Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,325)

Search Parameters:
Keywords = seasonal cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 8700 KiB  
Article
A Sensor Probe with Active and Passive Humidity Management for In Situ Soil CO2 Monitoring
by Jacob F. Anderson, David P. Huber and Owen A. Walsh
Sensors 2024, 24(18), 6034; https://doi.org/10.3390/s24186034 (registering DOI) - 18 Sep 2024
Abstract
Soil CO2 concentration and flux measurements are important in diverse fields, including geoscience, climate science, soil ecology, and agriculture. However, practitioners in these fields face difficulties with existing soil CO2 gas probes, which have had problems with high costs and frequent [...] Read more.
Soil CO2 concentration and flux measurements are important in diverse fields, including geoscience, climate science, soil ecology, and agriculture. However, practitioners in these fields face difficulties with existing soil CO2 gas probes, which have had problems with high costs and frequent failures when deployed. Confronted with a recent research project’s need for long-term in-soil CO2 monitoring at a large number of sites in harsh environmental conditions, we developed our own CO2 logging system to reduce expense and avoid the expected failures of commercial instruments. Our newly developed soil probes overcome the central challenge of soil gas probes—surviving continuous exposure to soil moisture while remaining open to soil gases—via three approaches: a 3D printed housing (economical for small-scale production) following design principles that correct the usual water permeability flaw of 3D printed materials; passive moisture protection via a hydrophobic, CO2-permeable PTFE membrane; and active moisture protection via a low-power micro-dehumidifier. Our CO2 instrumentation performed well and yielded a high-quality dataset that includes signals related to a prescribed fire as well as seasonal and diel cycles. We expect our technology to support underground CO2 monitoring in fields where it is already practiced and stimulate its expansion into diverse new fields. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

16 pages, 1946 KiB  
Article
Botanical Bioflavonoid Composition from Scutellaria baicalensis- and Acacia catechu-Protected Mice against D-Galactose-Induced Immunosenescence, and Cyclophosphamide Induced Immune Suppression
by Mesfin Yimam, Teresa Horm, Alexandria O’Neal, Paola Chua, Ping Jiao, Mei Hong and Qi Jia
Nutrients 2024, 16(18), 3144; https://doi.org/10.3390/nu16183144 (registering DOI) - 18 Sep 2024
Abstract
Oxidative stress and chronic inflammation create a perpetual cycle in the elderly, where impaired immune function amplifies susceptibility to oxidative damage, and oxidative stress further weakens the immune response. This cycle is particularly detrimental to the respiratory system of the elderly, which is [...] Read more.
Oxidative stress and chronic inflammation create a perpetual cycle in the elderly, where impaired immune function amplifies susceptibility to oxidative damage, and oxidative stress further weakens the immune response. This cycle is particularly detrimental to the respiratory system of the elderly, which is an easy target for constant exogenous harmful attacks during cold/flu season or under heavy air pollution. Herbal medicines that protect respiratory function are seen as safer alternatives to conventional therapies; however, there is limited availability of scientifically validated, safe, and effective natural supplements for these conditions. In this study, we evaluated a standardized bioflavonoid composition, UP446, that contains bioactives from the roots of Scutellaria baicalensis and the heartwoods of Acacia catechu as a natural and nutritional supplement for its antioxidative and immunoregulatory effects in oxidative stress-accelerated aging and chemically induced immune suppression mouse models. Immunosenescence was induced through the repeated subcutaneous inoculation of D-galactose (D-Gal) at a dose of 500 mg/kg/day in CD-1 mice. UP446 was administered orally at doses of 100 mg/kg and 200 mg/kg starting in the fifth week of immunosenescence induction. This study lasted a total of ten weeks. All mice received a quadrivalent influenza vaccine 2 weeks before termination. Whole blood, serum, spleen homogenate, and thymus tissues were processed for analysis. Cyclophosphamide (Cy)-induced immunosuppression was triggered by three consecutive injections of cyclophosphamide at 80 mg/kg/day, followed by the oral administration of UP446 for 18 days at doses of 100 mg/kg and 200 mg/kg. Blood was collected from each animal at necropsy, and serum was isolated for IgA and IgG ELISA analysis. UP446 was found to improve immune response, as evidenced by the stimulation of innate (NK cells) and adaptive immune responses (T cells and cytotoxic T cells), an increase in antioxidant capacity (glutathione peroxidase), the preservation of vital immune organs (the thymus), and a reduction in NFκB. UP446 also increased serum levels of IgA and IgG. The findings presented in this report demonstrate the antioxidative, anti-inflammatory, and immune-regulatory activities of UP446, suggesting its potential use in respiratory conditions involving immune stress due to aging, oxidative stress, and/or pathogenic challenges. Full article
Show Figures

Figure 1

20 pages, 7101 KiB  
Article
Tracking Evapotranspiration Patterns on the Yinchuan Plain with Multispectral Remote Sensing
by Junzhen Meng, Xiaoquan Yang, Zhiping Li, Guizhang Zhao, Peipei He, Yabing Xuan and Yunfei Wang
Sustainability 2024, 16(18), 8025; https://doi.org/10.3390/su16188025 - 13 Sep 2024
Viewed by 451
Abstract
Evapotranspiration (ET) is a critical component of the hydrological cycle, and it has a decisive impact on the ecosystem balance in arid and semi-arid regions. The Yinchuan Plain, located in the Gobi of Northwest China, has a strong surface ET, which has a [...] Read more.
Evapotranspiration (ET) is a critical component of the hydrological cycle, and it has a decisive impact on the ecosystem balance in arid and semi-arid regions. The Yinchuan Plain, located in the Gobi of Northwest China, has a strong surface ET, which has a significant impact on the regional water resource cycle. However, there is a current lack of high-resolution evapotranspiration datasets and a substantial amount of time is required for long-time series remote sensing evapotranspiration estimation. In order to assess the ET pattern in this region, we obtained the actual ET (ETa) of the Yinchuan Plain between 1987 and 2020 using the Google Earth Engine (GEE) platform. Specifically, we used Landsat TM+/OLI remote sensing imagery and the GEE Surface Energy Balance Model (geeSEBAL) to analyze the spatial distribution pattern of ET over different seasons. We then reproduced the interannual variation in ET from 1987 to 2020, and statistically analyzed the distribution patterns and contributions of ET with regard to different land use types. The results show that (1) the daily ETa of the Yinchuan Plain is the highest in the central lake wetland area in spring, with a maximum value of 4.32 mm day−1; in summer, it is concentrated around the croplands and water bodies, with a maximum value of 6.90 mm day−1; in autumn and winter, it is mainly concentrated around the water bodies and impervious areas, with maximum values of 3.93 and 1.56 mm day−1, respectively. (2) From 1987 to 2020, the ET of the Yinchuan Plain showed an obvious upward and downward trend in some areas with significant land use changes, but the overall ET of the region remained relatively stable without dramatic fluctuations. (3) The ETa values for different land use types in the Yinchuan Plain region are ranked as follows: water body > cultivated land > impervious > grassland > bare land. Our results showed that geeSEBAL is highly applicable in the Yinchuan Plain area. It allows for the accurate and detailed inversion of ET and has great potential for evaluating long-term ET in data-scarce areas due to its low meteorological sensitivity, which facilitates the study of the regional hydrological cycle and water governance. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 8197 KiB  
Article
Seasonal Phase Relationships between Sea Surface Salinity, Surface Freshwater Forcing, and Ocean Surface Processes
by Frederick M. Bingham and Susannah Brodnitz
J. Mar. Sci. Eng. 2024, 12(9), 1639; https://doi.org/10.3390/jmse12091639 - 13 Sep 2024
Viewed by 307
Abstract
Sea surface salinity (SSS) can change as a result of surface freshwater forcing (FWF) or internal ocean processes such as upwelling or advection. SSS should follow FWF by ¼ cycle, or 3 months, if FWF is the primary process controlling it at the [...] Read more.
Sea surface salinity (SSS) can change as a result of surface freshwater forcing (FWF) or internal ocean processes such as upwelling or advection. SSS should follow FWF by ¼ cycle, or 3 months, if FWF is the primary process controlling it at the seasonal scale. In this paper, we compare the phase relationship between SSS and FWF (i.e., evaporation minus precipitation over mixed layer depth) over the global (non-Arctic) ocean using in situ SSS and satellite evaporation and precipitation. We found that, instead of the expected 3-month delay between SSS and FWF, the delay is mostly closer to 1–2 months, with SSS peaking too soon relative to FWF. We then computed monthly vertical entrainment and horizontal advection terms of the upper ocean salinity balance equation and added their contributions to the phase of the FWF. The addition of these processes to the seasonal upper ocean salinity balance leads to the phase difference between SSS and the forcing processes being closer to the expected value. We conducted a similar computation with the amplitude of the seasonal SSS and the forcing terms, with less definitive results. The results of this study highlight the important role that ocean processes play in the global freshwater cycle at the seasonal scale. Full article
Show Figures

Figure 1

14 pages, 487 KiB  
Article
Determinants of Households’ Resilience to Covariate Shocks: Empirical Evidence and Policy Implications from the Kenyan Fisheries and Aquaculture Sectors
by Silas Ochieng, Erick Ogello, Kevin Obiero and Maureen Cheserek
Aquac. J. 2024, 4(3), 203-216; https://doi.org/10.3390/aquacj4030015 - 13 Sep 2024
Viewed by 198
Abstract
This paper analyzes the factors influencing households’ resilience capacities to shocks within Kenya’s fisheries and aquaculture sectors and draws from primary data collected from 419 fish-dependent households across Kisumu, Busia, Mombasa, and Kilifi counties. The sample represents a total of 48,000 fishing households. [...] Read more.
This paper analyzes the factors influencing households’ resilience capacities to shocks within Kenya’s fisheries and aquaculture sectors and draws from primary data collected from 419 fish-dependent households across Kisumu, Busia, Mombasa, and Kilifi counties. The sample represents a total of 48,000 fishing households. The study adopted a quasi-longitudinal design and computed the household resilience capacity index (RCI) using the resilience index measurement and analysis (RIMA-II) model. The results indicate that male-headed households’ mean household RCI scores (mean = 45.07 ± 10.43) were statistically significant to that of female-headed households (mean = 38.15 ± 9.25), suggesting that female-headed households are associated with lower resilience capacities than male-headed households. Moreover, the study identifies differences in resilience levels across various occupations within the sector. For instance, RCI scores among fish traders (mean = 40.71 ± 9.97), a function performed mainly by women, statistically differed (p < 0.005) from male-dominated cage farming (mean = 48.60 ± 10.47), whereas RCI scores at the production level for fisher folks (mean = 44.89 ± 10.09) and pond farmers (mean = 44.04 ± 12.07) showed no statistical difference (0 > 0.05. Additionally, households with more income sources tend to have higher resilience capacities. Seasonality in fishing cycles limited households’ ability to recover from climate-induced shocks; the more months without fishing activity, the less the odds of recovery from shocks (OR = 0.532, 95% CI [0.163, 0.908], p = 0.022). Furthermore, households that lacked guaranteed market access and inputs during COVID-19 were less likely to recover during and after the shocks (OR = 0.401, 95% CI [0.161, 0.999], p = 0.05). Households organized in cooperatives with better access to credit showed a higher chance of recovery. The study recommends (a) adopting gender-sensitive approaches in fisheries and aquaculture interventions to empower women in trade, (b) strengthening policies to enhance access and adoption of climate-smart technologies such as cage fish farming, (c) promoting livelihood diversification to sustain households’ income during fishing off-seasons, and (d) enhancing market linkages in the fish value chain through coordinated producer organizations. Further research should explore the possibilities of introducing index-based weather insurance and other tested suitable safety nets for the fisheries and aquaculture sector. Full article
Show Figures

Figure 1

15 pages, 2892 KiB  
Review
Exploring the Factors Affecting Terrestrial Soil Respiration in Global Warming Manipulation Experiments Based on Meta-Analysis
by Xue Chen, Haibo Hu, Qi Wang, Xia Wang and Bing Ma
Agriculture 2024, 14(9), 1581; https://doi.org/10.3390/agriculture14091581 - 11 Sep 2024
Viewed by 398
Abstract
Warming significantly impacts soil respiration in terrestrial ecosystems, thereby altering global carbon cycle processes. Numerous field experiments have investigated the effects of warming on soil respiration (Rs), but the results have been inconsistent due to various factors such as ecosystem type, soil warming [...] Read more.
Warming significantly impacts soil respiration in terrestrial ecosystems, thereby altering global carbon cycle processes. Numerous field experiments have investigated the effects of warming on soil respiration (Rs), but the results have been inconsistent due to various factors such as ecosystem type, soil warming amplitude, duration, and environmental conditions. In this study, we conducted a meta-analysis of 1339 cases from 70 studies in terrestrial ecosystems to evaluate the response of Rs, heterotrophic respiration (Rh), and autotrophic respiration (Ra) to global warming. The results indicated that Rs, Rh, and Ra increased by 13.88%, 15.03%, and 19.72%, respectively, with a significant rise observed across different ecosystems. Generally, Rs increased with rising temperatures within a specific range (0–4 °C), whereas higher temperatures (>4 °C) did not significantly affect Rs. Moreover, Rs, Rh, and Ra exhibited an initial increase followed by a decrease with prolonged duration, indicating an adaptive response to climate warming. Additionally, Rs and Rh exhibit significant seasonal variations, with levels in winter being markedly higher than in summer. Furthermore, environmental factors exerted direct or indirect effects on soil respiration components. The factors’ importance for Rs was ranked as microbial biomass carbon (MBC) > mean annual temperature (MAT) > mean annual precipitation (MAP), for Rh as soil organic carbon (SOC) > MBC > MAT > MAP, and for Ra as belowground biomass (BGB) > aboveground biomass (AGB) > SOC. Future research should focus on the interactions among explanatory factors to elucidate the response mechanisms of soil respiration under global warming conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

17 pages, 6425 KiB  
Article
Quantile Regression Illuminates the Heterogeneous Effect of Water Quality on Phytoplankton in Lake Taihu, China
by Lu Wang, Shuo Liu, Shuqin Ma, Zhongwen Yang, Yan Chen, Wei Gao, Qingqing Liu and Yuan Zhang
Water 2024, 16(18), 2570; https://doi.org/10.3390/w16182570 - 10 Sep 2024
Viewed by 451
Abstract
Lake Taihu, a subtropical shallow lake in the Yangtze River Basin, is the third-largest freshwater lake in China. It serves not only as a crucial source of drinking water and an ecological resource but also holds significant economic, tourism, and fisheries value. Phytoplankton, [...] Read more.
Lake Taihu, a subtropical shallow lake in the Yangtze River Basin, is the third-largest freshwater lake in China. It serves not only as a crucial source of drinking water and an ecological resource but also holds significant economic, tourism, and fisheries value. Phytoplankton, a vital component of aquatic ecosystems, plays a critical role in nutrient cycling and maintaining water structure. Its community composition and concentration reflect changes in the aquatic environment, making it an important biological indicator for monitoring ecological conditions. Understanding the impact of water quality on phytoplankton is essential for maintaining ecological balance and ensuring the sustainable use of water resources. This paper focuses on Lake Taihu, with water samples collected in February, May, August, and November from 2011 to 2019. Using quantile regression, a robust statistical analysis tool, the study investigates the heterogeneous effects of water quality on phytoplankton and seasonal variations. The results indicate significant seasonal differences in water quality in Lake Taihu, which substantially influence phytoplankton, showing weakly alkaline characteristics. When phytoplankton concentrations are low, pondus hydrogenii (pH), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), water temperature (WT), and conductivity significantly affect them. At medium concentrations, COD, TP, TN, and WT have significant effects. At high concentrations, transparency and dissolved oxygen (DO) significantly impact phytoplankton, while TP no longer has a significant effect. These findings provide valuable insights for policymakers and environmental managers, supporting the prevention and control of harmful algal blooms in Lake Taihu and similar aquatic systems. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

23 pages, 11041 KiB  
Article
Spatiotemporal Variations in Carbon Sources and Sinks in National Park Ecosystem and the Impact of Tourism
by Quanxu Hu, Jinhe Zhang, Huaju Xue, Jingwei Wang and Aiqing Li
Sustainability 2024, 16(18), 7895; https://doi.org/10.3390/su16187895 - 10 Sep 2024
Viewed by 625
Abstract
The capacity of carbon sinks varies among the different types of ecosystems, and whether national parks, as an important type of nature reserve, have a high carbon sink capacity (CSC) and whether eco-tourism in national parks affects their CSC are the main scientific [...] Read more.
The capacity of carbon sinks varies among the different types of ecosystems, and whether national parks, as an important type of nature reserve, have a high carbon sink capacity (CSC) and whether eco-tourism in national parks affects their CSC are the main scientific issues discussed. Using MODIS Net Primary Production (NPP) product data, this study analysed the spatiotemporal variation in carbon sources and sinks (CSSs) in the ecosystem of Huangshan National Park from 2000 to 2020, as well as the impact of tourism on these carbon sources and sinks. The findings indicate that, while the ecosystems of national parks generally have a strong CSC, they may not always function as carbon sinks, and during the study period, Huangshan National Park served as a carbon source for four years. Temporally, the CSSs in the ecosystem of the national park exhibit a cyclical pattern of change with a four-year cycle and strong seasonality, with spring and autumn functioning as carbon sinks, and summer and winter as carbon sources. Spatially, the CSSs of the national park ecosystem exhibited a vertical band spectrum of spatial distribution, and the CSC showed a trend of gradual enhancement from low altitude to high altitude. Tourism is a major factor that has an impact on the CSC of national park ecosystems. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

21 pages, 4579 KiB  
Article
Differentiated In-Row Soil Management in a High-Density Olive Orchard: Effects on Weed Control, Tree Growth and Yield, and Economic and Environmental Sustainability
by Enrico Maria Lodolini, Nadia Palmieri, Alberto de Iudicibus, Pompea Gabriella Lucchese, Matteo Zucchini, Veronica Giorgi, Samuele Crescenzi, Kaies Mezrioui, Davide Neri, Corrado Ciaccia and Alberto Assirelli
Agronomy 2024, 14(9), 2051; https://doi.org/10.3390/agronomy14092051 - 7 Sep 2024
Viewed by 423
Abstract
Two different in-row soil management techniques were compared in the Olive Orchard Innovation Long-term experiment of the Council for Agricultural Research and Economics, Research Centre for Olive, Fruit, and Citrus Crops in Rome, Italy. Rows were managed with an in-row rotary tiller and [...] Read more.
Two different in-row soil management techniques were compared in the Olive Orchard Innovation Long-term experiment of the Council for Agricultural Research and Economics, Research Centre for Olive, Fruit, and Citrus Crops in Rome, Italy. Rows were managed with an in-row rotary tiller and with synthetic mulching using permeable polypropylene placed after cultivar Maurino olive trees planting. The effects of the two treatments were assessed through weed soil coverage and the growth of the olive trees. Results showed better agronomic performance associated with synthetic mulching. The weed control effect along the row of a young high-density olive orchard was higher with the synthetic mulching compared to hoeing. The effect of the synthetic mulching seemed to disappear when removed from the ground (spring 2023) since no significant differences were found for tree size and yield in the two tested in-row soil management systems at the end of 2023. Finally, the growth of the young olive trees (Trunk Cross Sectional Area, Height, and Canopy expansion) measured across the three years, was higher for the synthetic mulched row than the hoed one. The use of synthetic mulching along the row positively forced the vegetative growth of the young olive trees and anticipated the onset of fruit production compared to periodical hoeing: a significantly higher fruit production was registered three years after planting. Root diameter was higher under synthetic mulching one year after planting, and no differences were observed in the following sampling dates showing similar fluctuations linked to the seasonal growth pattern. The life cycle assessment and costing highlighted that the application of mulching had a higher eco- and economic-efficiency than the periodical in-row soil hoeing. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

24 pages, 6101 KiB  
Article
Potential Impact of Drought and Rewatering on Plant Physiology and Fruit Quality in Long-Shelf-Life Tomatoes
by Cristina Patanè, Sarah Siah, Valeria Cafaro, Salvatore L. Cosentino and Sebastiano A. Corinzia
Agronomy 2024, 14(9), 2045; https://doi.org/10.3390/agronomy14092045 - 6 Sep 2024
Viewed by 459
Abstract
In this study, the effects of repeated cycles of drying and rehydration on some physiological traits were assessed in long shelf-life tomatoes cultivated in a typical semi-arid area of Southern Italy. Three Sicilian landraces (‘Custonaci’, ‘Salina’, and ‘Vulcano’) from the germplasm collection at [...] Read more.
In this study, the effects of repeated cycles of drying and rehydration on some physiological traits were assessed in long shelf-life tomatoes cultivated in a typical semi-arid area of Southern Italy. Three Sicilian landraces (‘Custonaci’, ‘Salina’, and ‘Vulcano’) from the germplasm collection at CNR-IBE (Catania, Italy) and a commercial tomato mini-plum (‘Faino Hy., control) were investigated under three water regimes: DRY (no irrigation), IRR (long-season full irrigation) and REW (post-drought rewaterings). Net photosynthetic assimilation rate (Pn), leaf transpiration (E), stomatal conductance (gs), instantaneous water use efficiency (WUEi), leaf intercellular CO2 (Ci, ppm), and leaf temperature (°C), were measured during the growing season. At harvest (late July), fruit production per plant was measured and ripened fruits were analysed for total solids (TS), soluble solids (SS), reducing sugars (RS), vitamin C (AscA), and total phenols (TP). Pn promptly responded to rewatering (REW), quickly increasing immediately after irrigation, and declined with soil drying up. All genotypes had similar physiological pathways in DRY, but in IRR, ‘Faino’ had higher Pn (up to 31 μmol CO2 m−2s−1) and E (up to 18 mmol H2O m−2s−1). Stomatal conductance (gs) after rewatering steeply increased and quickly declined after that. All local landraces had the same gs in IRR and REW. Variations in RWC were less pronounced than those in other physiological parameters. WUEi in REW and DRY proceeded similarly (up to 3 μmol CO2 mmol H2O). Irrigation in REW significantly promoted plant productivity over the DRY control (up to +150% in ‘Vulcano’). TS and SS in REW were lower than those in DRY, but higher (+19 and +7%, respectively) than in IRR. Vitamin C was greater in DRY and REW (26 and 18% higher than in IRR, respectively). TP in all local tomatoes were significantly higher (up to +29% in ‘Vulcano’) than those in the commercial control. Water regime had a minor effect on TP in ‘Custonaci’ and ‘Salina’. Principal Component Analysis (PCA) provided information on the changes in physiological and fruit quality traits in tomatoes in relation to cultivars and water regimes. The results of this study also revealed that a water-saving irrigation strategy where few irrigations are applied after prolonged periods of drought might be profitable in terms of fruit production enhancement in long shelf-life tomatoes and that limited rewaterings in most cases, help retaining high levels of fruit quality traits. Full article
Show Figures

Figure 1

15 pages, 966 KiB  
Article
Pigment Complex, Growth and Chemical Composition Traits of Boreal Sphagnum Mosses (Mire System “Ilasskoe”, North-West of European Russia)
by Anastasiya Shtang, Tamara Ponomareva and Alexandra Skryabina
Plants 2024, 13(17), 2478; https://doi.org/10.3390/plants13172478 - 4 Sep 2024
Viewed by 331
Abstract
Sphagnum mosses play a significant role in peat formation and carbon sequestration in mire ecosystems. It is critical to investigate the productivity and chemical composition of different Sphagnum species in order to assess their role in the global carbon cycle and potential in [...] Read more.
Sphagnum mosses play a significant role in peat formation and carbon sequestration in mire ecosystems. It is critical to investigate the productivity and chemical composition of different Sphagnum species in order to assess their role in the global carbon cycle and potential in light of climate change. The data on productivity and growth characteristics during the growing season, group chemical composition and elemental composition at the beginning and end of the growing season, as well as aspects of the pigment complex operation, were collected for four Sphagnum species: Sphagnum lindbergii Schimp., S. fuscum (Schimp.) Klinggr., S. divinum Flatberg & K. Hassel, and S. squarrosum Crome. High cover density and productivity, low ability to decompose, and constancy of the pigment complex of S. fuscum reflect a high degree of adaptation to the specific conditions of ridges. A constant chemical composition of S. lindbergii during the growing season can be explained by stable conditions of hollows that allow it to maintain its metabolic processes, but the light conditions in hollows bring the reaction of the pigment apparatus of this species closer to shaded S. divinum and S. squarrosum. S. lindbergii and S. squarrosum contain more nitrogen than other species and have a greater ability to decompose. Full article
(This article belongs to the Special Issue Bryophyte Biology)
Show Figures

Figure 1

21 pages, 7895 KiB  
Article
Spatiotemporal Variation Patterns of Drought in Liaoning Province, China, Based on Copula Theory
by Jiayu Wu, Yao Li, Xudong Zhang and Huanjie Cai
Atmosphere 2024, 15(9), 1063; https://doi.org/10.3390/atmos15091063 - 3 Sep 2024
Viewed by 393
Abstract
Liaoning Province, a crucial agricultural region in Northeast China, has endured frequent drought disasters in recent years, significantly affecting both agricultural production and the ecological environment. Conducting drought research is of paramount importance for formulating scientific drought monitoring and prevention strategies, ensuring agricultural [...] Read more.
Liaoning Province, a crucial agricultural region in Northeast China, has endured frequent drought disasters in recent years, significantly affecting both agricultural production and the ecological environment. Conducting drought research is of paramount importance for formulating scientific drought monitoring and prevention strategies, ensuring agricultural production and ecological safety. This study developed a Comprehensive Joint Drought Index (CJDI) using the empirical Copula function to systematically analyze drought events in Liaoning Province from 1981 to 2020. Through the application of MK trend tests, Morlet wavelet analysis, and run theory, the spatiotemporal variation patterns and recurrence characteristics of drought in Liaoning Province were thoroughly investigated. The results show that, compared to the three classic drought indices, Standardized Precipitation Index (SPI), Evaporative Demand Drought Index (EDDI), and Standardized Precipitation Evapotranspiration Index (SPEI), CJDI has the highest accuracy in monitoring actual drought events. From 1981 to 2020, drought intensity in all regions of Liaoning Province (east, west, south, and north) exhibited an upward trend, with the western region experiencing the most significant increase, as evidenced by an MK test Z-value of −4.53. Drought events in Liaoning Province show clear seasonality, with the most significant periodic fluctuations in spring (main cycles of 5–20 years, longer cycles of 40–57 years), while the frequency and variability of drought events in autumn and winter are lower. Mild droughts frequently occur in Liaoning Province, with joint and co-occurrence recurrence periods ranging from 1.0 to 1.8 years. Moderate droughts have shorter joint recurrence periods in the eastern region (1.2–1.4 years) and longer in the western and southern regions (1.4–2.2 years), with the longest co-occurrence recurrence period in the southern region (3.0–4.0 years). Severe and extreme droughts are less frequent in Liaoning Province. This study provides a scientific foundation for drought monitoring and prevention in Liaoning Province and serves as a valuable reference for developing agricultural production strategies to adapt to climate change. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

23 pages, 4962 KiB  
Article
Tidal Impacts on Zooplankton Dynamics in a Major Ocean-Lagoon Channel: Insights from a 25-Hour Intensive Survey in the Cotonou Channel, Benin
by Hervé Hotèkpo Akodogbo, Fridolin Ubald Dossou-Sognon, François Talomonwo Ouinsou, Thalasse Tchémangnihodé Avocegan, Junior Patric Kouglo, Olaègbè Victor Okpeitcha, Arnaud Assogba, Zacharie Sohou, Yves Morel and Alexis Chaigneau
J. Mar. Sci. Eng. 2024, 12(9), 1519; https://doi.org/10.3390/jmse12091519 - 2 Sep 2024
Viewed by 309
Abstract
This study investigates the effects of tidal cycles on the zooplankton community within the Cotonou Channel, an important waterway connecting the large Nokoué Lagoon to the Atlantic Ocean in Benin. From the determination of zooplankton composition from 25-hour samples collected in July 2020, [...] Read more.
This study investigates the effects of tidal cycles on the zooplankton community within the Cotonou Channel, an important waterway connecting the large Nokoué Lagoon to the Atlantic Ocean in Benin. From the determination of zooplankton composition from 25-hour samples collected in July 2020, alpha diversity indices and abundance were assessed, while relationships between biotic and abiotic parameters were analyzed through Pearson correlation, analysis of variance, and principal component analysis. A total of 66 zooplankton taxa were identified, with rotifers exhibiting the highest species richness (35 taxa), while copepods dominated in abundance (71%). Zooplankton abundance varied significantly, ranging from 2 to 95 ind L−1 depending on the tidal phase. A negative correlation was found between species richness (r = −0.51, p < 0.01) and increasing salinity (3–37), indicating that higher salinity reduced diversity (r = 0.06, p > 0.05). Resilient species like Synchaeta bicornis persisted despite salinity changes. The tidal cycle structurally altered the zooplankton community, with abundance and diversity peaking at different phases, notably higher at high tide (15 ind L−1.) These initial findings underscore the complex interactions between tidal dynamics and estuarine biodiversity, suggesting the need for further research across different tidal and seasonal conditions to inform effective management and conservation efforts. Full article
Show Figures

Figure 1

21 pages, 7200 KiB  
Article
Study on Seasonal Permafrost Roadbed Deformation Based on Water–Heat Coupling Characteristics
by Bo Lu, Wen Zhao, Shengang Li, Manman Dong, Zhikang Xia and Yunfang Shi
Buildings 2024, 14(9), 2710; https://doi.org/10.3390/buildings14092710 - 30 Aug 2024
Viewed by 307
Abstract
The deformation and damage to seasonal permafrost roadbeds, as seasons shift, stems from the intricate interplay of temperature, moisture, and stress fields. Fundamentally, the frost heave and thaw-induced settlement of soil represent a multi-physics coupling phenomenon, where various physical processes interact and influence [...] Read more.
The deformation and damage to seasonal permafrost roadbeds, as seasons shift, stems from the intricate interplay of temperature, moisture, and stress fields. Fundamentally, the frost heave and thaw-induced settlement of soil represent a multi-physics coupling phenomenon, where various physical processes interact and influence each other. In this investigation, a comprehensive co-coupling numerical simulation of both the temperature and moisture fields was successfully executed, utilizing the secondary development module within the finite element software, COMSOL Multiphysics 6.0. This simulation inverted the classical freezing–thawing experiment involving a soil column under constant temperature conditions, yielding simulation results that were in excellent agreement with the experimental outcomes, with an error of no more than 10%. Accordingly, the temperature, ice content, and liquid water content distributions within the seasonal permafrost region were derived. These parameters were then incorporated into the stress field analysis to explore the intricate coupling between the moisture and temperature fields with the displacement field. Subsequently, the frost heave and thaw settlement deformations of the roadbed were calculated, accounting for seasonal variations, thereby gaining insights into their dynamic behavior. The research results show that during the process of freezing and thawing, water migrates from the frozen zone towards the unfrozen zone, with the maximum migration amount reaching 20% of the water content, culminating in its accumulation at the interface separating the two. Following multiple freeze–thaw cycles, this study reveals that the maximum extent of freezing within the roadbed reaches 2.5 m, while the road shoulder experiences a maximum freezing depth of 2 m. A continuous trend of heightened frost heave and thaw settlement deformation of the roadbed is observed in response to temperature fluctuations, leading to the uneven deformation of the road surface. Specifically, the maximum frost heave measured was 51 mm, while the maximum thaw settlement amounted to 13 mm. Full article
(This article belongs to the Special Issue Research on the Crack Control of Concrete)
Show Figures

Figure 1

20 pages, 5278 KiB  
Article
Priming of Exogenous Salicylic Acid under Field Conditions Enhances Crop Yield through Resistance to Magnaporthe oryzae by Modulating Phytohormones and Antioxidant Enzymes
by Wannaporn Thepbandit, Anake Srisuwan and Dusit Athinuwat
Antioxidants 2024, 13(9), 1055; https://doi.org/10.3390/antiox13091055 - 30 Aug 2024
Viewed by 436
Abstract
This study explores the impact of exogenous salicylic acid (SA) alongside conventional treatment by farmers providing positive (Mancozeb 80 % WP) and negative (water) controls on rice plants (Oryza sativa L.), focusing on antioxidant enzyme activities, phytohormone levels, disease resistance, and yield [...] Read more.
This study explores the impact of exogenous salicylic acid (SA) alongside conventional treatment by farmers providing positive (Mancozeb 80 % WP) and negative (water) controls on rice plants (Oryza sativa L.), focusing on antioxidant enzyme activities, phytohormone levels, disease resistance, and yield components under greenhouse and field conditions. In greenhouse assays, SA application significantly enhanced the activities of peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT), and superoxide dismutase (SOD) within 12–24 h post-inoculation (hpi) with Magnaporthe oryzae. Additionally, SA-treated plants showed higher levels of endogenous SA and indole-3-acetic acid (IAA) within 24 hpi compared to the controls. In terms of disease resistance, SA-treated plants exhibited a reduced severity of rice blast under greenhouse conditions, with a significant decrease in disease symptoms compared to negative control treatment. The field study was extended over three consecutive crop seasons during 2021–2023, further examining the efficacy of SA in regular agricultural practice settings. The SA treatment consistently led to a reduction in rice blast disease severity across all three seasons. Yield-related parameters such as plant height, the number of tillers and panicles per hill, grains per panicle, and 1000-grain weight all showed improvements under SA treatment compared to both positive and negative control treatments. Specifically, SA-treated plants yielded higher grain outputs in all three crop seasons, underscoring the potential of SA as a growth enhancer and as a protective agent against rice blast disease under both controlled and field conditions. These findings state the broad-spectrum benefits of SA application in rice cultivation, highlighting its role not only in bolstering plant defense mechanisms and growth under greenhouse conditions but also in enhancing yield and disease resistance in field settings across multiple crop cycles. This research presents valuable insights into the practical applications of SA in improving rice plant resilience and productivity, offering a promising approach for sustainable agriculture practices. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

Back to TopTop