Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = seagrass spices mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6303 KiB  
Article
Semiautomated Mapping of Benthic Habitats and Seagrass Species Using a Convolutional Neural Network Framework in Shallow Water Environments
by Hassan Mohamed, Kazuo Nadaoka and Takashi Nakamura
Remote Sens. 2020, 12(23), 4002; https://doi.org/10.3390/rs12234002 - 7 Dec 2020
Cited by 11 | Viewed by 3564
Abstract
Benthic habitats are structurally complex and ecologically diverse ecosystems that are severely vulnerable to human stressors. Consequently, marine habitats must be mapped and monitored to provide the information necessary to understand ecological processes and lead management actions. In this study, we propose a [...] Read more.
Benthic habitats are structurally complex and ecologically diverse ecosystems that are severely vulnerable to human stressors. Consequently, marine habitats must be mapped and monitored to provide the information necessary to understand ecological processes and lead management actions. In this study, we propose a semiautomated framework for the detection and mapping of benthic habitats and seagrass species using convolutional neural networks (CNNs). Benthic habitat field data from a geo-located towed camera and high-resolution satellite images were integrated to evaluate the proposed framework. Features extracted from pre-trained CNNs and a “bagging of features” (BOF) algorithm was used for benthic habitat and seagrass species detection. Furthermore, the resultant correctly detected images were used as ground truth samples for training and validating CNNs with simple architectures. These CNNs were evaluated for their accuracy in benthic habitat and seagrass species mapping using high-resolution satellite images. Two study areas, Shiraho and Fukido (located on Ishigaki Island, Japan), were used to evaluate the proposed model because seven benthic habitats were classified in the Shiraho area and four seagrass species were mapped in Fukido cove. Analysis showed that the overall accuracy of benthic habitat detection in Shiraho and seagrass species detection in Fukido was 91.5% (7 classes) and 90.4% (4 species), respectively, while the overall accuracy of benthic habitat and seagrass mapping in Shiraho and Fukido was 89.9% and 91.2%, respectively. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

Back to TopTop