Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = shale gas horizontal well

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 14510 KiB  
Article
Research on Geological-Engineering Integration Numerical Simulation Based on EUR Maximization Objective
by Haoqi Chen, Hualin Liu, Cheng Shen, Weiyang Xie, Taixin Liu, Junfu Zhang, Jiangnuo Lu, Zhenglan Li and Yu Peng
Energies 2024, 17(15), 3644; https://doi.org/10.3390/en17153644 - 24 Jul 2024
Viewed by 431
Abstract
Shale gas reservoirs, as representative reservoirs in the Sichuan Basin, have attracted widespread attention regarding development. Using gas reservoir numerical simulation to assist development has greatly improved the work efficiency of workers. However, traditional gas reservoir numerical simulation is widely criticized for its [...] Read more.
Shale gas reservoirs, as representative reservoirs in the Sichuan Basin, have attracted widespread attention regarding development. Using gas reservoir numerical simulation to assist development has greatly improved the work efficiency of workers. However, traditional gas reservoir numerical simulation is widely criticized for its inability to effectively integrate with geological and engineering factors. In this study, we proposed a geological engineering integration method that considers pre-fracturing parameters. We further applied it to a typical well (N03) in a certain block of the Sichuan Basin. The reliability of the method was determined through historical fitting. Based on the N03 geological model, the optimization range of fracturing construction parameters in adjacent areas was determined with the goal of maximizing EUR. Recommended values for widely distributed construction parameter combinations of Class II reservoirs were provided through orthogonal analysis. The influence order of fracturing construction parameters is (1) sand addition strength, (2) cluster spacing, (3) construction displacement, (4) fracture fluid strength, and (5) horizontal segment length. Finally, we compared the simulated data with the actual case. The results showed that an integrated numerical simulation method including geological and engineering factors can comprehensively and accurately assist in reservoir development. Full article
Show Figures

Figure 1

19 pages, 11144 KiB  
Article
Preparation and Mechanism of Shale Inhibitor TIL-NH2 for Shale Gas Horizontal Wells
by Yuexin Tian, Xiangjun Liu, Yintao Liu, Haifeng Dong, Guodong Zhang, Biao Su and Jinjun Huang
Molecules 2024, 29(14), 3403; https://doi.org/10.3390/molecules29143403 - 19 Jul 2024
Viewed by 629
Abstract
In this study, a new polyionic polymer inhibitor, TIL-NH2, was developed to address the instability of shale gas horizontal wells caused by water-based drilling fluids. The structural characteristics and inhibition effects of TIL-NH2 on mud shale were comprehensively analyzed using [...] Read more.
In this study, a new polyionic polymer inhibitor, TIL-NH2, was developed to address the instability of shale gas horizontal wells caused by water-based drilling fluids. The structural characteristics and inhibition effects of TIL-NH2 on mud shale were comprehensively analyzed using infrared spectroscopy, NMR spectroscopy, contact angle measurements, particle size distribution, zeta potential, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The results demonstrated that TIL-NH2 significantly enhances the thermal stability of shale, with a decomposition temperature exceeding 300 °C, indicating excellent high-temperature resistance. At a concentration of 0.9%, TIL-NH2 increased the median particle size of shale powder from 5.2871 μm to over 320 μm, effectively inhibiting hydration expansion and dispersion. The zeta potential measurements showed a reduction in the absolute value of illite’s zeta potential from −38.2 mV to 22.1 mV at 0.6% concentration, highlighting a significant decrease in surface charge density. Infrared spectroscopy and X-ray diffraction confirmed the formation of a close adsorption layer between TIL-NH2 and the illite surface through electrostatic and hydrogen bonding, which reduced the weakly bound water content to 0.0951% and maintained layer spacing of 1.032 nm and 1.354 nm in dry and wet states, respectively. Thermogravimetric analysis indicated a marked reduction in heat loss, particularly in the strongly bound water content. Scanning electron microscopy revealed that shale powder treated with TIL-NH2 exhibited an irregular bulk shape with strong inter-particle bonding and low hydration degree. These findings suggest that TIL-NH2 effectively inhibits hydration swelling and dispersion of shale through the synergistic effects of cationic imidazole rings and primary amine groups, offering excellent temperature and salt resistance. This provides a technical foundation for the low-cost and efficient extraction of shale gas in horizontal wells. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Figure 1

20 pages, 4663 KiB  
Article
The Analysis of Transient Temperature in the Wellbore of a Deep Shale Gas Horizontal Well
by Shilong Zhang, Jianhong Fu, Chi Peng, Yu Su, Honglin Zhang and Mou Yang
Processes 2024, 12(7), 1402; https://doi.org/10.3390/pr12071402 - 5 Jul 2024
Viewed by 488
Abstract
The transient temperature of the wellbore plays an important role in the selection of downhole tools during the drilling of deep shale gas horizontal wells. This study established a transient temperature field model of horizontal wells based on the convection heat transfer between [...] Read more.
The transient temperature of the wellbore plays an important role in the selection of downhole tools during the drilling of deep shale gas horizontal wells. This study established a transient temperature field model of horizontal wells based on the convection heat transfer between wellbore and formation and the principle of energy conservation. The model verification shows that the root mean squared error (RMSE) between the measured annular temperature neat bit and the predicted value is 0.54 °C, indicating high accuracy. A well in Chongqing, China, is taken as an example to study the effects of bottom hole assembly (BHA), drill pipe size, drilling fluid density, flow rate, inlet temperature of drilling fluid, and drilling fluid circulation time on the temperature distribution in wellbore annulus. It is found that the increase in annular temperature is about 1 °C/100 m in the horizontal section when a positive displacement motor (PDM) is used. A Φ139.7 mm drill pipe is more favorable for cooling than Φ139.7 mm + Φ127 mm drill pipe. Reducing drilling fluid density and flow rate and inlet temperature is beneficial to reduce bottom hole temperature. Bit-breaking rock, bit hydraulic horsepower, and drill pipe rotation will increase the bottom hole temperature. The research results can provide theoretical guidance for temperature prediction, selection of proper drill tools, and adjustment of relevant parameters in deep shale gas horizontal wells. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

15 pages, 12144 KiB  
Article
Oscillation Times in Water Hammer Signatures: New Insights for the Evaluation of Diversion Effectiveness in Field Cases
by Bingxiao Liu, Wenhan Yue, Yajing Wang, Zhibin Gu, Ran Wen, Yang Qiu, Pukang Yi and Xiaodong Hu
Processes 2024, 12(7), 1312; https://doi.org/10.3390/pr12071312 - 24 Jun 2024
Viewed by 638
Abstract
Diversion is a crucial technique for effectively improving shale reservoir production by creating more complex fracture networks. Evaluating diversion effectiveness is necessary to optimize the parameters in hydraulic fracturing. Water hammer diagnostics, an emerging fracturing diagnosis technique, evaluate diversion effectiveness by analyzing water [...] Read more.
Diversion is a crucial technique for effectively improving shale reservoir production by creating more complex fracture networks. Evaluating diversion effectiveness is necessary to optimize the parameters in hydraulic fracturing. Water hammer diagnostics, an emerging fracturing diagnosis technique, evaluate diversion effectiveness by analyzing water hammer signals. The water hammer attenuation, as indicated by the oscillation time, correlates with the complexity of fracture networks. However, it remains unclear whether the oscillation time is associated with diversion effectiveness. This paper elucidates the relationship between the water hammer oscillation time and diversion effectiveness by taking the probability of diversion and the treating pressure response as the evaluation criteria. Initially, a high-frequency pressure sensor was installed at the wellhead to sample the water hammer signals. Next, the oscillation times were determined using the feature extraction method. Simultaneously, the probability of diversion and the treating pressure response were calculated using the cepstrum error function and treating pressure curve, respectively. Then, the relationship between the oscillation time and diversion effectiveness was analyzed. Finally, a rapid judgment method for evaluating diversion effectiveness based on the water hammer oscillation time was proposed. The results indicated a negative correlation between the probability of diversion and the oscillation time, with higher probabilities resulting in lower oscillation times. The oscillation times exhibited a negative correlation with the treating pressure response, including the treating pressure increases and diversion pressure spikes, wherein a greater pressure differential led to lower oscillation times. Drawing from the statistics of a shale gas horizontal well in Sichuan, a better diversion effectiveness is associated with fewer oscillations, demonstrating a negative correlation between the diversion effectiveness and the oscillation time in water hammer signatures. Finally, a rapid judgment method for evaluating diversion effectiveness was proposed, utilizing the 95% confidence interval of the mean oscillation time. This paper offers useful insights into evaluating diversion performance in field cases. Full article
Show Figures

Figure 1

14 pages, 5974 KiB  
Article
Research on the Temperature Field Distribution Characteristics of Bottomhole PDC Bits during the Efficient Development of Unconventional Oil and Gas in Long Horizontal Wells
by Li Fu, Henglin Yang, Chunlong He, Yuan Wang, Heng Zhang, Gang Chen and Yukun Du
Processes 2024, 12(6), 1268; https://doi.org/10.3390/pr12061268 - 19 Jun 2024
Viewed by 585
Abstract
Unconventional tight oil and gas resources, including shale oil and gas, have become the main focus for increasing reserves and production. The safe and efficient development of unconventional oil and gas is a crucial demand for the energy development strategy. Deep tight oil [...] Read more.
Unconventional tight oil and gas resources, including shale oil and gas, have become the main focus for increasing reserves and production. The safe and efficient development of unconventional oil and gas is a crucial demand for the energy development strategy. Deep tight oil and gas resource development generally adopts horizontal well drilling methods. During drilling, especially in long horizontal sections, the high temperature frequently causes failures of downhole drilling tools and rotary steering tools. The temperature rises sharply during rock breaking with the drill bit. Existing wellbore heat transfer models do not fully consider the impact of heat generated by the drill bit on the wellbore temperature field. This paper aims to experimentally study the temperature rise law of the cutting tooth of the bottom polycrystalline diamond compact (PDC) bit during rock breaking. A set of evaluation devices was developed to study the temperature field distribution characteristics at the bottom of the PDC bit during rock breaking under different experimental conditions. The results indicate that the flow rate of drilling fluid, bit rotation speed, and weight on bit (WOB) significantly affect the distribution of the temperature field at the well bottom. This experimental research on the temperature field distribution characteristics at the bottom of the PDC bit during rock breaking helps reveal the heat transfer characteristics of the long horizontal section wellbore, guide the optimization of drilling parameters, and develop temperature control methods. It is of great significance for the advancement of efficient development technologies for unconventional resources in long horizontal wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 11511 KiB  
Article
Simulation of Elbow Erosion of Gas–Liquid–Solid Three-Phase Shale Gas Gathering Pipeline Based on CFD-DEM
by Yixuan Wang, Rui Tan, Bei Chang, Bin Chen, Junxiang Li, Qianli Lu and Tao Zhang
Processes 2024, 12(6), 1231; https://doi.org/10.3390/pr12061231 - 15 Jun 2024
Viewed by 500
Abstract
Shale gas gathering pipelines often contain liquid water and solid sand in the early stage of production, which leads to the failure of pipeline components easily under the action of gas–liquid–solid three phases. A computational fluid dynamics (CFD) model based on the fluid [...] Read more.
Shale gas gathering pipelines often contain liquid water and solid sand in the early stage of production, which leads to the failure of pipeline components easily under the action of gas–liquid–solid three phases. A computational fluid dynamics (CFD) model based on the fluid volume method (VOF) and discrete element method (DEM) was established to study the flow law of gas–liquid–solid three-phase flow in the elbow of shale gas gathering pipeline and the erosion law of the inner surface of the elbow was studied by coupling the Oka erosion prediction model. By comparing the experimental results of erosion damage of the elbow, it is found that the model established can well predict the erosion characteristics and erosion amount under the action of three phases. Combined with the field pipeline parameters and operating conditions, the paper further simulates the elbow erosion behavior under relevant working conditions. The results show that the particles rotate clockwise from the outer wall of the pipe through the bottom of the pipe when passing through the elbow under the action of gas and water phases. When the gas velocity increases, the particles at the elbow mainly gather at the bottom of the elbow and the wall of the outer arch. When the water content increases gradually, the particles gathered on the outer arch wall of the elbow move along the outer arch wall of the elbow and face the inner arch surface gradually, and the erosion area is mainly concentrated on the outer arch wall of the elbow and the outlet horizontal pipe. Under the condition of the liquid phase, the movement characteristics of the water phase and particles in the elbow of the gas gathering pipeline and the erosion characteristics of the pipeline surface are obviously different from those under the condition of the gas–solid two-phase. The model and simulation results established in this paper provide a reference for the erosion damage protection of shale gas gathering pipeline elbow. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 7227 KiB  
Article
Evaluation of Recoverable Hydrocarbon Reserves and Area Selection Methods for In Situ Conversion of Shale
by Lianhua Hou, Zhongying Zhao, Xia Luo, Jingkui Mi, Zhenglian Pang, Lijun Zhang and Senhu Lin
Energies 2024, 17(11), 2717; https://doi.org/10.3390/en17112717 - 3 Jun 2024
Viewed by 311
Abstract
It is well known that the existing horizontal-well-drilling and hydraulic fracturing technology used to achieve large-scale, cost-effective production from immature to low–moderate-maturity continental shale in China, where the organic matter mainly exists in solid form, is fairly ineffective. To overcome the obstacles, in [...] Read more.
It is well known that the existing horizontal-well-drilling and hydraulic fracturing technology used to achieve large-scale, cost-effective production from immature to low–moderate-maturity continental shale in China, where the organic matter mainly exists in solid form, is fairly ineffective. To overcome the obstacles, in situ conversion technology seems feasible, while implementing it in the target layer along with estimating the amount of expected recoverable hydrocarbon in such shale formations seems difficult. This is because there are no guidelines for choosing the most appropriate method and selecting relevant key parameters for this purpose. Hence, based on thermal simulation experiments during the in situ conversion of crude oil from the Triassic Chang 73 Formation in the Ordos Basin and the Cretaceous Nenjiang Formation in the Songliao Basin, this deficiency in knowledge was addressed. First, relationships between the in situ-converted total organic carbon (TOC) content and the vitrinite reflectance (Ro) of the shales and between the residual oil volume and the hydrocarbon yield were established. Second, the yields of residual oil and in situ-converted hydrocarbon were measured, revealing their sensitivity to fluid pressure and crude oil density. In addition, a model was proposed to estimate the amount of in situ-converted hydrocarbon based on TOC, hydrocarbon generation potential, Ro, residual oil volume, fluid pressure, and crude oil density. Finally, a method was established to determine key parameters of the final hydrocarbon yield from immature to low–moderate-maturity organic material during in situ conversion in shales. Following the procedure outlined in this paper, the estimated recoverable in situ-converted oil in the shales of the Nenjiang Formation in the Songliao Basin was estimated to be approximately 292 × 108 tons, along with 18.5 × 1012 cubic meters of natural gas, in an area of approximately 8 × 104 square kilometers. Collectively, the method developed in this study is independent of the organic matter type and other geological and/or petrophysical properties of the formation and can be applied to other areas globally where there are no available in situ conversion thermal simulation experimental data. Full article
(This article belongs to the Special Issue Development of Unconventional Oil and Gas Fields)
Show Figures

Figure 1

19 pages, 7233 KiB  
Article
Simulation of Key Influencing Factors of Hydraulic Fracturing Fracture Propagation in a Shale Reservoir Based on the Displacement Discontinuity Method (DDM)
by Pengcheng Ma and Shanfa Tang
Processes 2024, 12(5), 1000; https://doi.org/10.3390/pr12051000 - 15 May 2024
Viewed by 705
Abstract
In the process of the large-scale hydraulic fracturing of a shale gas field in the Weiyuan area of Sichuan province, the quantitative description and evaluation of hydraulic fracture expansion morphology and the three-dimensional distribution law are the key points of evaluation of block [...] Read more.
In the process of the large-scale hydraulic fracturing of a shale gas field in the Weiyuan area of Sichuan province, the quantitative description and evaluation of hydraulic fracture expansion morphology and the three-dimensional distribution law are the key points of evaluation of block fracturing transformation effect. Many scholars have used the finite element method, discrete element method, grid-free method and other numerical simulation methods to quantitatively characterize hydraulic fractures, but there are often the problems that the indoor physical simulation results are much different from the actual results and the accuracy of most quantitative studies is poor. Considering rock mechanics parameters and based on the displacement discontinuity method (DDM), a single-stage multi-cluster fracture propagation model of horizontal well was established. The effects of Young’s modulus, Poisson’s ratio, the in situ stress difference, the approximation angle, the perforation cluster number and the perforation spacing on the formation of complex fracture networks and on the geometrical parameters of hydraulic fractures were simulated. The research results can provide theoretical reference and practical guidance for the optimization of large-scale fracturing parameters and the quantitative post-fracturing evaluation of horizontal wells in unconventional reservoirs such as shale gas reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

20 pages, 52830 KiB  
Article
Application of Machine Learning for Shale Oil and Gas “Sweet Spots” Prediction
by Hongjun Wang, Zekun Guo, Xiangwen Kong, Xinshun Zhang, Ping Wang and Yunpeng Shan
Energies 2024, 17(9), 2191; https://doi.org/10.3390/en17092191 - 2 May 2024
Viewed by 904
Abstract
With the continuous improvement of shale oil and gas recovery technologies and achievements, a large amount of geological information and data have been accumulated for the description of shale reservoirs, and it has become possible to use machine learning methods for “sweet spots” [...] Read more.
With the continuous improvement of shale oil and gas recovery technologies and achievements, a large amount of geological information and data have been accumulated for the description of shale reservoirs, and it has become possible to use machine learning methods for “sweet spots” prediction in shale oil and gas areas. Taking the Duvernay shale oil and gas field in Canada as an example, this paper attempts to build recoverable shale oil and gas reserve prediction models using machine learning methods and geological and development big data, to predict the distribution of recoverable shale oil and gas reserves and provide a basis for well location deployment and engineering modifications. The research results of the machine learning model in this study are as follows: ① Three machine learning methods were applied to build a prediction model and random forest showed the best performance. The R2 values of the built recoverable shale oil and gas reserves prediction models are 0.7894 and 0.8210, respectively, with an accuracy that meets the requirements of production applications; ② The geological main controlling factors for recoverable shale oil and gas reserves in this area are organic matter maturity and total organic carbon (TOC), followed by porosity and effective thickness; the main controlling factor for engineering modifications is the total proppant volume, followed by total stages and horizontal lateral length; ③ The abundance of recoverable shale oil and gas reserves in the central part of the study area is predicted to be relatively high, which makes it a favorable area for future well location deployment. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

23 pages, 9737 KiB  
Article
Integrated Study on Carbon Dioxide Geological Sequestration and Gas Injection Huff-n-Puff to Enhance Shale Oil Recovery
by Lei Wang, Shengyao Cai, Wenli Chen and Gang Lei
Energies 2024, 17(8), 1957; https://doi.org/10.3390/en17081957 - 19 Apr 2024
Viewed by 761
Abstract
Multi-stage fractured horizontal well technology is an effective development method for unconventional reservoirs; however, shale oil reservoirs with ultra-low permeability and micro/nanopore sizes are still not ideal for production and development. Injecting CO2 into the reservoir, after hydraulic fracturing, gas injection flooding [...] Read more.
Multi-stage fractured horizontal well technology is an effective development method for unconventional reservoirs; however, shale oil reservoirs with ultra-low permeability and micro/nanopore sizes are still not ideal for production and development. Injecting CO2 into the reservoir, after hydraulic fracturing, gas injection flooding often produces a gas channeling phenomenon, which affects the production of shale oil. In comparison, CO2 huff-n-puff development has become a superior method in the development of multi-stage fractured horizontal wells in shale reservoirs. CO2 huff and injection can not only improve shale oil recovery but also store the CO2 generated in industrial production in shale reservoirs, which can reduce greenhouse gas emissions to a certain extent and achieve carbon capture, utilization, and storage (CCUS). In this paper, the critical temperature and critical parameters of fluid in shale reservoirs are corrected by the critical point correction method in this paper, and the influence of reservoir pore radius on fluid phase behavior and shale oil production is analyzed. According to the shale reservoir applied in isolation to the actual state of the reservoir and under the condition of a complex network structure, we described the seepage characteristics of shale oil and gas and CO2 in the reservoir by embedding a discrete fracture technology structure and fracture network, and we established the numerical model of the CO2 huff-n-huff development of multi-stage fractured horizontal wells for shale oil. We used the actual production data of the field for historical fitting to verify the validity of the model. On this basis, CO2 huff-n-puff development under different gas injection rates, huff-n-puff cycles, soaking times, and other factors was simulated; cumulative oil production and CO2 storage were compared; and the influence of each factor on development and storage was analyzed, which provided theoretical basis and specific ideas for the optimization of oilfield development modes and the study of CO2 storage. Full article
(This article belongs to the Special Issue Advances in the Development of Unconventional Oil and Gas Resources)
Show Figures

Figure 1

13 pages, 4701 KiB  
Article
An Optimal Model for Determination Shut-In Time Post-Hydraulic Fracturing of Shale Gas Wells: Model, Validation, and Application
by Jianmin Li, Gang Tian, Xi Chen, Bobo Xie, Xin Zhang, Jinchi Teng, Zhihong Zhao and Haozeng Jin
Processes 2024, 12(2), 399; https://doi.org/10.3390/pr12020399 - 17 Feb 2024
Viewed by 801
Abstract
The global shale gas resources are huge and have good development prospects, but shale is mainly composed of nanoscale pores, which have the characteristics of low porosity and low permeability. Horizontal drilling and volume fracturing techniques have become the effective means for developing [...] Read more.
The global shale gas resources are huge and have good development prospects, but shale is mainly composed of nanoscale pores, which have the characteristics of low porosity and low permeability. Horizontal drilling and volume fracturing techniques have become the effective means for developing the shale reservoirs. However, a large amount of mining data indicate that the fracturing fluid trapped in the reservoir will inevitably cause hydration interaction between water and rock. On the one hand, the intrusion of fracturing fluid into the formation causes cracks to expand, which is conducive to the formation of complex fracture networks; on the other hand, the intrusion of fracturing fluid into the formation causes the volume expansion of clay minerals, resulting in liquid-phase trap damage. At present, the determination of well closure time is mainly based on experience without theoretical guidance. Therefore, how to effectively play the positive role of shale hydration while minimizing its negative effects is the key to optimizing the well closure time after fracturing. This paper first analyzes the shale pore characteristics of organic pores, clay pores, and brittle mineral pores, and the multi-pore self-absorption model of shale is established. Then, combined with the distribution characteristics of shale hydraulic fracturing fluid in the reservoir, the calculation model of backflow rate and shut-in time is established. Finally, the model is validated and applied with an experiment and example well. The research results show that the self-imbibition rate increases with the increase in self-imbibition time, and the flowback rate decreases with the increase in self-imbibition time. The self-imbibition of slick water is the maximum, the self-imbibition of breaking fluid is the minimum, and the self-imbibition of mixed fluid is the middle, and the backflow rates of these three liquids are in reverse order. It is recommended the shut-in time of Longmaxi Formation shale is 17 days according to the hydration and infiltration model. Full article
(This article belongs to the Special Issue Advanced Fracturing Technology for Oil and Gas Reservoir Stimulation)
Show Figures

Figure 1

21 pages, 5491 KiB  
Article
Multi-Fracture Propagation Considering Perforation Erosion with Respect to Multi-Stage Fracturing in Shale Reservoirs
by Lin Tan, Lingzhi Xie, Bo He and Yao Zhang
Energies 2024, 17(4), 828; https://doi.org/10.3390/en17040828 - 9 Feb 2024
Cited by 1 | Viewed by 755
Abstract
Shale gas is considered a crucial global energy source. Hydraulic fracturing with multiple fractures in horizontal wells has been a crucial method for stimulating shale gas. During multi-stage fracturing, the fracture propagation is non-uniform, and fractures cannot be induced in some clusters due [...] Read more.
Shale gas is considered a crucial global energy source. Hydraulic fracturing with multiple fractures in horizontal wells has been a crucial method for stimulating shale gas. During multi-stage fracturing, the fracture propagation is non-uniform, and fractures cannot be induced in some clusters due to the influence of stress shadow. To improve the multi-fracture propagation performance, technologies such as limited-entry fracturing are employed. However, perforation erosion limits the effect of the application of these technologies. In this paper, a two-dimensional numerical model that considers perforation erosion is established based on the finite element method. Then, the multi-fracture propagation, taking into account the impact of perforation erosion, is studied under different parameters. The results suggest that perforation erosion leads to a reduction in the perforation friction and exacerbates the uneven propagation of the fractures. The effects of erosion on multi-fracture propagation are heightened with a small perforation diameter and perforation number. However, reducing the perforation number and perforation diameter remains an effective method for promoting uniform fracture propagation. As the cluster spacing is increased, the effects of erosion on multi-fracture propagation are aggravated because of the weakened stress shadow effect. Furthermore, for a given volume of fracturing fluid, although a higher injection rate is associated with a shorter injection time, the effects of erosion on the multi-fracture propagation are more severe at a high injection rate. Full article
Show Figures

Figure 1

13 pages, 3449 KiB  
Article
Diagnostics of Secondary Fracture Properties Using Pressure Decline Data during the Post-Fracturing Soaking Process for Shale Gas Wells
by Jianfa Wu, Liming Ren, Cheng Chang, Shuyao Sheng, Jian Zhu, Sha Liu, Weiyang Xie and Fei Wang
Processes 2024, 12(2), 239; https://doi.org/10.3390/pr12020239 - 23 Jan 2024
Viewed by 8063
Abstract
In addition to main fractures, a large number of secondary fractures are formed after the volumetric fracturing of shale gas wells. The secondary fracture properties are so complex, that it is difficult to identify and diagnose by direct monitoring methods. In this study, [...] Read more.
In addition to main fractures, a large number of secondary fractures are formed after the volumetric fracturing of shale gas wells. The secondary fracture properties are so complex, that it is difficult to identify and diagnose by direct monitoring methods. In this study, a new approach to model and diagnose secondary fracture properties is presented. First, a new pressure decline model, which is composed of four interconnected domains, i.e., wellbore, main fractures, secondary fractures, and reservoir matrix pores, is built. Then, the fracturing fluid pumping and post-fracturing soaking processes are simulated. The simulated pressure derivatives reflect five fracture-dominated flow regimes, which correspond to multiple alternating positive and negative slopes of the pressure decline derivative. The results of sensitivity simulation show that the density, permeability, and width of secondary fractures are the main controlling factors affecting the size ratio. Finally, based on the simulated pressure decline characteristics, a diagnostic method for the identification and analysis of secondary fracture properties is formed. This method is then applied to three platform wells in the Changning shale gas field in China. This study builds the correlation between the secondary fracture properties and the shut-in pressure decline characteristics, and also provides a theoretical method for comprehensive post-fracturing evaluation of shale gas horizontal wells. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Rock Mechanics and Engineering)
Show Figures

Figure 1

16 pages, 6259 KiB  
Article
Experimental Investigation of Fracture Propagation in Clayey Silt Hydrate-Bearing Sediments
by Yanjiang Yu, Kaixiang Shen and Haifeng Zhao
Energies 2024, 17(2), 528; https://doi.org/10.3390/en17020528 - 22 Jan 2024
Cited by 2 | Viewed by 903
Abstract
More than 90% of the natural gas hydrate resources are reserved as marine clayey silt sediments. It is of great significance to efficiently develop a clayey silt hydrate. At present, there are problems of low single well production and small depressurization range in [...] Read more.
More than 90% of the natural gas hydrate resources are reserved as marine clayey silt sediments. It is of great significance to efficiently develop a clayey silt hydrate. At present, there are problems of low single well production and small depressurization range in its production test, which is still a long way from commercial exploitation. The combination of hydraulic fracturing technology and other methods such as depressurization method is regarded as one of the potential technical means to achieve the commercial exploitation of the hydrate. However, compared with shale gas reservoirs and coalbed methane reservoirs, clayey silt hydrate reservoirs have special mechanical properties, resulting in unique hydraulic fracturing processes. Therefore, it is necessary to study the fracture initiation and propagation laws of clayey silt hydrate reservoirs. To this end, we carried out large-scale (30 × 30 × 30 cm) true triaxial hydraulic fracturing experiments using a simulated material with similar mechanics, porosity, and permeability to clayey silt hydrate-bearing sediments. The effects of completion method, fracturing method, and fracturing fluid displacement on hydraulic fracture propagation of clayey silt hydrate-bearing sediments were studied. The results showed that a perforated completion can significantly increase the fracture reconstruction area and decrease the fracture initiation pressure compared to an open hole completion. Due to the small horizontal stress difference, it is feasible to carry out temporary plugging fracturing in clayey silt hydrate reservoirs. Temporary plugging fracturing can form steering fractures and significantly improve fracture complexity and fracture area. Increasing the fracturing fluid displacement can significantly increase the fracture area as well. When conducting fracturing in clayey silt hydrate-bearing sediments, the fracturing fluid filtration area is obviously larger than the fracture propagation area. Therefore, it is recommended to use a high-viscosity fracturing fluid to reduce the filtration of the fracturing fluid and improve the fracturing fluid efficiency. This study preliminarily explores the feasibility of temporary plugging fracturing in clayey silt hydrate reservoirs and analyzes the effect of completion methods on the propagation of fracturing fractures, which can provide a reference for the research conducted on the fracturing stimulation of clayey silt hydrate reservoirs. Full article
(This article belongs to the Special Issue Advances in Reservoir Simulation)
Show Figures

Figure 1

22 pages, 22304 KiB  
Article
Study on Fracture Propagation Rules of Shale Refracturing Based on CT Technology
by Jialiang Zhang, Xiaoqiong Wang, Huajian Xiao, Hongkui Ge and Jixiang He
Processes 2024, 12(1), 131; https://doi.org/10.3390/pr12010131 - 3 Jan 2024
Viewed by 1439
Abstract
Reactivating oil and gas wells, increasing oil and gas production, and improving recovery provide more opportunities for energy supply especially in the extraction of unconventional oil and gas reservoirs. Due to changes caused by well completion and production in pore pressure around oil [...] Read more.
Reactivating oil and gas wells, increasing oil and gas production, and improving recovery provide more opportunities for energy supply especially in the extraction of unconventional oil and gas reservoirs. Due to changes caused by well completion and production in pore pressure around oil and gas wells, subsequently leading to changes in ground stress, and the presence of natural and induced fractures in the reservoir, the process of refracturing is highly complex. This complexity is particularly pronounced in shale oil reservoirs with developed weak layer structures. Through true triaxial hydraulic fracturing experiments on Jimsar shale and utilizing micro-CT to characterize fractures, this study investigates the mechanisms and patterns of refracturing. The research indicates: (1) natural fractures and the stress states in the rock are the primary influencing factors in the fracture propagation. Because natural fractures are widely developed in Jimsar shale, natural fractures are the main influencing factors of hydraulic fracturing, especially in refracturing, the existing fractures have a greater impact on the propagation of secondary fracturing fractures. (2) Successful sealing of existing fractures using temporary blocking agents is crucial for initiating new fractures in refracturing. Traditional methods of plugging the seam at the root of existing fractures are ineffective, whereas extensive injection of blocking agents, forming large “sheet-like” blocking bodies in old fractures, yields better sealing effects, promoting the initiation of new fractures. (3) Moderately increasing the pumping rate and viscosity of fracturing fluid is advantageous in forming “sheet-like” temporary blocking bodies, enhancing the complexity of the network of new fractures in refracturing. (4) When there is a high horizontal stress difference, after sealing old fractures, the secondary hydraulic fractures initiate parallel to and extend from the old fractures. In cases of low horizontal stress difference, the complexity of secondary hydraulic fractures increases. When the horizontal stress changes direction, the secondary hydraulic fractures also change direction. It is recommended to use high-viscosity fracturing fluid and moderately increase the pumping rate, injecting blocking agents to seal old fractures, thereby enhancing the complexity of the network of refracturing. These findings provide important technical guidance for improving the efficiency of shale oil reservoir development. Full article
Show Figures

Figure 1

Back to TopTop