Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,878)

Search Parameters:
Keywords = seaweeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1106 KiB  
Article
Ultrasound-Assisted Extraction of Alginate from Fucus vesiculosus Seaweed By-Product Post-Fucoidan Extraction
by Viruja Ummat, Ming Zhao, Saravana Periaswamy Sivagnanam, Shanmugapriya Karuppusamy, Henry Lyon, Stephen Fitzpatrick, Shaba Noore, Dilip K. Rai, Laura G. Gómez-Mascaraque, Colm O’Donnell, Anet Režek Jambark and Brijesh Kumar Tiwari
Mar. Drugs 2024, 22(11), 516; https://doi.org/10.3390/md22110516 - 14 Nov 2024
Abstract
The solid phase byproduct obtained after conventional fucoidan extraction from the brown seaweed Fucus vesiculosus can be used as a source containing alginate. This study involves ultrasound-assisted extraction (UAE) of alginate from the byproduct using sodium bicarbonate. Response surface methodology (RSM) was applied [...] Read more.
The solid phase byproduct obtained after conventional fucoidan extraction from the brown seaweed Fucus vesiculosus can be used as a source containing alginate. This study involves ultrasound-assisted extraction (UAE) of alginate from the byproduct using sodium bicarbonate. Response surface methodology (RSM) was applied to obtain the optimum conditions for alginate extraction. The ultrasound (US) treatments included 20 kHz of frequency, 20–91% of amplitude, and an extraction time of 6–34 min. The studied investigated the crude alginate yield (%), molecular weight, and alginate content (%) of the extracts. The optimum conditions for obtaining alginate with low molecular weight were found to be 69% US amplitude and sonication time of 30 min. The alginate extracts obtained were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Ultrasound-assisted extraction involving a short treatment lasting 6–34 min was found to be effective in extracting alginate from the byproduct compared to the conventional extraction of alginate using stirring at 415 rpm and 60 °C for 24 h. The US treatments did not adversely impact the alginate obtained, and the extracted alginates were found to have similar characteristics to the alginate obtained from conventional extraction and commercial sodium alginate. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Figure 1

37 pages, 35096 KiB  
Article
Seaweed-Associated Diatoms (Bacillariophyta) in Dokdo of South Korea: I. Subphyla Melosirophytina, Coscinodiscophytina, and Class Mediophyceae
by Joon Sang Park, Kyun-Woo Lee, Seung Won Jung, Han Jun Kim and Jin Hwan Lee
Diversity 2024, 16(11), 690; https://doi.org/10.3390/d16110690 - 12 Nov 2024
Viewed by 324
Abstract
Dokdo is an island located in the easternmost part of Korea, which has high levels of biodiversity of birds and fish, especially marine invertebrates. However, the biodiversity of microalgae, especially diatoms (Bacillariophyta), is relatively unknown, despite their ecological importance as primary producers of [...] Read more.
Dokdo is an island located in the easternmost part of Korea, which has high levels of biodiversity of birds and fish, especially marine invertebrates. However, the biodiversity of microalgae, especially diatoms (Bacillariophyta), is relatively unknown, despite their ecological importance as primary producers of the marine food web and bioindicators of environmental conditions associated with climate change. To understand the biodiversity of seaweed-associated diatoms from Dokdo, we collected macroalgae present at a depth 5–15 m by SCUBA diving on 17 October 2017. There were a large number of diatoms (over 130 species), even though it was a one-time survey. As it includes too many taxa to cover at once, voucher flora for other taxonomic groups will be provided through the continuous serial papers. This is the first series of seaweed-associated diatoms, with 26 species belonging to the subphyla Melosirophytina and Coscinodisophytina, and the class Mediophyceae. Among these, seven species including one new taxon were reported for the first time in Korea, which, along with the geopolitical characteristics of the survey area, proved that there is no domestic interest in seaweed-related diatoms. In particular, the appearance of species that have been reported in subtropical waters, such as the order Ardissoneales, requires continuous monitoring of marine seaweed-associated diatoms to confirm whether their colonization in Dokdo waters was due to climate change or species-specific water temperature tolerance. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

18 pages, 1905 KiB  
Article
Optimization of Sargassum bovianum Extraction Techniques for Germination of Wheat, Canola, and Corn Under Different Salinity Stress
by Mehdi Derafshi, Akbar Hassani, Setareh Amanifar, Mohammad Babaakbari, Narges Hematimatin, Behnam Asgari Lajayer, Tess Astatkie and G. W. Price
Agronomy 2024, 14(11), 2646; https://doi.org/10.3390/agronomy14112646 - 10 Nov 2024
Viewed by 394
Abstract
Seaweeds are a cheap, eco-friendly, and rich source of plant growth stimulators that can mitigate the adverse effects of salinity stress. This study examined the impact of Sargassum bovianum extracts obtained through different techniques using pressure, heat, and microwave radiations on the germination [...] Read more.
Seaweeds are a cheap, eco-friendly, and rich source of plant growth stimulators that can mitigate the adverse effects of salinity stress. This study examined the impact of Sargassum bovianum extracts obtained through different techniques using pressure, heat, and microwave radiations on the germination and growth of wheat, corn, and canola seeds under varying salinity levels (500, 3500, and 6500 µS cm−1). The findings showed that pressure, microwave, and acidic extraction methods were the most effective in extracting polysaccharides, alginate, and nutrients from S. bovianum. Seaweed extract significantly improved the mean germination time (MGT) and germination index (GI) of wheat under high salinity stress and had a positive effect on wheat plumule length (PL) and germination percentage (GP). However, seaweed extract had no significant impact on canola seeds in salinity stress, except for improved canola PL. The PL and seedling vigor index (SVI) of corn were enhanced in low salinity levels, but most treatments reduced PL and SVI in high salinity. This study suggests that using heat, pressure, and microwave techniques for seaweed extraction results in higher polysaccharides and alginate content, leading to improved germination and plant growth, particularly in wheat and canola. These findings can help growers optimize the germination and growth of these important crops. Full article
Show Figures

Figure 1

16 pages, 4718 KiB  
Article
Anti-Melanogenic Activities of Sargassum fusiforme Polyphenol-Rich Extract on α-MSH-Stimulated B16F10 Cells via PI3K/Akt and MAPK/ERK Pathways
by Bei Chen, Honghong Chen, Kun Qiao, Min Xu, Jingna Wu, Yongchang Su, Yan Shi, Lina Ke, Zhiyu Liu and Qin Wang
Foods 2024, 13(22), 3556; https://doi.org/10.3390/foods13223556 - 7 Nov 2024
Viewed by 521
Abstract
Background: Melanin overproduction leads to pigmented skin diseases. Brown algae polyphenols, non-toxic secondary metabolites, exhibit potential bioactivities. Sargassum fusiforme, an edible seaweed, has been underexplored in the field of beauty despite its polyphenol richness. Methods: Polyphenols from S. fusiforme were extracted using [...] Read more.
Background: Melanin overproduction leads to pigmented skin diseases. Brown algae polyphenols, non-toxic secondary metabolites, exhibit potential bioactivities. Sargassum fusiforme, an edible seaweed, has been underexplored in the field of beauty despite its polyphenol richness. Methods: Polyphenols from S. fusiforme were extracted using macroporous resin (SFRP) and ethyl acetate (SFEP). Their antioxidant and anti-aging properties, tyrosinase inhibitory activities, and mechanisms were assessed. The melanogenesis inhibition effect and mechanism by SFRP was examined in B16F10 melanoma cells. Results: Both SFRP and SFEP demonstrated scavenging activities against DPPH, superoxide anion, and hydroxyl radicals. SFRP showed stronger anti-collagenase and anti-elastase effects. They dose-dependently inhibited mushroom tyrosinase, with IC50 values of 9.89 μg/mL for SFRP and 0.99 μg/mL for SFEP. SFRP reversibly inhibited tyrosinase, while SFEP showed irreversible inhibition. SFRP also suppressed melanin content and intracellular tyrosinase activity in B16F10 cells, downregulating the expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 and 2 expression through the PI3K/Akt and MAPK/ERK signal pathways. Conclusions: S. fusiforme polyphenols, especially SFRP, exhibit promising antioxidant, anti-aging, and melanogenesis inhibitory properties, highlighting their potential application as novel anti-melanogenic agents in cosmetics and the food industry. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

14 pages, 2691 KiB  
Article
An Evaluation of Organic Biostimulants as a Tool for the Sustainable Management of Viral Infections in Zucchini Plants
by Carla Libia Corrado, Livia Donati, Anna Taglienti, Luca Ferretti, Francesco Faggioli, Massimo Reverberi and Sabrina Bertin
Horticulturae 2024, 10(11), 1176; https://doi.org/10.3390/horticulturae10111176 - 7 Nov 2024
Viewed by 353
Abstract
In agriculture, new and sustainable strategies are increasingly demanded to integrate the traditional management of viral diseases based on the use of virus-free propagation materials and resistant or tolerant cultivars and on the control of insect vectors. Among the possible Integrated Pest Management [...] Read more.
In agriculture, new and sustainable strategies are increasingly demanded to integrate the traditional management of viral diseases based on the use of virus-free propagation materials and resistant or tolerant cultivars and on the control of insect vectors. Among the possible Integrated Pest Management (IPM) approaches, organic biostimulants have shown promising results in enhancing plant tolerance to virus infections by improving plant fitness and productivity and modulating metabolic functions. In this study, the combination of two organic biostimulants, Alert D-Max and Resil EVO Q, composed of seaweed and alfalfa extracts, enzymatic hydrolysates, and micronized zeolite, was applied on the leaves and roots of zucchini squashes, both healthy and infected by zucchini yellow mosaic virus (ZYMV). Four applications were scheduled based on ZYMV inoculation timing, and plant vegetative and reproductive parameters were recorded along with the virus titre and symptom severity. The modulation of the expression of specific genes potentially involved in pattern-triggered immunity (PTI), systemic acquired resistance (SAR), and oxidative stress defence pathways was also investigated. Besides increasing the general fitness of the healthy plants, the biostimulants significantly improved the production of flowers and fruits of the infected plants, with a potential positive impact on their productivity. The repeated biostimulant applications also led to a one-tenth reduction in ZYMV titre over time and induced a progressive slowdown of symptom severity. Genes associated with SAR and PTI were up-regulated after biostimulant applications, suggesting the biostimulant-based priming of plant defence mechanisms. Due to the observed beneficial effects, the tested biostimulant mix can be an effective component of the IPM of cucurbit crops, acting as a sustainable practice for enhancing plant fitness and tolerance to potyviruses. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

20 pages, 2336 KiB  
Review
Algal Active Ingredients and Their Involvement in Managing Diabetic Mellitus
by Aijun Tong, Dengwei Wang, Nan Jia, Ying Zheng, Yusong Qiu, Weichao Chen, Hesham R. El-Seed and Chao Zhao
Biology 2024, 13(11), 904; https://doi.org/10.3390/biology13110904 - 6 Nov 2024
Viewed by 671
Abstract
Diabetes mellitus (DM) is becoming increasingly prominent, posing a serious threat to human health. Its prevalence is rising every year, and often affects young people. In the past few decades, research on marine algae has been recognized as a major field of drug [...] Read more.
Diabetes mellitus (DM) is becoming increasingly prominent, posing a serious threat to human health. Its prevalence is rising every year, and often affects young people. In the past few decades, research on marine algae has been recognized as a major field of drug discovery. Seaweed active substances, including algal polysaccharides, algal polyphenols, algal unsaturated fatty acids, and algal dietary fiber, have unique biological activities. This article reviews the effects and mechanisms of the types, structures, and compositions of seaweed on inhibiting glucose and lipid metabolism disorders, with a focus on the inhibitory effect of active substances on blood glucose reduction. The aim is to provide a basis for the development of seaweed active substance hypoglycemic drugs. Full article
Show Figures

Figure 1

17 pages, 1042 KiB  
Article
Physiological and Biochemical Responses of ‘Burlat’ Sweet Cherry to Pre-Harvest Foliar Application of Calcium and Seaweed Extracts
by Sandra Pereira, Vânia Silva, Francisco Guedes, Fernando Raimundo, João Ricardo Sousa, Ana Paula Silva and Berta Gonçalves
Horticulturae 2024, 10(11), 1173; https://doi.org/10.3390/horticulturae10111173 - 6 Nov 2024
Viewed by 318
Abstract
Sweet cherry (Prunus avium L.) is a highly valued fruit, and optimal nutrient management is crucial for enhancing yield and fruit quality. However, the over-application of chemical fertilizers in cherry cultivation leads to environmental issues such as soil degradation and nutrient runoff. [...] Read more.
Sweet cherry (Prunus avium L.) is a highly valued fruit, and optimal nutrient management is crucial for enhancing yield and fruit quality. However, the over-application of chemical fertilizers in cherry cultivation leads to environmental issues such as soil degradation and nutrient runoff. To address this, foliar application, a more targeted and eco-friendly fertilization method, presents a promising alternative. This study evaluates the effects of pre-harvest foliar application of calcium (Ca) (150 and 300 g hL−1) and seaweed extracts (75 and 150 mL hL−1), both individually and in combination, on the physiological and biochemical responses of ‘Burlat’ sweet cherry trees. Key physiological parameters, including plant water status, photosynthetic performance, and leaf metabolites, were analyzed. Results show that trees treated with seaweed extracts or with combined Ca and seaweed application had improved water status, higher sugar, starch, and protein content, as well as enhanced antioxidant activity and phenolic content compared to those treated solely with calcium. However, the combined treatment did not significantly enhance overall tree performance compared to individual applications. This study highlights the potential of seaweed-based biostimulants in sustainable cherry production. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

23 pages, 2800 KiB  
Article
Antifungal Properties of Sargassum cinereum and Padina boergesenii Extracts Against Fungi Associated with Strawberry Fruits Concerning Mycotoxin Production
by Amany A. El-Shahir, Nurah M. Alzamel, Amani Omar Abuzaid, Naglaa Loutfy and Eman A. Alwaleed
Plants 2024, 13(22), 3115; https://doi.org/10.3390/plants13223115 - 5 Nov 2024
Viewed by 498
Abstract
Strawberries are susceptible to decay and destruction while being harvested and stored. This study had the following objectives: (1) the documentation of fungi and mycotoxin production associated with infected strawberry fruits; (2) the evaluation of the primary phytochemicals of Sargassum cinereum and Padina [...] Read more.
Strawberries are susceptible to decay and destruction while being harvested and stored. This study had the following objectives: (1) the documentation of fungi and mycotoxin production associated with infected strawberry fruits; (2) the evaluation of the primary phytochemicals of Sargassum cinereum and Padina boergesenii by gas chromatography–mass spectrometry (GC–MS) and Fourier transform infrared (FT-IR) analysis to identify the active chemical composition of the seaweed extracts; and (3) the assessment of the antifungal activity of five extracts from brown seaweeds both in vitro and in vivo against fungal infections on fresh fruit under post-harvest conditions. The most common fungi were Aspergillus niger 14.36%, Botrytis cinerea 38.29%, and Mucor irregularis 16.88%. Padina boergesenii acetone extract had the highest in vitro antifungal activity. The methanol extracts of both S. cinereum and P. boergesenii were effective against the pathogenicity and aggressiveness (in vivo) on post-harvest strawberry fruits. B. cinerea could produce botrydial and dihydrobotrydial toxins with concentrations of 8.14 µg/mL and 4.26 µg/mL, respectively. A. niger could produce ochratoxin A with a concentration of 10.05 µg/mL. The present study demonstrates that the extracts of macroalgae S. cinereum and P. boergesenii contain secondary metabolites and antioxidants, indicating their potential utilization in antifungal applications. Full article
(This article belongs to the Special Issue Development of Biocontrol Products for Plant Diseases)
Show Figures

Figure 1

15 pages, 2697 KiB  
Article
Photoprotective Effect of Ultrasonic-Assisted Ethanol Extract from Sargassum horneri on UVB-Exposed HaCaT Keratinocytes
by Kirinde Gedara Isuru Sandanuwan Kirindage, Arachchige Maheshika Kumari Jayasinghe, Chang-Ik Ko, Yong-Seok Ahn, Soo-Jin Heo, Eun-A Kim, Nam-Ki Cho and Ginnae Ahn
Antioxidants 2024, 13(11), 1342; https://doi.org/10.3390/antiox13111342 - 1 Nov 2024
Viewed by 502
Abstract
The present study investigated the photoprotective effect of the ultrasonic-assisted ethanol extract (USHE) from Sargassum horneri, a brown seaweed containing fucosterol (6.22 ± 0.06 mg/g), sulfoquinovosyl glycerolipids (C23H43O11S, C25H45O11S, C [...] Read more.
The present study investigated the photoprotective effect of the ultrasonic-assisted ethanol extract (USHE) from Sargassum horneri, a brown seaweed containing fucosterol (6.22 ± 0.06 mg/g), sulfoquinovosyl glycerolipids (C23H43O11S, C25H45O11S, C25H47O11S, C27H49O11S), and polyphenols, against oxidative damage in ultraviolet B (UVB)-exposed HaCaT keratinocytes. USHE indicated antioxidant activity in ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. After screening experiments, 15.6, 31.3, and 62.5 µg/mL concentrations of USHE and ascorbic acid as positive control were selected to be used throughout the investigation. USHE increased cell viability by markedly reducing the production of intracellular reactive oxygen species (ROS) in UVB-exposed HaCaT keratinocytes. Additionally, USHE reduced the apoptosis and sub-G1 cell population and increased the mitochondrial membrane potential. Moreover, USHE modulated the protein expression levels of anti-apoptotic molecules (Bcl-xL, Bcl-2, and PARP) and pro-apoptotic molecules (Bax, cleaved caspase-3, p53, cleaved PARP, and cytochrome C). This modulation accorded with the upregulation of cytosolic heme oxygenase (HO)-1, NAD(P)H quinone oxidoreductase 1 (NQO 1), and nuclear factor erythroid-2-related factor 2 (Nrf2), collectively known as components of the antioxidant system. These findings suggest that USHE has a photoprotective effect on UVB-exposed HaCaT keratinocytes and can be utilized to develop cosmeceuticals for UVB protection. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Graphical abstract

18 pages, 4160 KiB  
Protocol
Effect of Biomass Drying Protocols on Bioactive Compounds and Antioxidant and Enzymatic Activities of Red Macroalga Kappaphycus alvarezii
by Aline Nunes, Felipe de Souza Dutra, Sinara de Nazaré Santana Brito, Milene Stefani Pereira-Vasques, Gadiel Zilto Azevedo, Alex Ricardo Schneider, Eva Regina Oliveira, Alex Alves dos Santos, Marcelo Maraschin, Fábio Vianello and Giuseppina Pace Pereira Lima
Methods Protoc. 2024, 7(6), 88; https://doi.org/10.3390/mps7060088 - 1 Nov 2024
Viewed by 728
Abstract
Kappaphycus alvarezii is a red seaweed used globally in various biotechnological processes. To ensure the content and stability of its bioactive compounds postharvest, suitable drying protocols must be adopted to provide high-quality raw materials for industrial use. This study aimed to analyze the [...] Read more.
Kappaphycus alvarezii is a red seaweed used globally in various biotechnological processes. To ensure the content and stability of its bioactive compounds postharvest, suitable drying protocols must be adopted to provide high-quality raw materials for industrial use. This study aimed to analyze the influence of freeze-drying and oven-drying on the total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (FRAP and DPPH assays), total carotenoid content (TC), and lipase (LA) and protease activity (PA) of K. alvarezii samples collected over the seasons in sea farms in southern Brazil. The freeze-drying technique was found to be more effective regarding superior contents of TPC (39.23 to 127.74 mg GAE/100 g) and TC (10.27 to 75.33 μg/g), as well as DPPH (6.12 to 8.91 mg/100 g). In turn, oven-drying proved to be the best method regarding the TFC (4.99 to 12.29 mg QE/100 g) and PA (119.50 to 1485.09 U/g), with better performance in the FRAP (0.28 to 0.70 mmol/100 g). In this way, it appears that the drying process of the algal biomass can be selected depending on the required traits of the biomass for the intended industrial application. In terms of cost-effectiveness, drying the biomass using oven-drying can be considered appropriate. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

15 pages, 3804 KiB  
Article
Elimination of Ethanol for the Production of Fucoidans from Brown Seaweeds: Characterization and Bioactivities
by Periaswamy Sivagnanam Saravana, Shanmugapriya Karuppusamy, Dilip K. Rai, Janith Wanigasekara, James Curtin and Brijesh K. Tiwari
Mar. Drugs 2024, 22(11), 493; https://doi.org/10.3390/md22110493 - 31 Oct 2024
Viewed by 680
Abstract
Fucoidan, a sulphated polysaccharide from brown seaweed composed of several monosaccharides, has been stated to have several bioactive properties such as antioxidant, antiviral, anticancer, antithrombic, anti-inflammatory, and immunomodulatory effects. This paper provides research findings on green extraction methods, structural analysis of fucoidan, and [...] Read more.
Fucoidan, a sulphated polysaccharide from brown seaweed composed of several monosaccharides, has been stated to have several bioactive properties such as antioxidant, antiviral, anticancer, antithrombic, anti-inflammatory, and immunomodulatory effects. This paper provides research findings on green extraction methods, structural analysis of fucoidan, and its associated bioactivities. Fucoidans from brown seaweeds, Fucus vesiculosus and Ascophyllum nodosum, were extracted using green solvents such as citric acid (CA) followed by MWCO (molecular weight cut-off) filtration to obtain high-purity polysaccharides. The presence of functional groups typical to fucoidans, namely, fucose, sulfate, and glycosidic bonds, in the extracts were confirmed through the data obtained from FTIR (Fourier-transform infrared spectroscopy), TGA (thermogravimetric analysis), DSC (differential scanning calorimetry), and solid-state CP–MAS (cross-polarization magic angle spinning) analysis. The MWCO analysis identified that the >300 kDa fraction can have better content of fucoidan (FV-CA 79.16%, FV-HCl 63.59%, AN-CA 79.21%, AN-HCl 80.70%) than the conventional extraction process. Furthermore, the >300 kDa fraction showed significantly higher antioxidant activities compared to crude fucoidan extracts. Crude fucoidan extracts showed significant inhibition of cell viability in human lung (A459 lung carcinoma cells) and colorectal adenocarcinoma (Caco-2) cells at higher concentrations. The fucoidan extracted with green solvents and avoiding alcohol-based precipitation has substantial antioxidant/antitumor action, so, due to this activity, it can be employed as functional foods in food applications. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Figure 1

19 pages, 2390 KiB  
Article
Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar
by Madalena Mendes, João Cotas, Irene B. Gutiérrez, Ana M. M. Gonçalves, Alan T. Critchley, Lourie Ann R. Hinaloc, Michael Y. Roleda and Leonel Pereira
Mar. Drugs 2024, 22(11), 491; https://doi.org/10.3390/md22110491 - 31 Oct 2024
Viewed by 1052
Abstract
Carrageenans are valuable marine polysaccharides derived from specific species of red seaweed (Rhodophyta) widely used as thickening and stabilizing agents across various industries. Kappaphycus alvarezii, predominantly cultivated in tropical countries, is the primary source of kappa-carrageenan. Traditional industrial extraction methods involve alkaline [...] Read more.
Carrageenans are valuable marine polysaccharides derived from specific species of red seaweed (Rhodophyta) widely used as thickening and stabilizing agents across various industries. Kappaphycus alvarezii, predominantly cultivated in tropical countries, is the primary source of kappa-carrageenan. Traditional industrial extraction methods involve alkaline treatment for up to three hours followed by heating, which is inefficient and generates substantial waste. Thus, developing improved extraction techniques would be helpful for enhancing efficiency and reducing environmental impacts, solvent costs, energy consumption, and the required processing time. In this study, we explored innovative extraction methods, such as ultrasound-assisted extraction (UAE) and supercritical water extraction (SFE), together with other extraction methods to produce kappa-carrageenan from a new strain of K. alvarezii from the Philippines. FTIR-ATR spectroscopy was employed to characterize the structure of the different carrageenan fractions. We also examined the physicochemical properties of isolated phycocolloids, including viscosity, and the content of fatty acids, proteins, and carbohydrates. For refined carrageenan (RC), both the traditional extraction method and the UAE method used 1 M NaOH. Additionally, UAE (8% KOH) was employed to produce semi-refined carrageenan (SRC). UAE (8% KOH) produced a high yield of carrageenan, in half the extraction time (extraction yield: 76.70 ± 1.44), and improved carrageenan viscosity (658.7 cP), making this technique highly promising for industrial scaling up. On the other hand, SFE also yielded a significant amount of carrageenan, but the resulting product had the lowest viscosity and an acidic pH, posing safety concerns as classified by the EFSA’s re-evaluation of carrageenan as a food additive. Full article
Show Figures

Graphical abstract

19 pages, 1999 KiB  
Article
Biomass Productivity and Photosynthetic Activity in Ulva compressa (Chlorophyta) in Raceway Photobioreactors Under Stress Conditions
by Victor Robles-Carnero, Rafael Sesmero and Felix L. Figueroa
Plants 2024, 13(21), 3038; https://doi.org/10.3390/plants13213038 - 30 Oct 2024
Viewed by 375
Abstract
Research in seaweed cultivation technologies aims to increase production and reduce costs, leading to more efficient and sustainable processes. In this study, we analyzed the outdoor production of Ulva compressa cultured in summertime at different stocking densities of 0.6, 0.8 and 1.0 kg [...] Read more.
Research in seaweed cultivation technologies aims to increase production and reduce costs, leading to more efficient and sustainable processes. In this study, we analyzed the outdoor production of Ulva compressa cultured in summertime at different stocking densities of 0.6, 0.8 and 1.0 kg Fresh weight (FW) m−2 in a raceway photobioreactor with 30 m2 surface (3000 L), and its relation to photosynthetic activity. Under the experimental conditions of high temperature (>28–30 °C) and pH > 9 in culture water, higher seaweed density resulted in lower specific growth rate. The biomass production has been related to photosynthetic activity by using in vivo chlorophyll a fluorescence. Dynamic photoinhibition was observed at noon, which was less severe in cultures with higher algal densities. However, photosynthesis recovered in the afternoon. Seaweeds that were acclimatized for a week to the conditions of 1.0 kg FW m−2 stocking density showed an increase in biomass growth and absence of photoinhibition compared to non-acclimatized thalli. In conclusion, the cultivation of U. compressa in a mid-scale raceway photobiorreactor under conditions of high irradiance and temperature and low nutrient input, exhibited the best photosynthetic performance and hence the highest growth rates for the highest culture density assayed (1.0 kg FW m−2). Full article
(This article belongs to the Special Issue Advances in Algal Photosynthesis and Phytochemistry)
Show Figures

Figure 1

25 pages, 3152 KiB  
Article
Exploring the Therapeutical Potential of Asparagopsis armata Biomass: A Novel Approach for Acne Vulgaris Treatment
by Adriana P. Januário, Carina Félix, Rafael Félix, Katie Shiels, Patrick Murray, Patrícia Valentão and Marco F. L. Lemos
Mar. Drugs 2024, 22(11), 489; https://doi.org/10.3390/md22110489 - 30 Oct 2024
Viewed by 1452
Abstract
Acne vulgaris, a high-prevalence skin condition afflicting people, persists as a significant challenge in the absence of effective treatments and emerging antibiotic resistance. To address this pressing concern, exploration of innovative approaches is of the utmost importance. Asparagopsis armata, an invasive red [...] Read more.
Acne vulgaris, a high-prevalence skin condition afflicting people, persists as a significant challenge in the absence of effective treatments and emerging antibiotic resistance. To address this pressing concern, exploration of innovative approaches is of the utmost importance. Asparagopsis armata, an invasive red seaweed renowned for its diverse array of bioactive compounds, emerges as a promising candidate. This study seeks to elucidate the potential utility of A. armata biomass in the treatment of acne vulgaris. Crude extracts were obtained through solid–liquid extraction, and fractions were obtained using liquid–liquid extraction. The analyzed bioactivities included antioxidant, antimicrobial, and anti-inflammatory. Also, chemical characterization was performed to identify free fatty acids and compounds through LC-MS and elements. The present findings unveil compelling attributes, including anti-Cutibacterium acnes activity, cytotoxic and non-cytotoxic effects, antioxidant properties, and its ability to reduce nitric oxide production with consequent anti-inflammatory potential. Additionally, chemical characterization provides insights into its mineral elements, free fatty acids, and diverse compounds. The observed antimicrobial efficacy may be linked to halogenated compounds and fatty acids. Cytoprotection appears to be associated with the presence of glycerolipids and glycosylated metabolites. Furthermore, its antioxidant activity, coupled with anti-inflammatory properties, can be attributed to phenolic compounds, such as flavonoids. This study underscores the potential of A. armata as a natural ingredient in skincare formulations, offering an important contribution to the ongoing battle against acne vulgaris. Full article
(This article belongs to the Special Issue Biotechnology of Algae)
Show Figures

Graphical abstract

28 pages, 2775 KiB  
Review
Marine-Derived Fucose-Containing Carbohydrates: Review of Sources, Structure, and Beneficial Effects on Gastrointestinal Health
by Xinmiao Ren, Shenyuan Cai, Yiling Zhong, Luying Tang, Mengshi Xiao, Shuang Li, Changliang Zhu, Dongyu Li, Haijin Mou and Xiaodan Fu
Foods 2024, 13(21), 3460; https://doi.org/10.3390/foods13213460 - 29 Oct 2024
Viewed by 809
Abstract
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in Helicobacter pylori eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have [...] Read more.
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in Helicobacter pylori eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have garnered growing attention due to their diverse bioactivities and potential therapeutic applications. Marine-derived FCCs characterized by high fucose residue content and extensive sulfate substitution, including fucoidan, fucosylated chondroitin sulfate, and fucose-rich microbial exopolysaccharides, have demonstrated significant potential in promoting gastrointestinal health. This review describes the unique structural features of FCCs and summarizes their health benefits, including regulation of gut microbiota, modulation of microbial metabolism, anti-adhesion activities against H. pylori and gut pathogens, protection against inflammatory injuries, and anti-tumor activities. Additionally, this review discusses the structural characteristics that influence the functional properties and the limitations related to the activity research and preparation processes of FCCs, providing a balanced perspective on the application potential and challenges of FCCs with specific structures for the regulation of gastrointestinal health and diseases. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Graphical abstract

Back to TopTop