Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = seamless pipe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2390 KiB  
Article
Continuous Recognition of Teachers’ Hand Signals for Students with Attention Deficits
by Ivane Delos Santos Chen, Chieh-Ming Yang, Shang-Shu Wu, Chih-Kang Yang, Mei-Juan Chen, Chia-Hung Yeh and Yuan-Hong Lin
Algorithms 2024, 17(7), 300; https://doi.org/10.3390/a17070300 - 7 Jul 2024
Viewed by 530
Abstract
In the era of inclusive education, students with attention deficits are integrated into the general classroom. To ensure a seamless transition of students’ focus towards the teacher’s instruction throughout the course and to align with the teaching pace, this paper proposes a continuous [...] Read more.
In the era of inclusive education, students with attention deficits are integrated into the general classroom. To ensure a seamless transition of students’ focus towards the teacher’s instruction throughout the course and to align with the teaching pace, this paper proposes a continuous recognition algorithm for capturing teachers’ dynamic gesture signals. This algorithm aims to offer instructional attention cues for students with attention deficits. According to the body landmarks of the teacher’s skeleton by using vision and machine learning-based MediaPipe BlazePose, the proposed method uses simple rules to detect the teacher’s hand signals dynamically and provides three kinds of attention cues (Pointing to left, Pointing to right, and Non-pointing) during the class. Experimental results show the average accuracy, sensitivity, specificity, precision, and F1 score achieved 88.31%, 91.03%, 93.99%, 86.32%, and 88.03%, respectively. By analyzing non-verbal behavior, our method of competent performance can replace verbal reminders from the teacher and be helpful for students with attention deficits in inclusive education. Full article
(This article belongs to the Special Issue Algorithms for Image Processing and Machine Vision)
Show Figures

Figure 1

23 pages, 22994 KiB  
Article
Bond Performance of Seamless Steel Pipe Grouting Sleeves under Large-Deformation Repeated Tension and Compression after High Temperature
by Jun Zhao, Changji Wei, Jing Chen, Bin Ma and Weiwei Xiao
Buildings 2024, 14(4), 1136; https://doi.org/10.3390/buildings14041136 - 18 Apr 2024
Cited by 1 | Viewed by 622
Abstract
Grouting sleeves are widely used in the field of assembled construction. The present study aims to investigate the reliability of grouting sleeves under large-deformation repeated tension and compression after high temperature, considering the influences of steel bar diameter, the cooling method, and the [...] Read more.
Grouting sleeves are widely used in the field of assembled construction. The present study aims to investigate the reliability of grouting sleeves under large-deformation repeated tension and compression after high temperature, considering the influences of steel bar diameter, the cooling method, and the protective layer. Through experimentation on 28 test pieces, we analyzed the bonding performance of the test pieces at different high temperatures. The results indicate that within the temperature range of 20–800 °C, the bond performance of the test pieces declines by no more than 9.8%. However, upon reaching a temperature of 1000 °C, the bond performance of the test pieces decreases by over 33.7%, with the compressive strength of the grout material reduced to only 27.50% of that kept at 20 °C. Employing larger-diameter steel bars is advantageous for maintaining the bond performance of the test pieces. Natural cooling shows relatively good bond performance, although its influence is not significant. Furthermore, the protective layer effectively attenuates the heating rate of the test pieces, thus safeguarding their bond performance. Scanning electron microscopy (SEM) analysis reveals that the decomposition of C-H and C-S-H phases is the primary cause of high-temperature degradation of the grouting material. Finally, a recommendation for the correlation coefficient (k) between the average bond strength and the compressive strength of the grout material is proposed, with a suggested value of k ≤ 2.58. Full article
(This article belongs to the Topic Building a Sustainable Construction Workforce)
Show Figures

Figure 1

15 pages, 7104 KiB  
Article
Mechanical Characterization of Resistance-Welded and Seamless API 5L X52 Pipes: A Comparative Study
by Gerardo Terán Méndez, Selene Irais Capula-Colindres, Julio César Velázquez, Daniel Angeles-Herrera, Noé Eliseo González-Arévalo, Esther Torres-Santillan and Arturo Cervantes-Tobón
Coatings 2024, 14(3), 343; https://doi.org/10.3390/coatings14030343 - 13 Mar 2024
Viewed by 1117
Abstract
It is well known that the mechanical properties of a steel plate depend on the anisotropy of the material and the rolling directions. This paper presents the results of the Charpy V-Notch (CVN) impact test for the ST, TL, TS, LS, LT, 45°, [...] Read more.
It is well known that the mechanical properties of a steel plate depend on the anisotropy of the material and the rolling directions. This paper presents the results of the Charpy V-Notch (CVN) impact test for the ST, TL, TS, LS, LT, 45°, and SL directions in API 5L X52 pipelines with electric-resistance-welded (ERW) and seamless (SMLS) pipes. Charpy specimens were manufactured and tested according to the ASTM E23 standard in laboratory conditions. All possible directions in the pipe were tested. Three Charpy specimens were tested for each direction, for a total of 21 Charpy tests. Moreover, the microstructures, hardness, ductile and brittle areas, and fracture surfaces of the Charpy specimens are presented in this research. The results show that the Charpy energy values, hardness, and microstructures depend on the direction of the specimens. The Charpy values of the SMLS pipe are higher than those of the ERW pipe because of several metallurgical factors, such as grain size, non-metallic inclusions, delaminations, and microstructures. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

25 pages, 17661 KiB  
Article
Microstructural and Mechanical Analysis of Seamless Pipes Made of Superaustenitic Stainless Steel Using Cross-Roll Piercing and Elongation
by Alberto Murillo-Marrodán, Yury Gamin, Liudmila Kaputkina, Eduardo García, Alexander Aleshchenko, Hamed Aghajani Derazkola, Alexey Pashkov and Evgeniy Belokon
J. Manuf. Mater. Process. 2023, 7(5), 185; https://doi.org/10.3390/jmmp7050185 - 14 Oct 2023
Cited by 1 | Viewed by 2236
Abstract
The cross-roll piercing and elongation (CPE) is a forming process performed at high temperatures and high strain rates. The final product quality is strongly dependent on its microstructure. In this study, a finite element method (FEM) model was developed to better understand plastic [...] Read more.
The cross-roll piercing and elongation (CPE) is a forming process performed at high temperatures and high strain rates. The final product quality is strongly dependent on its microstructure. In this study, a finite element method (FEM) model was developed to better understand plastic deformation effects on microstructure during CPE and to analyze alternative thermo-mechanical processing routes. Specific models were used to simulate dynamic and meta-dynamic recrystallization (DRX and MDRX) for the processing of superaustenitic stainless steel (SASS). In addition, the CPE of SASS was investigated experimentally. The microstructure, mechanical properties, and chemical changes of the final product were assessed using optical microscopy, hardness testing, X-ray diffraction, and SEM-EDS. The results revealed higher temperatures and strain rates in the exterior area of the shell after piercing, and MDRX occurred in the whole thickness. However, an average grain size reduction of 13.9% occurred only in the shell middle and inner diameters. During elongation, the highest values of the strain rate and DRX were observed in the inner region, exhibiting a grain size reduction of 38%. Spread in terms of grain size and grain shape anisotropy was found to be less accentuated for tube samples as compared to the pierced shells. Full article
(This article belongs to the Special Issue Advances in Material Forming)
Show Figures

Figure 1

19 pages, 16897 KiB  
Article
Cold Drawing of AISI 321 Stainless Steel Thin-Walled Seamless Tubes on a Floating Plug
by Krzysztof Żaba and Tomasz Trzepieciński
Materials 2023, 16(16), 5684; https://doi.org/10.3390/ma16165684 - 18 Aug 2023
Viewed by 1035
Abstract
The paper presents the results of an analysis of the process of drawing AISI 321 stainless steel thin-walled seamless tubes on a floating plug. The influence of the geometry of dies and plugs, drawing velocity, and lubricants on the possibility of carrying out [...] Read more.
The paper presents the results of an analysis of the process of drawing AISI 321 stainless steel thin-walled seamless tubes on a floating plug. The influence of the geometry of dies and plugs, drawing velocity, and lubricants on the possibility of carrying out the pipe drawing process without a loss of strength of the lubricating film and, consequently, disturbance of the forming process and tube cracking, and also on the temperature in the drawing process, the mechanical properties of the tubes drawn, and the microhardness and roughness of the inner and outer surface of the tubes was investigated. The parameters of the drawing tools used were as follows: angle of drawing dies α = 16° and floating plugs with angles of inclination of the conical part of the plug β = 11.5°, 13°, and 14°. The drawing dies and floating plugs were made of G10 sintered carbide. Drawing speed was varied over the range 1 to 10 m/min. The study used several lubricants. Tubes with dimensions (outer diameter D0, wall thickness g0 before drawing process) D0 = 19 mm, g0 = 1.2 mm and D0 = 18 mm, g0 = 1.2 mm were drawn to produce tubes with dimensions (outer diameter Dk, wall thickness gk after drawing process) Dk = 16 mm, gk = 1.06 mm on a drawbench with the same total elongation, while the diameter and wall thickness were changed. During the process, continuous measurements were made of the drawing force and temperature in the deformation zone and on the tube surface. It was found that the drawing process causes a decrease in the roughness parameters Ra and Rz of the inner surface of the tubes. Moreover, after drawing, an increase of 30–70% was observed in the microhardness of the tube material in relation to the microhardness of the charge material. Based on the test results, it can be concluded that the work of frictional forces is the main direction of optimization of tube drawing on a floating plug process of hard-deforming materials. Full article
Show Figures

Figure 1

14 pages, 1496 KiB  
Article
MIRACUM-Pipe: An Adaptable Pipeline for Next-Generation Sequencing Analysis, Reporting, and Visualization for Clinical Decision Making
by Patrick Metzger, Maria Elena Hess, Andreas Blaumeiser, Thomas Pauli, Vincent Schipperges, Ralf Mertes, Jan Christoph, Philipp Unberath, Niklas Reimer, Raphael Scheible, Anna L. Illert, Hauke Busch, Geoffroy Andrieux and Melanie Boerries
Cancers 2023, 15(13), 3456; https://doi.org/10.3390/cancers15133456 - 1 Jul 2023
Cited by 8 | Viewed by 2522
Abstract
(1) Background: Next-generation sequencing (NGS) of patients with advanced tumors is becoming an established method in Molecular Tumor Boards. However, somatic variant detection, interpretation, and report generation, require in-depth knowledge of both bioinformatics and oncology. (2) Methods: MIRACUM-Pipe combines many individual tools into [...] Read more.
(1) Background: Next-generation sequencing (NGS) of patients with advanced tumors is becoming an established method in Molecular Tumor Boards. However, somatic variant detection, interpretation, and report generation, require in-depth knowledge of both bioinformatics and oncology. (2) Methods: MIRACUM-Pipe combines many individual tools into a seamless workflow for comprehensive analyses and annotation of NGS data including quality control, alignment, variant calling, copy number variation estimation, evaluation of complex biomarkers, and RNA fusion detection. (3) Results: MIRACUM-Pipe offers an easy-to-use, one-prompt standardized solution to analyze NGS data, including quality control, variant calling, copy number estimation, annotation, visualization, and report generation. (4) Conclusions: MIRACUM-Pipe, a versatile pipeline for NGS, can be customized according to bioinformatics and clinical needs and to support clinical decision-making with visual processing and interactive reporting. Full article
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
New Analytical Model for Determining the Roll Pitch Diameter in Three-Roll Continuous Retained Mandrel Rolling
by Zhaohui Wei and Chunjing Wu
Metals 2023, 13(2), 304; https://doi.org/10.3390/met13020304 - 2 Feb 2023
Viewed by 1381
Abstract
The continuous tube-rolling method has been widely used to manufacture high-quality seamless pipes and tubes. However, the analytical model for determining the roll pitch diameter in three-roll continuous retained mandrel rolling from first principles has not yet been presented, which has, thus, hindered [...] Read more.
The continuous tube-rolling method has been widely used to manufacture high-quality seamless pipes and tubes. However, the analytical model for determining the roll pitch diameter in three-roll continuous retained mandrel rolling from first principles has not yet been presented, which has, thus, hindered the development of rolling control technology in tube manufacturing. In this work, a new analytical model has been established from the force–equilibrium principles. The modelling has taken the tube-roll contact geometry, roll pressure, mandrel pull forces, inter-stand tensions, and friction coefficients into account for its formulations. Seen from the experimental results of the rolling at the plant, the maximum deviation of the predicted projected contact area is less than 6% and the maximum deviation of the calculated roll speed from the satisfactory data in field operation is less than 3.9%. The proposed model has enabled the influence of the friction coefficients on the roll pitch diameter to be quantified in theoretical analysis, and it was found that the changing amplitude of the theoretical roll pitch diameter corresponding to the commonly used data range of the friction coefficients can be above 9%. Having overcome the shortcomings of the empirical model, this model has the required prediction accuracy and flexibility for being applied to flexible tube rolling. By building the key algorithms around physical models, this modelling has advanced not only the rolling control at the plant, but also our scientific understanding of the mechanics of the continuous tube-rolling process. Full article
(This article belongs to the Special Issue Rolling Process of Metallic Materials)
Show Figures

Graphical abstract

14 pages, 5753 KiB  
Article
Preparation of High-Precision Dimension Seamless Thick-Walled Pipe by New Cold Rolling Process
by Ran Li, Xuewei Zhang, Cheng Zhang, Jiaming Wang and Jinfeng Huang
Metals 2022, 12(10), 1761; https://doi.org/10.3390/met12101761 - 19 Oct 2022
Cited by 1 | Viewed by 1540
Abstract
In this study, the cold rolling test on the quenched-tempered hot working die steel pipe with an outer diameter/thickness ratio of no greater than 3 was performed. The evolutionary trend of microstructure was examined by a combination of the microscope, SEM, and EBSD [...] Read more.
In this study, the cold rolling test on the quenched-tempered hot working die steel pipe with an outer diameter/thickness ratio of no greater than 3 was performed. The evolutionary trend of microstructure was examined by a combination of the microscope, SEM, and EBSD tests. The effect of feed rate on the inner wall roughness of rolled pipe was analyzed by means of white light interference. According to the experimental results, the maximum normal pressure per unit area increases from 1046.7 MPa to 1113.2 MPa with the rise in feed rate from 1 mm/stroke to 6 mm/stroke. Meanwhile, the inner wall roughness of the pipe declines from 0.285 μm to 0.146 μm after rolling. When the feed rate reaches 2 mm/stroke, the maximum normal pressure per unit area is 1058.4 MPa, which causes a significant plastic deformation to the inner wall of the pipe, and the average roughness below 0.2 μm. The microstructure of the pipe is dominated by tempered sorbite whether before or after rolling, and the grain size before rolling is 16.22 μm on average. After cold rolling, the longitudinal structure is deformed along the direction of rolling, in which the average grain size is 24.31 μm. With the increase in deformation work-hardening behavior in the rolling process, the tensile strength improves from 1134 MPa to 1178 MPa, the yield strength increases from 985 MPa to 1125 MPa, and the room temperature impact energy diminishes from 58 J to 52.5 J. After vacuum tempering at 600 °C, it is difficult to eliminate the deformed band microstructure along the rolling direction completely. However, the grain size is reduced after cold rolling, no coarsening occurs, and the impact toughness increases from 52.5 J to 60.5 J. With the recovery of the original microstructure, the mechanical properties are restored to the before rolling level. Full article
Show Figures

Figure 1

11 pages, 2213 KiB  
Article
Experimental Evaluation of Hoop Stress–Strain State of 3D-Printed Pipe Ring Tensile Specimens
by Milan Travica, Nenad Mitrovic, Aleksandar Petrovic, Isaak Trajkovic, Milos Milosevic, Aleksandar Sedmak and Filippo Berto
Metals 2022, 12(10), 1560; https://doi.org/10.3390/met12101560 - 21 Sep 2022
Cited by 9 | Viewed by 2157
Abstract
Data on the strain and stress status of the pipe in the circumferential direction are required for various pipe manufacturing procedures (e.g., in the oil business, the process of manufacturing seamless pipes with a conical shaft). The aim of this study is to [...] Read more.
Data on the strain and stress status of the pipe in the circumferential direction are required for various pipe manufacturing procedures (e.g., in the oil business, the process of manufacturing seamless pipes with a conical shaft). The aim of this study is to develop a procedure to determine the strain and stress behavior of Pipe Ring Tensile Specimens (PRTSs) in the hoop direction, as there are a lack of official standardized methods for testing PRTS. This paper discusses the application of the Digital Image Correlation method for testing plastic PRTSs. PRTSs are tested using a specially designed steel tool with two D blocks. A 3D-printed PRTS is placed over two D-shaped mandrels, which are fixed on a tensile tool and tensile testing machine. The strain evolution in the gage length of the specimens is captured using the three-dimensional Digital Image Correlation (3D DIC) method. To check the geometry of the cross-section of the PRTS after fracture, all the specimens are 3D scanned. For the study, six groups of PRTS are analyzed, consisting of three filling percentages (60, 90, and 100%) and two geometry types (Single and Double PRTS). The results show that the type and percentage of filling, as well as the method of printing, affect the material behavior. However, the approach with the DIC system, 3D printer, and scanner shows that they are effective instruments for mapping complete strain fields in PRTS, and thus are effective in characterizing the mechanical properties of pipes. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

12 pages, 3573 KiB  
Article
A New Correction Theory and Verification on the Reducing Rate Distribution for Seamless Tube Stretch-Reducing Process
by Jianhua Hu, Sheng Yang, Yulong Huang, Xiaohua Wang and Jianxun Chen
Crystals 2022, 12(9), 1296; https://doi.org/10.3390/cryst12091296 - 14 Sep 2022
Cited by 1 | Viewed by 1848
Abstract
The reducing rate distribution is critical for the quality and precision of the final pipe during the process of stretch-reducing of the seamless pipe. The inhomogeneous deformation of the pipe may occur if the reducing rate distribution is improper. This paper analyzed the [...] Read more.
The reducing rate distribution is critical for the quality and precision of the final pipe during the process of stretch-reducing of the seamless pipe. The inhomogeneous deformation of the pipe may occur if the reducing rate distribution is improper. This paper analyzed the trend of the reducing rate distribution in terms of metal flow and put forward a “three-point and two-section converged” correction theory based on relevant research. In order to verify the theory, the finite element model is established according to the results obtained from the modified model. The simulation is accomplished successfully, and the cross-section of the pipe is evenly reduced with the longitudinal metal flowing uniformly. The result from the experiment is consistent with that from the simulation, which shows the rationality of this theory, providing a new method for the reduction rate allocation. Full article
(This article belongs to the Special Issue Structural Changes during Steel Processing)
Show Figures

Figure 1

18 pages, 5315 KiB  
Article
Effect of Tempering Treatment on Microstructural Evolution and Mechanical Behavior of Heavy-Wall Heat Induction Seamless Bend Pipe
by Juntai Hu, Yu Liu, Ge Wang, Qiang Li, Jianyang Wen, Lijun Yan, Shibo Chen and Yunlong Gu
Materials 2022, 15(1), 259; https://doi.org/10.3390/ma15010259 - 30 Dec 2021
Cited by 2 | Viewed by 1715
Abstract
In this paper, the microstructure and mechanical properties of heavy-wall seamless bend pipe after quenching at different tempering temperatures, including 550 °C, 600 °C, 650 °C, and 700 °C, were studied. Microstructure and dislocations observations were characterized by means of an optical microscope, [...] Read more.
In this paper, the microstructure and mechanical properties of heavy-wall seamless bend pipe after quenching at different tempering temperatures, including 550 °C, 600 °C, 650 °C, and 700 °C, were studied. Microstructure and dislocations observations were characterized by means of an optical microscope, a scanning electron microscope, a transmission electron microscope, and X-ray diffraction. As the tempering temperature increases, the dislocation density in the test steel gradually decreases, and the precipitation behavior of (Nb, V)(C, N) increases. The sample tempered at 650 °C exhibits a granular bainite structure with a dislocation cell structure and a large number of smaller precipitates. The yield platforms of tempered samples at 650 °C and 700 °C are attributed to the pinning effect of the Cottrell atmosphere on dislocations. The sample tempered at 650 °C not only presents the highest strength, but also the highest uniform elongation, which is attributed to the higher strain-hardening rate and instantaneous work-hardening index. This is closely related to the multiplication of dislocations, the interaction between dislocations and dislocations, and the interaction between dislocations and precipitates during plastic deformation of the 650 °C-tempered samples with low dislocation density, which delays the occurrence of necking. Full article
Show Figures

Figure 1

16 pages, 9626 KiB  
Article
Profile Design of the Grooved Die and Rolling Force Prediction in the Cold Pilger Rolling Process
by Sang-Kon Lee and Kyung-Hun Lee
Appl. Sci. 2021, 11(23), 11265; https://doi.org/10.3390/app112311265 - 27 Nov 2021
Cited by 4 | Viewed by 4370
Abstract
The objective of this study was to design the die groove profile and predict the rolling force produced when employing the variable curvature rolls and mandrel for manufacturing seamless pipes using the cold pilger rolling process. The parameters of the key process design [...] Read more.
The objective of this study was to design the die groove profile and predict the rolling force produced when employing the variable curvature rolls and mandrel for manufacturing seamless pipes using the cold pilger rolling process. The parameters of the key process design were the diameter of the initial tube and final product, as well as the feed amount, reduction area, principal deformation zone, and roller radius. The rolling forces during the pilger rolling process were theoretically calculated to enable their prediction, and the characteristics of the cold pilger rolling process were identified. The calculated values were in close agreement with the experimental data. The die groove design is important in the prediction process because the dimensional accuracy of the tubes and the life of the dies are highly dependent on this design. The presented design method can be successfully applied to fulfill this objective. The tube shape and adequate tolerance can be attained by using the proposed design method. The mechanical properties of the pipe are evaluated by calculating the Q factor. Full article
Show Figures

Figure 1

14 pages, 5186 KiB  
Article
On the Weldability of Thick P355NL1 Pressure Vessel Steel Plates Using Laser Welding
by Jiří Čapek, Karel Trojan, Jan Kec, Ivo Černý, Nikolaj Ganev and Stanislav Němeček
Materials 2021, 14(1), 131; https://doi.org/10.3390/ma14010131 - 30 Dec 2020
Cited by 10 | Viewed by 2409
Abstract
Pipeline transport uses millions of kilometers of pipes worldwide to transport liquid or gas over long distances to the point of consumption. High demands are placed, especially on the transport of hazardous substances under high pressure (gas, oil, etc.). Mostly seamless steel pipes [...] Read more.
Pipeline transport uses millions of kilometers of pipes worldwide to transport liquid or gas over long distances to the point of consumption. High demands are placed, especially on the transport of hazardous substances under high pressure (gas, oil, etc.). Mostly seamless steel pipes of various diameters are used, but their production is expensive. The use of laser-welded pipes could significantly reduce the cost of building new pipelines. However, sufficient mechanical properties need to be ensured for welded pipes to meet stringent requirements. Therefore, laser-welded 10 mm thick pressure vessel steel plates were subjected to various mechanical tests, including high-cycle fatigue tests. Furthermore, the microstructural parameters and the state of residual stresses were determined using X-ray and neutron diffraction, which could affect fatigue life, too. The critical areas for possible crack initialization, especially in and near the heat-affected zone, were found using different tests. The presented results outline the promising application potential of laser welding for the production of pipes for high-pressure pipelines. Full article
(This article belongs to the Special Issue Selected Papers from Experimental Stress Analysis 2020)
Show Figures

Figure 1

24 pages, 12335 KiB  
Article
A Useful Manufacturing Guide for Rotary Piercing Seamless Pipe by ALE Method
by Ameen Topa, Burak Can Cerik and Do Kyun Kim
J. Mar. Sci. Eng. 2020, 8(10), 756; https://doi.org/10.3390/jmse8100756 - 27 Sep 2020
Cited by 8 | Viewed by 6767
Abstract
The development of numerical simulations is potentially useful in predicting the most suitable manufacturing processes and ultimately improving product quality. Seamless pipes are manufactured by a rotary piercing process in which round billets (workpiece) are fed between two rolls and pierced by a [...] Read more.
The development of numerical simulations is potentially useful in predicting the most suitable manufacturing processes and ultimately improving product quality. Seamless pipes are manufactured by a rotary piercing process in which round billets (workpiece) are fed between two rolls and pierced by a stationary plug. During this process, the material undergoes severe deformation which renders it impractical to be modelled and analysed with conventional finite element methods. In this paper, three-dimensional numerical simulations of the piercing process are performed with an arbitrary Lagrangian–Eulerian (ALE) formulation in LS-DYNA software. Details about the material model as well as the elements’ formulations are elaborated here, and mesh sensitivity analysis was performed. The results of the numerical simulations are in good agreement with experimental data found in the literature and the validity of the analysis method is confirmed. The effects of varying workpiece velocity, process temperature, and wall thickness on the maximum stress levels of the product material/pipes are investigated by performing simulations of sixty scenarios. Three-dimensional surface plots are generated which can be utilized to predict the maximum stress value at any given combination of the three parameters. Full article
(This article belongs to the Special Issue Accidental Limit States of Marine Structures)
Show Figures

Graphical abstract

13 pages, 12147 KiB  
Article
Facile Fabrication of Highly Perforated Hollow Metallic Cylinder with Changeable Micro-Orifices by Electroforming-Extrusion Molding Hybrid Process
by Junzhong Zhang, Pingmei Ming, Xinmin Zhang, Ge Qin, Liang Yan, Xiaokang Zhao and Xingshuai Zheng
Micromachines 2020, 11(1), 70; https://doi.org/10.3390/mi11010070 - 9 Jan 2020
Cited by 3 | Viewed by 3104
Abstract
A seamless thin-walled hollow metallic cylinder with array of micro-perforations is one of the key components for some products. Normally, these micro-perforations are formed by removing material from the given metallic hollow cylinder (pipe or tube) one by one or row by row. [...] Read more.
A seamless thin-walled hollow metallic cylinder with array of micro-perforations is one of the key components for some products. Normally, these micro-perforations are formed by removing material from the given metallic hollow cylinder (pipe or tube) one by one or row by row. To efficiently and flexibly manufacture such a highly perforated hollow cylinder, this paper proposed a hybrid technique combining extrusion moulding process and electroforming process. In the hybrid technique, the extrusion moulding process was used to create polymer extrusion patterns on the outside surface of the given stainless steel (SS) pipe, and then the electroforming process was carried out using the SS pipe as the mandrel. The formation of the polymer extrusion patterns was simulated and extruding molding experiments were carried out to examine the feasibility of the various mandrels. Electroforming experiments were implemented to verify the achievement of the seamless perforated thin-walled hollow cylinder. It was found that five different types of polymer extrusion pattern were able to be obtained on the same extruding pipe just by adjusting some extruding conditions and parameters, and correspondingly four types of perforated hollow cylinder with different tapered orifices are produced after the electroforming process. The obtainable perforations are: perforation with double conic-orifices, perforation with hemispheric orifice and conic orifice, unidirectionally tapered perforation, and straight-walled perforation. The geometric profile of the extrusion patterns is highly dependent on the processing conditions and parameters. The proposed hybrid process represents a promising alternative process to fabricate seamless thin-walled perforated hollow metallic cylinder efficiently, flexibly, and with low cost. Full article
Show Figures

Figure 1

Back to TopTop