Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (912)

Search Parameters:
Keywords = shape memory alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2371 KiB  
Article
Deflection and Performance Analysis of Shape Memory Alloy-Driven Fiber–Elastomer Composites with Anisotropic Structure
by Anett Endesfelder, Achyuth Ram Annadata, Aline Iobana Acevedo-Velazquez, Markus Koenigsdorff, Gerald Gerlach, Klaus Röbenack, Chokri Cherif and Martina Zimmermann
Materials 2024, 17(19), 4855; https://doi.org/10.3390/ma17194855 - 2 Oct 2024
Viewed by 77
Abstract
Due to their advantageous characteristics, shape memory alloys (SMAs) are prominent representatives in smart materials. They can be used in application fields such as soft robotics, biomimetics, and medicine. Within this work, a fiber–elastomer composite with integrated SMA wire is developed and investigated. [...] Read more.
Due to their advantageous characteristics, shape memory alloys (SMAs) are prominent representatives in smart materials. They can be used in application fields such as soft robotics, biomimetics, and medicine. Within this work, a fiber–elastomer composite with integrated SMA wire is developed and investigated. Bending and torsion occur when the SMA is activated because of the anisotropic structure of the textile. The metrological challenge in characterizing actuators that perform both bending and torsion lies in the large active deformation of the composite and the associated difficulties in fully imaging and analyzing this with optical measurement methods. In this work, a multi-sensor camera system with up to four pairs of cameras connected in parallel is used. The structure to be characterized is recorded from all sides to evaluate the movement in three-dimensional space. The energy input and the time required for an even deflection of the actuator are investigated experimentally. Here, the activation parameters for the practical energy input required for long life with good deflection, i.e., good efficiency, were analyzed. Different parameters and times are considered to minimize the energy input and, thus, to prevent possible overheating and damage to the wire. Thermography is used to evaluate the heating of the SMA wire at different actuation times over a defined time. Full article
Show Figures

Figure 1

10 pages, 4719 KiB  
Article
Cu-Al-Ni Nanocrystalline Compacts Obtained by Spark Plasma Sintering of Mechanically Alloyed Powders
by Calin-Virgiliu Prica, Traian Florin Marinca, Florin Popa, Argentina Niculina Sechel, Bogdan Viorel Neamțu, Horea Florin Chicinaș and Ionel Chicinaș
Materials 2024, 17(19), 4847; https://doi.org/10.3390/ma17194847 - 1 Oct 2024
Viewed by 237
Abstract
The aim of this work is to obtain Cu-13.5Al-4Ni alloy for use as shape memory alloy by Spark Plasma Sintering (SPS) of mechanically alloyed powder. The study investigates the structural and microstructural changes in terms of crystal parameters, crystallite sizes, and phases evolution [...] Read more.
The aim of this work is to obtain Cu-13.5Al-4Ni alloy for use as shape memory alloy by Spark Plasma Sintering (SPS) of mechanically alloyed powder. The study investigates the structural and microstructural changes in terms of crystal parameters, crystallite sizes, and phases evolution during mechanical alloying and spark plasma sintering of Cu-13.5Al-4Ni powders. We obtained alloyed powders with a structure composed of α(Cu), AlNi intermetallic compound and small amounts of elemental Al through the mechanical alloying technique. After spark plasma sintering at 900 °C, the microstructure consists of an AlNi compound distributed at the edge of α(Cu) grains. The crystallite sizes of both, α(Cu) and AlNi are in nanoscale order after 16 h of milling (9 and 6.5 nm respectively). After sintering at 900 °C (in Ar atmosphere, without holding time), the crystallite sizes increase to 46 nm for α(Cu) and to 40 nm for AlNi compound. Also, the Cu-13.5Al-4Ni compacts achieve a final density after sintering at 900 °C of around 80% from the theoretical density. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

19 pages, 6256 KiB  
Article
Investigating the Shape Memory Effect and Corrosion Resistance of the Fe-(17-2x) Mn-6Si-xNi-yCr-0.3C Alloys (x = 0, 1, 2, 3, 4; y = 0, 1, 3, 5)
by Aqeel Abbas, Kai-Cheng Chang, Kun-Ming Lin and Hsin-Chih Lin
Inorganics 2024, 12(10), 262; https://doi.org/10.3390/inorganics12100262 - 30 Sep 2024
Viewed by 194
Abstract
In this study, low Mn content Fe-Mn-Si-based shape memory alloys [Fe-(17-2x) Mn-6Si-xNi-yCr-0.3C (x = 0, 1, 2, 3, 4; y = 0, 1, 3, 5)] were prepared via vacuum arc remelting. The alloys were hot-rolled and solid-solution-treated at 1150 °C for 1 h [...] Read more.
In this study, low Mn content Fe-Mn-Si-based shape memory alloys [Fe-(17-2x) Mn-6Si-xNi-yCr-0.3C (x = 0, 1, 2, 3, 4; y = 0, 1, 3, 5)] were prepared via vacuum arc remelting. The alloys were hot-rolled and solid-solution-treated at 1150 °C for 1 h followed by aging at elevated temperatures. The effects of Cr and Ni addition on the shape memory performance and corrosion resistance of the alloys in 3.5 wt% NaCl solutions were investigated using bending test and potentiodynamic polarization, respectively. It was revealed that the recoverable strain of the alloys remains larger than 2% when 1Ni is replaced with 2Mn and Cr is added. However, it becomes less than 2% in 11Mn and 9Mn alloys because of the easy formation of the α’ martensite. The shape memory effect of alloys is highly improved due to the precipitation of fine carbides in the grains by the addition of Cr and after aging treatment at elevated temperatures (≧700 °C). The highest shape recovery ratios of 88.3% for 17Mn0Ni3Cr, 94.0% for 15Mn1Ni3Cr, 94.4% for 13Mn2Ni5Cr, 88.1% for 11Mn3Ni5Cr, and 86.8% for 9Mn4Ni7Cr, respectively, were achieved after 800 °C aging treatment. The strip-like second phase (carbides) forms at the grain boundaries in the Cr-free alloys after 600 °C aging treatment. There are lots of fine carbides (M23C6 and M7C3) precipitated in the interior of the grains at the aging treatments ≧ 700 °C. However, M7C3 is eliminated at 900 °C aging treatment. The corrosion resistance results showed that the corrosion resistance of the alloys is improved by adding Cr. The maximum corrosion potentials (−0.474 V) have been observed for 13Mn2Ni5Cr, and similar mechanisms have been analyzed in all series of alloys. Full article
17 pages, 19203 KiB  
Article
Perspectives on Adhesive–Bolted Hybrid Connection between Fe Shape Memory Alloys and Concrete Structures for Active Reinforcements
by Xuhong Qiang, Delin Zhang, Yapeng Wu and Xu Jiang
Appl. Sci. 2024, 14(19), 8800; https://doi.org/10.3390/app14198800 - 30 Sep 2024
Viewed by 295
Abstract
The prestressed active reinforcement of concrete structures using iron-based shape memory alloys (Fe-SMAs) is investigated in this experimental study through three connecting methods: adhesive–bolted hybrid connection, bolted connection, and adhesively bonded connection by activating at elevated temperatures (heating and cooling) and constraining deformation [...] Read more.
The prestressed active reinforcement of concrete structures using iron-based shape memory alloys (Fe-SMAs) is investigated in this experimental study through three connecting methods: adhesive–bolted hybrid connection, bolted connection, and adhesively bonded connection by activating at elevated temperatures (heating and cooling) and constraining deformation to generate prestress inside Fe-SMAs, through which compressive stress is generated in the parent concrete structures. In tests, the Fe-SMA is activated at 250 °C using a hot air gun, generating a prestress of 184.6–246 MPa. The experimental results show that local stress concentration in the concrete specimen and Fe-SMA plate around the hole is caused by the bolted connection. The adhesively bonded connection is prone to softening and slip of the structural adhesive during the activation process, thereby reducing the overall recovery force of Fe-SMAs. The adhesive–bolted hybrid connection effectively mitigates the local stress concentration problem of concrete and Fe-SMAs at anchor holes, while avoiding the prestress loss caused by the softening and slip of structural adhesive during elevated-temperature activation, achieving good reinforcement effect. This study on the connection methods of an Fe-SMA for reinforcing concrete structures provides both experimental support and practical guidance for its engineering application, offering new perspectives for future research. Full article
Show Figures

Figure 1

19 pages, 4431 KiB  
Article
Microstructure, Mechanical Properties and Corrosion Performance of Laser-Welded NiTi Shape Memory Alloy in Simulated Body Fluid
by A. Rajesh Kannan, N. Siva Shanmugam, V. Rajkumar, M. Vishnukumar, S. G. Channabasavanna, Junho Oh, Than Trong Khanh Dat and Jonghun Yoon
Materials 2024, 17(19), 4801; https://doi.org/10.3390/ma17194801 - 29 Sep 2024
Viewed by 438
Abstract
Laser-welding is a promising technique for welding NiTi shape memory alloys with acceptable tensile strength and comparable corrosion performance for biomedical applications. The microstructural characteristics and localized corrosion behavior of NiTi alloys in a simulated body fluid (SBF) environment are evaluated. A microstructural [...] Read more.
Laser-welding is a promising technique for welding NiTi shape memory alloys with acceptable tensile strength and comparable corrosion performance for biomedical applications. The microstructural characteristics and localized corrosion behavior of NiTi alloys in a simulated body fluid (SBF) environment are evaluated. A microstructural examination indicated the presence of fine and equiaxed grains with a B2 austenite phase in the base metal (BM), while the weld metal (WM) had a coarse dendritic microstructure with intermetallic precipitates including Ti2Ni and Ni4Ti3. The hardness decreased from the BM to the WM, and the average hardness for the BM was 352 ± 5 HV, while it ranged between 275 and 307 HV and 265 and 287 HV for the HAZ and WM, respectively. Uni-axial tensile tests revealed a substantial decrease in the tensile strength of NiTi WM (481 ± 19 MPa), with a reduced joint efficiency of 34%. The localized corrosion performance of NiTi BM was superior to the WM, with electrochemical test responses indicating a pitting potential and low corrosion rate in SBF environments. The corrosion rate of the NiTi BM and WM was 0.048 ± 0.0018 mils per year (mpy) and 0.41 ± 0.019 mpy, respectively. During welding, NiTi’s strength and biocompatibility properties changed due to the alteration in microstructure and formation of intermetallic phases as a result of Ti enrichment. The performance and safety of welded medical devices may be impacted during welding, and it is essential to preserve the biocompatibility of NiTi components for biomedical applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

55 pages, 14244 KiB  
Review
Manufacturing, Processing, and Characterization of Self-Expanding Metallic Stents: A Comprehensive Review
by Saeedeh Vanaei, Mahdi Hashemi, Atefeh Solouk, Mohsen Asghari Ilani, Omid Amili, Mohamed Samir Hefzy, Yuan Tang and Mohammad Elahinia
Bioengineering 2024, 11(10), 983; https://doi.org/10.3390/bioengineering11100983 - 29 Sep 2024
Viewed by 247
Abstract
This paper aims to review the State of the Art in metal self-expanding stents made from nitinol (NiTi), showing shape memory and superelastic behaviors, to identify the challenges and the opportunities for improving patient outcomes. A significant contribution of this paper is its [...] Read more.
This paper aims to review the State of the Art in metal self-expanding stents made from nitinol (NiTi), showing shape memory and superelastic behaviors, to identify the challenges and the opportunities for improving patient outcomes. A significant contribution of this paper is its extensive coverage of multidisciplinary aspects, including design, simulation, materials development, manufacturing, bio/hemocompatibility, biomechanics, biomimicry, patency, and testing methodologies. Additionally, the paper offers in-depth insights into the latest practices and emerging trends, with a special emphasis on the transformative potential of additive manufacturing techniques in the development of metal stents. By consolidating existing knowledge and highlighting areas for future innovation, this review provides a valuable roadmap for advancing nitinol stents. Full article
Show Figures

Graphical abstract

15 pages, 8933 KiB  
Article
Giant Elastocaloric Effect and Improved Cyclic Stability in a Directionally Solidified (Ni50Mn31Ti19)99B1 Alloy
by Honglin Wang, Yueping Wang, Guoyao Zhang, Zongbin Li, Jiajing Yang, Jinwei Li, Bo Yang, Haile Yan and Liang Zuo
Materials 2024, 17(19), 4756; https://doi.org/10.3390/ma17194756 - 27 Sep 2024
Viewed by 287
Abstract
Superelastic shape memory alloys with an integration of large elastocaloric response and good cyclability are crucially demanded for the advancement of solid-state elastocaloric cooling technology. In this study, we demonstrate a giant elastocaloric effect with improved cyclic stability in a <001>A textured [...] Read more.
Superelastic shape memory alloys with an integration of large elastocaloric response and good cyclability are crucially demanded for the advancement of solid-state elastocaloric cooling technology. In this study, we demonstrate a giant elastocaloric effect with improved cyclic stability in a <001>A textured polycrystalline (Ni50Mn31Ti19)99B1 alloy developed through directional solidification. It is shown that large adiabatic temperature variation (|ΔTad|) values more than 15 K are obtained across the temperature range from 283 K to 373 K. In particular, a giant ΔTad up to −27.2 K is achieved by unloading from a relatively low compressive stress of 412 MPa at 303 K. Moreover, persistent |ΔTad| values exceeding 8.5 K are sustained for over 12,000 cycles, exhibiting a very low attenuation behavior with a rate of 7.5 × 10−5 K per cycle. The enhanced elastocaloric properties observed in the present alloy are ascribed to the microstructure texturing as well as the introduction of a secondary phase due to boron alloying. Full article
Show Figures

Figure 1

8 pages, 2738 KiB  
Communication
Predictions of Lattice Parameters in NiTi High-Entropy Shape-Memory Alloys Using Different Machine Learning Models
by Tu-Ngoc Lam, Jiajun Jiang, Min-Cheng Hsu, Shr-Ruei Tsai, Mao-Yuan Luo, Shuo-Ting Hsu, Wen-Jay Lee, Chung-Hao Chen and E-Wen Huang
Materials 2024, 17(19), 4754; https://doi.org/10.3390/ma17194754 - 27 Sep 2024
Viewed by 304
Abstract
This work applied three machine learning (ML) models—linear regression (LR), random forest (RF), and support vector regression (SVR)—to predict the lattice parameters of the monoclinic B19′ phase in two distinct training datasets: previously published ZrO2-based shape-memory ceramics (SMCs) and NiTi-based high-entropy [...] Read more.
This work applied three machine learning (ML) models—linear regression (LR), random forest (RF), and support vector regression (SVR)—to predict the lattice parameters of the monoclinic B19′ phase in two distinct training datasets: previously published ZrO2-based shape-memory ceramics (SMCs) and NiTi-based high-entropy shape-memory alloys (HESMAs). Our findings showed that LR provided the most accurate predictions for ac, am, bm, and cm in NiTi-based HESMAs, while RF excelled in computing βm for both datasets. SVR disclosed the largest deviation between the predicted and actual values of lattice parameters for both training datasets. A combination approach of RF and LR models enhanced the accuracy of predicting lattice parameters of martensitic phases in various shape-memory materials for stable high-temperature applications. Full article
Show Figures

Figure 1

13 pages, 3514 KiB  
Article
Modeling and Analysis of Resistance-Sensing Characteristics for Two-Way Shape Memory Alloy-Based Deep-Sea Actuators
by Jian Guo, Binbin Pan, Weicheng Cui and Huiming Xiang
J. Mar. Sci. Eng. 2024, 12(10), 1703; https://doi.org/10.3390/jmse12101703 - 26 Sep 2024
Viewed by 335
Abstract
Deep-sea actuators based on shape memory alloys (SMAs) are an emerging frontier field of multidisciplinary crossover, and the resistive sensing characteristics are the basis for the drive control of SMA deep-sea actuators. The resistance and resistivity of SMAs are complex and highly dependent [...] Read more.
Deep-sea actuators based on shape memory alloys (SMAs) are an emerging frontier field of multidisciplinary crossover, and the resistive sensing characteristics are the basis for the drive control of SMA deep-sea actuators. The resistance and resistivity of SMAs are complex and highly dependent on temperature and stress, and there is no complete description of SMAs for extreme environments of high pressure, low temperature, and high salinity in the deep sea. In this study, the logistic function is introduced to improve the kinetic equation of phase transition, and the macromechanical model, the law of resistance, and the resistivity mixing rule are integrated to model and analyze the resistive self-awareness characteristics of two-way shape memory alloy deep-sea actuators. The complex coupling relationships among resistance, strain, stress, resistivity, and temperature under constant load conditions are investigated, and the validity of the resistance-sensing model is verified by the water bath cycling test. The results show that the predicted values of the model agree well with the measured values. The self-perceived relationship between the resistance and deformation of the two-way shape memory alloy can be effectively expressed, which provides theoretical model support for the design of memory alloy deep sea actuators and sensorless drive control. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1163 KiB  
Article
Adaptive Nonsingular Fast Terminal Sliding Mode Control for Shape Memory Alloy Actuated System
by Xiaoguang Li, Wenzhuo Zhi, Enming Shi, Xiaoliang Fan, Ming Zhao and Bi Zhang
Actuators 2024, 13(9), 367; https://doi.org/10.3390/act13090367 - 19 Sep 2024
Viewed by 400
Abstract
Due to its high power-to-weight ratio, low weight, and silent operation, shape memory alloy (SMA) is widely used as a muscle-like soft actuator in intelligent bionic robot systems. However, hysteresis nonlinearity and multi-valued mapping behavior can severely impact trajectory tracking accuracy. This paper [...] Read more.
Due to its high power-to-weight ratio, low weight, and silent operation, shape memory alloy (SMA) is widely used as a muscle-like soft actuator in intelligent bionic robot systems. However, hysteresis nonlinearity and multi-valued mapping behavior can severely impact trajectory tracking accuracy. This paper proposes an adaptive nonsingular fast terminal sliding mode control (ANFTSMC) scheme aimed at enhancing position tracking performance in SMA-actuated systems by addressing hysteresis nonlinearity, uncertain dynamics, and external disturbances. Firstly, a simplified third-order actuator model is developed and a variable gain extended state observer (VGESO) is employed to estimate unmodeled dynamics and external disturbances within finite time. Secondly, a novel nonsingular fast terminal sliding mode control (NFTSMC) law is designed to overcome singularity issues, reduce chattering, and guarantee finite-time convergence of the system states. Finally, the ANFTSMC scheme, integrating NFTSMC with VGESO, is proposed to achieve precise position tracking for the prosthetic hand. The convergence of the closed-loop control system is validated using Lyapunov’s stability theory. Experimental results demonstrate that the external pulse disturbance error of ANFTSMC is 8.19°, compared to 19.21° for the comparative method. Furthermore, the maximum absolute error for ANFTSMC is 0.63°, whereas the comparative method shows a maximum absolute error of 1.03°. These results underscore the superior performance of the proposed ANFTSMC algorithm. Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
Show Figures

Figure 1

13 pages, 5692 KiB  
Article
Experimental Investigation of the Impact of Loading Conditions on the Change in Thin NiTi Wire Resistance during Cyclic Stretching
by Jonasz Hartwich, Sławomir Duda, Sebastian Sławski, Marek Kciuk, Anna Woźniak and Grzegorz Gembalczyk
Materials 2024, 17(18), 4577; https://doi.org/10.3390/ma17184577 - 18 Sep 2024
Viewed by 420
Abstract
This paper presents the results of an experimental study designed to evaluate the effect of repeated stretching cycles on the electrical resistance change in a NiTi alloy wire. In particular, tests were carried out to determine the effect of the type of loading [...] Read more.
This paper presents the results of an experimental study designed to evaluate the effect of repeated stretching cycles on the electrical resistance change in a NiTi alloy wire. In particular, tests were carried out to determine the effect of the type of loading on resistance change in the investigated wires. Wires with a diameter of 100 μm were used in the research. The experiment was carried out on a dedicated test stand designed for this purpose. During the test, the samples were subjected to 40 identical tensile cycles. The electrical resistance, sample elongation, and tensile force during successive stretching cycles were measured. The conducted research demonstrated the impact of elongation and reorientation of the structure on the resistance change in NiTi alloy thin wires. The research included a comparison of the effect of two different types of loading on the electrical resistance change in the sample. During cyclic stretching of a NiTi alloy sample with constant displacement, a decrease in electrical resistance was observed after each successive stretching cycle. Alternatively, when stretching with a constant force, the value of electrical resistance increased. In both types of loads, the greatest change in resistance value was observed at the initial cycles. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

16 pages, 9986 KiB  
Article
Microstructure and Shape Memory Properties of Gas Tungsten Arc Welded Fe-17Mn-5Si-10Cr-4Ni-(V, C) Shape Memory Alloy
by Dohyung Kim, Taeyoon Kim, Changwook Ji, Sangwon Ji, Wookjin Lee and Wangryeol Kim
Materials 2024, 17(18), 4547; https://doi.org/10.3390/ma17184547 - 16 Sep 2024
Viewed by 485
Abstract
In this study, microstructure, mechanical, and shape memory properties of the welded Fe-based shape memory alloy (Fe-SMA) plates with a nominal composition of Fe-17Mn-5Si-10Cr-4Ni-(V, C) (wt.%) by gas tungsten arc welding were investigated. The optimal heat input to ensure full penetration of the [...] Read more.
In this study, microstructure, mechanical, and shape memory properties of the welded Fe-based shape memory alloy (Fe-SMA) plates with a nominal composition of Fe-17Mn-5Si-10Cr-4Ni-(V, C) (wt.%) by gas tungsten arc welding were investigated. The optimal heat input to ensure full penetration of the Fe-SMA plate with a thickness of 2 mm was found to be 0.12 kJ. The solidified grain morphology adjacent to the partially melted zone was columnar, whereas the equiaxed morphology emerged as solidification proceeded. The ultimate tensile decreased after welding owing to the much larger grain size of the fusion zone (FZ) and heat-affected zone (HAZ) than that of the base material (BM). Weldment showed lower pseudoelastic (PE) recovery strain and higher shape memory effect (SME) than those of the plate, which could be ascribed to the large grain size of the FZ and HAZ. Recovery stress (RS) slightly decreased after welding owing to lower mechanical properties of weldment. On the other hand, aging treatment significantly improved all PE recovery, SME, and RS via carbide precipitation. Digital image correlation analysis revealed that HAZ showed the lowest SME after heating and cooling, implying that the improved SME of FZ compensated for the low SME of the HAZ. Full article
Show Figures

Graphical abstract

21 pages, 11449 KiB  
Article
Development of Lightweight 6 m Deployable Mesh Reflector Antenna Mechanisms Based on a Superelastic Shape Memory Alloy
by Jae-Seop Choi, Tae-Yong Park, Bong-Geon Chae and Hyun-Ung Oh
Aerospace 2024, 11(9), 738; https://doi.org/10.3390/aerospace11090738 - 9 Sep 2024
Viewed by 439
Abstract
This paper describes the design and experimental verification of a 6 m parabolic deployable mesh reflector antenna mechanism based on a superelastic shape memory alloy. This antenna mainly consists of a deployable primary reflector with a superelastic shape memory alloy-based hinge mechanism and [...] Read more.
This paper describes the design and experimental verification of a 6 m parabolic deployable mesh reflector antenna mechanism based on a superelastic shape memory alloy. This antenna mainly consists of a deployable primary reflector with a superelastic shape memory alloy-based hinge mechanism and a fixed-type secondary reflector mast, where a rotary-type holding and release mechanism and deployment speed control system are installed. The main feature of this antenna is the application of a superelastic shape memory alloy to the mechanism, which has the advantages of plastic deformation resistance, high damping, and fatigue resistance. A shape memory alloy is applied to the hinge mechanism of each primary reflector rib and to the rotary-type holding and release mechanism as a deployment mechanism. In addition, a superelastic shape memory alloy wire is applied to the antenna in the circumferential direction to maintain the curvature of the primary reflector. The effectiveness of the proposed mechanism design was verified through repeated deployment tests on models of the superelastic shape memory alloy-based hinge mechanism and the antenna system. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

16 pages, 5719 KiB  
Review
Shape Memory Alloys for Self-Centering Seismic Applications: A Review on Recent Advancements
by Girolamo Costanza, Samuel Mercuri, Ilaria Porroni and Maria Elisa Tata
Machines 2024, 12(9), 628; https://doi.org/10.3390/machines12090628 - 6 Sep 2024
Viewed by 485
Abstract
Shape memory alloys (SMAs) have emerged as promising materials for self-centering seismic applications due to their unique properties of superelasticity and shape memory effect. This review article examines recent advancements in the use of SMAs for self-centering seismic devices, focusing on their mechanical [...] Read more.
Shape memory alloys (SMAs) have emerged as promising materials for self-centering seismic applications due to their unique properties of superelasticity and shape memory effect. This review article examines recent advancements in the use of SMAs for self-centering seismic devices, focusing on their mechanical properties, damping characteristics and applications in structural engineering. The fundamental principles of SMAs are discussed, including their phase transformations and hysteretic behavior, and their performance under various loading conditions is analyzed. The article also explores different SMA-based damping systems, with a particular emphasis on innovative self-centering friction dampers. Furthermore, the influence of factors such as alloy composition, heat treatment and loading parameters on the seismic performance of SMA devices is investigated. The review concludes by highlighting the potential of SMAs in improving the seismic resilience of structures and identifying future research directions in this field. Full article
(This article belongs to the Section Material Processing Technology)
Show Figures

Figure 1

21 pages, 8722 KiB  
Article
Morphing Spoiler for Adaptive Aerodynamics by Shape Memory Alloys
by Aniello Riccio, Andrea Sellitto and Miriam Battaglia
Actuators 2024, 13(9), 330; https://doi.org/10.3390/act13090330 - 1 Sep 2024
Viewed by 546
Abstract
The automotive industry is continuously looking for innovative solutions to improve vehicle aerodynamics and efficiency. The research introduces a significant breakthrough in the field of automotive aerodynamics by employing shape memory alloys as bistable actuators for spoilers and moving flaps. The main novelty [...] Read more.
The automotive industry is continuously looking for innovative solutions to improve vehicle aerodynamics and efficiency. The research introduces a significant breakthrough in the field of automotive aerodynamics by employing shape memory alloys as bistable actuators for spoilers and moving flaps. The main novelty of this research lies in the development of a bistable actuator made of shape memory alloys as a precise and accurate control mechanism for spoilers and movable flaps. The shape memory alloys, with their unique ability to maintain two stable configurations and switch rapidly from one to the other in response to thermal or mechanical stimuli, allow precise and rapid adjustment of aerodynamic surfaces. The main advantage of this technology is its ability to improve vehicle aerodynamics by optimising both drag and downforce, thereby improving vehicle performance and fuel efficiency. This research shows the promising potential of a single composition of NiTi as a revolutionary technology in the automotive industry, revolutionising the way spoilers and moving flaps are used to achieve superior vehicle performance. Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
Show Figures

Figure 1

Back to TopTop