Zhilei Zhen
Materials 2024, 17(16), 4085; https://doi.org/10.3390/ma17164085 - 17 Aug 2024
Viewed by 329
Abstract
This study aimed to decipher the influence of red mud on the mechanical properties, pore structure, and microstructure of basic magnesium sulfate cements (BMSCs). The results showed that BMSC prepared with an appropriate addition of red mud exhibited improved mechanical properties and yielded [...] Read more.
This study aimed to decipher the influence of red mud on the mechanical properties, pore structure, and microstructure of basic magnesium sulfate cements (BMSCs). The results showed that BMSC prepared with an appropriate addition of red mud exhibited improved mechanical properties and yielded the highest compressive strength of 94.54 MPa after curing for 28 days. Adding red mud reduced the total porosity and optimized the pore structure of BMSC. The microstructure and hydration products of the specimens were examined using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The results illustrate that the addition of 50% red mud did not affect the amount of the main strength phase 5-1-7 produced in BMSC. It could also reduce the residual amount of MgO and the generation of Mg(OH)2. The red mud and the M-S-H gel generated by the reaction between active SiO2 and α-MgO in the red mud together filled the pore structure of BMSC, making its microstructure denser and higher-strength. This study aims to improve the comprehensive use of red mud, and the results show that red mud can improve the mechanical properties of BMSCs, protecting the environment and simultaneously reducing BMSC production costs to create good economic benefits. Full article
Show Figures

Figure 1

20 pages, 12778 KiB  
Article
Prediction of Physico-Chemical Parameters of Surface Waters Using Autoregressive Moving Average Models: A Case Study of Kis-Balaton Water Protection System, Hungary
by Zsófia Kovács, Bálint Levente Tarcsay, Piroska Tóth, Csenge Judit Juhász, Sándor Németh and Amin Shahrokhi
Water 2024, 16(16), 2314; https://doi.org/10.3390/w16162314 - 16 Aug 2024
Viewed by 330
Abstract
In this work, the authors provide a case study of time series regression techniques for water quality forecasting. With the constant striving to achieve the Sustainable Development Goals (SDG), the need for sensitive and reliable water management tools has become critical. Continuous online [...] Read more.
In this work, the authors provide a case study of time series regression techniques for water quality forecasting. With the constant striving to achieve the Sustainable Development Goals (SDG), the need for sensitive and reliable water management tools has become critical. Continuous online surface water quality monitoring systems that record time series data about surface water parameters are essential for the supervision of water conditions and proper water management practices. The time series data obtained from these systems can be used to develop mathematical models for the prediction of the temporal evolution of water quality parameters. Using these mathematical models, predictions can be made about future trends in water quality to pinpoint irregular behaviours in measured data and identify the presence of anomalous events. We compared the performance of regression models with different structures for the forecasting of water parameters by utilizing a data set collected from the Kis-Balaton Water Protection System (KBWPS) wetland region of Hungary over an observation period of eleven months as a case study. In our study, autoregressive integrated moving average (ARIMA) regression models with different structures have been compared based on forecasting performance. Using the resulting models, trends of the oxygen saturation, pH level, electrical conductivity, and redox potential of the water could be accurately forecast (validation data residual standard deviation between 0.09 and 20.8) while in the case of turbidity, only averages of future values could be predicted (validation data residual standard deviation of 56.3). Full article
Show Figures

Figure 1

11 pages, 4267 KiB  
Article
Effects of an LPSO Phase Induced by Zn Addition on the High-Temperature Properties of Mg-9Gd-2Nd-(1.5Zn)-0.5Zr Alloy
by Ming Li, Mengling Yao, Liangzhi Liu, Xiaoxia Zhang, Zhihui Xing, Xiangsheng Xia, Peng Liu, Yuanyuan Wan, Qiang Chen and Hongxia Wang
Materials 2024, 17(16), 4075; https://doi.org/10.3390/ma17164075 - 16 Aug 2024
Viewed by 254
Abstract
In this study, we prepared Mg-9Gd-2Nd-0.5Zr, referred to as alloy I, and Mg-9Gd-2Nd-1.5Zn-0.5Zr, referred to as alloy II. The effects of a long-period stacking ordered (LPSO) phase induced by Zn addition on the high-temperature mechanical properties and fracture morphology of alloy I and [...] Read more.
In this study, we prepared Mg-9Gd-2Nd-0.5Zr, referred to as alloy I, and Mg-9Gd-2Nd-1.5Zn-0.5Zr, referred to as alloy II. The effects of a long-period stacking ordered (LPSO) phase induced by Zn addition on the high-temperature mechanical properties and fracture morphology of alloy I and alloy II at different temperatures (25 °C, 200 °C, 225 °C, and 250 °C) were studied using optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The results indicate that Mg5RE at the crystal boundary of the as-cast alloy I transformed into (MgZn)3RE (as-cast alloy II) by the addition of Zn. After solid solution treatment, the secondary phase in alloy I completely disappeared, and there were still residual secondary phases in block-like and needle-like structures in alloy II, while layered LPSO phases precipitated in the matrix. During the high-temperature tensile test, the yield and tensile strength of alloy I decreased significantly with the increase in temperature, while the elongation increased. Compared to alloy I, the yield strength of alloy II with an LPSO phase showed an increasing trend at 25 °C~200 °C and then decreased when the temperature reached around 250 °C. The thermal stability was significantly enhanced, and the elongation was also higher than that of alloy I. As the temperature increased, the fracture surface of alloy I showed increased folding, bending of scratches, and crack enlargement. However, the fracture surface of alloy II remained largely unchanged, with only minor wrinkles and cracks appearing at temperatures reaching 250 °C. Full article
Show Figures

Figure 1

21 pages, 4772 KiB  
Article
On the Nonlinear Behavior of Composite Structures under Multiple Earthquakes Considering Soil–Structure Interaction
by Elissavet Chorafa, Eumorfia Skrapalliou and Panagiota Katsimpini
CivilEng 2024, 5(3), 673-693; https://doi.org/10.3390/civileng5030036 - 16 Aug 2024
Viewed by 287
Abstract
This study investigates the seismic behavior of moment-resistant composite frames with concrete-filled steel tube (CFT) columns and composite steel beams under multiple earthquakes, considering soil–structure interaction (SSI) effects. Nonlinear time history analyses were performed on 2-, 4-, and 6-storey frames under five real [...] Read more.
This study investigates the seismic behavior of moment-resistant composite frames with concrete-filled steel tube (CFT) columns and composite steel beams under multiple earthquakes, considering soil–structure interaction (SSI) effects. Nonlinear time history analyses were performed on 2-, 4-, and 6-storey frames under five real seismic sequences and various soil conditions. The key response parameters included interstorey drift ratios, floor displacements, accelerations, and residual deformations. The results indicate that consecutive ground motions generally increase displacement demands and residual deformations compared to single-event scenarios. Incorporating SSI typically reduces drift ratios and accelerations but increases periods and displacements. Contrary to conventional assumptions, taller buildings exhibited lower maximum interstorey drift ratios, with the second storey consistently experiencing the highest drift across all building heights. Peak floor accelerations varied with building height; low-rise structures showed higher accelerations from earthquake sequences, while mid-rise buildings experienced higher accelerations from single events. These findings challenge traditional assumptions in seismic engineering and underscore the importance of considering multiple earthquake scenarios, building-specific factors, and SSI effects in the seismic design of CFT–steel composite frames. The results suggest a need for revising current design approaches to better account for these complex interactions. Full article
Show Figures

Figure 1

15 pages, 4431 KiB  
Article
Development of a Sensitive Monoclonal Antibody-Based Colloidal Gold Immunochromatographic Strip for Lomefloxacin Detection in Meat Products
by Xinghua Zhou, Wenwen Pan, Na Li, Mahmoud Salah, Shuoning Guan, Xiaolan Li and Yun Wang
Foods 2024, 13(16), 2550; https://doi.org/10.3390/foods13162550 - 16 Aug 2024
Viewed by 299
Abstract
Lomefloxacin (LOM), an antibiotic crucial for preventing various animal diseases in animal husbandry, can pose serious health risks when found in excessive amounts in meat products. The development of highly specific and sensitive colloidal gold immunochromatographic test strips is essential for the accurate [...] Read more.
Lomefloxacin (LOM), an antibiotic crucial for preventing various animal diseases in animal husbandry, can pose serious health risks when found in excessive amounts in meat products. The development of highly specific and sensitive colloidal gold immunochromatographic test strips is essential for the accurate detection of this class of antibiotics. Our study utilized a monoclonal antibody (mAb) assay and immunochromatographic strips to detect lomefloxacin residues in meat products. The results showed minimal cross-reactivity with other structural analogs, with a maximum half inhibitory concentration (IC50) of 0.93 ng/mL and a linear range of 0.38 to 2.3 ng/mL for the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA). The recovery of LOM was 80% to 120%, with an average coefficient of variation below 5%. The immunochromatographic strip test results showed a visual detection limit of 2.5 ng/g, meeting the market requirements for the test. This study highlights the significance of specific and sensitive testing methods for detecting lomefloxacin, ensuring consumers’ safety and health. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

30 pages, 11884 KiB  
Article
Mechanisms of Thick-Hard Roof and Thin Aquifer Zone Floor Destruction and the Evolution Law of Water Inrush
by Min Cao, Shangxian Yin, Shuqian Li and Xu Wang
Water 2024, 16(16), 2304; https://doi.org/10.3390/w16162304 - 15 Aug 2024
Viewed by 368
Abstract
The collapse of thick-hard roofs after coal has been extracted is not a consequential process in all cases. Rather, it happens due to the augmentation of high stress conducted at depth, followed by a wider range of damage as the floor cracks. The [...] Read more.
The collapse of thick-hard roofs after coal has been extracted is not a consequential process in all cases. Rather, it happens due to the augmentation of high stress conducted at depth, followed by a wider range of damage as the floor cracks. The extent and spread of the cracks in the floor indicate the intensity of the collapse, and the mine will be submerged by the high-pressure water of the coal ash. Therefore, it is particularly important to study the mechanism of the combined effect of high stress on the roof and confined aquifer on the deformation and failure of the coal seam mining floor. This study analyzes and compares the impact of thick-hard magmatic rocks on the destruction of thin floor rock layers in coal seams. Plastic theory calculations are used to determine the plastic zone yield length of floor destruction under hard roof conditions, and the location and height of the maximum floor destruction depth are solved. An empirical formula and BP neural network are used to establish a prediction model for floor destruction. The results of the model’s prediction of the depth of floor failure were compared with the measured values, with an absolute error of 2.13 m and a residual of 10.3%, which was closer to the true values. The accuracy of the theoretical model and prediction model is verified using numerical simulation and on-site in situ measurements. Based on this, the deformation and destruction forms of the floor under pressure and the water inrush mechanism are summarized for mining under the condition of a thick-hard roof. Thus, the floor is subjected to high vertical stress, accompanied by significant disturbances generated during coal seam mining, resulting in intense working face pressures. The floor near the working face coal wall will experience severe compression and shear deformation and slide towards the goaf. The floor in the goaf is relieved of high vertical stress, and horizontal stress compression will result in shear failure, leading to floor heave and further increasing the height of the floor destruction zone. After the mining of the working face, the goaf will undergo two stages of re-supporting and post-mining compaction. During the re-supporting stage, the floor rock undergoes a transition from high-stress to low-stress conditions, and the instantaneous stress relief will cause plastic deformation and failure in the coal seam floor. The combined action of primary floor fractures and secondary fractures formed during mining can easily create effective water channels. These can connect to the aquifer or water-conducting structures, making them highly dangerous. The main modes of floor water inrush under the condition of a thick-hard roof are as follows: the high-stress mode, inducing a floor destruction zone connected to the water riser zone; the mining damage mode, connecting to water-conducting faults; the mining damage mode, connecting to water collapse columns; and the coupled water inrush mode, between the mining damage zone and the highly pressurized water floor. Full article
Show Figures

Figure 1

12 pages, 7901 KiB  
Article
Nonlinear Buckling of Flexible Pipe Carcass Considering Residual Stress Due to Deformation
by Minggang Tang, Zepeng Guo, Wenhui Zheng and Fanlei Wu
J. Mar. Sci. Eng. 2024, 12(8), 1402; https://doi.org/10.3390/jmse12081402 - 15 Aug 2024
Viewed by 276
Abstract
Flexible pipe is one of the most important types of equipment applied in the deep-water development of oil and gas and deep-sea metal mining. The carcass of an unbonded flexible pipe with a typical interlocked structure prevents buckling failure under external hydrostatic pressure. [...] Read more.
Flexible pipe is one of the most important types of equipment applied in the deep-water development of oil and gas and deep-sea metal mining. The carcass of an unbonded flexible pipe with a typical interlocked structure prevents buckling failure under external hydrostatic pressure. The process and principle of carcass layer deformation are described, and a three-dimensional finite element model with solid-shell elements is developed to simulate the cold forming process of a metal strap subjected to a series of rollers. The deflection and deformation behavior in the bend-rolling and interlocking process are investigated, and the residual stress due to deformation is calculated. Taking the carcass layer of a 4-inch internal diameter flexible pipe as an example, a three-dimensional finite element model of the carcass layer loaded with external hydrostatic pressure is developed. The buckling collapse of the carcass layer is evaluated considering different initial imperfections, including residual stress. The results show that the critical pressure can be 60% less than under ideal conditions when the geometric imperfection, material nonlinearity and residual stress due to deformation are considered, which indicates that the effect of residual stress on buckling collapse cannot be ignored. The numerical model and results provide an efficient method and basis for nonlinear buckling analysis and a collapse-resistant unbonded flexible pipe design for industry. Full article
Show Figures

Figure 1

16 pages, 3589 KiB  
Article
Effects of Plastic Mulch Residue on Soil Fungal Communities in Cotton
by Wenyue Song, Hongqi Wu, Zequn Xiang, Yanmin Fan, Shuaishuai Wang and Jia Guo
Agriculture 2024, 14(8), 1365; https://doi.org/10.3390/agriculture14081365 - 15 Aug 2024
Viewed by 260
Abstract
Plastic mulch plays a crucial role in agricultural production in arid and semi-arid regions, positively impacting crop yields, salt suppression, and seedling protection. However, as the usage of plastic mulch extends over time, residue accumulation becomes a significant issue in these regions. To [...] Read more.
Plastic mulch plays a crucial role in agricultural production in arid and semi-arid regions, positively impacting crop yields, salt suppression, and seedling protection. However, as the usage of plastic mulch extends over time, residue accumulation becomes a significant issue in these regions. To clarify the effects of plastic mulch residue on soil fungi, this study focused on three typical cotton-growing areas in Xinjiang. Using high-throughput sequencing technology, the study analyzed the changes in the fungal community structure and diversity in rhizosphere and non-rhizosphere soils across 27 cotton fields under three different levels of plastic mulch residue: 0–75 kg/ha, 75–150 kg/ha, and 150–225 kg/ha. The results indicated that Ascomycota and Basidiomycota were the dominant fungal phyla across all treatments. Increasing levels of plastic mulch residue reduced the fungal richness in the soil, with a greater effects observed on rhizosphere fungi compared to bulk soil fungi. The α-diversity of cotton rhizosphere fungi showed an increasing trend, followed by a decrease with increasing plastic mulch residue, in Aksu and Bazhou, peaking at 75–150 kg/ha. Conversely, in Changji, the α-diversity decreased with increasing plastic mulch residue. The α-diversity of non-rhizosphere fungi associated with cotton decreased with increasing plastic mulch residue. Plastic mulch residue significantly altered the soil fungal α-diversity and had a greater effects on rhizosphere fungi. Different levels of plastic mulch residue had varying effects on the β-diversity of rhizosphere and non-rhizosphere fungi, significantly influencing rhizosphere fungi in Aksu and Bazhou and non-rhizosphere fungi in Changji and Bazhou. Overall, different levels of plastic mulch residue exerted varying degrees of influence on the community composition and diversity of soil fungi associated with cotton, potentially reducing the fungal richness and altering the community structure with increasing residue levels. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop