Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,012)

Search Parameters:
Keywords = skeletal muscle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2349 KiB  
Article
Smoltification of Atlantic Salmon (Salmo salar L.) Is Associated with Enhanced Traffic and Renewal of B Cell Repertoire
by Aleksei Krasnov, Sergey Afanasyev, Marianne H. S. Hansen, Marta Bou, Lene Sveen and Jens-Erik Dessen
Genes 2024, 15(9), 1220; https://doi.org/10.3390/genes15091220 - 18 Sep 2024
Abstract
The smoltification of farmed Atlantic salmon is commonly associated with mild immunosuppression. However, B cells may deviate from this trend, showing increased proliferation and migration during this period. This study assessed the effects of smoltification and adaptation to seawater in a controlled experiment. [...] Read more.
The smoltification of farmed Atlantic salmon is commonly associated with mild immunosuppression. However, B cells may deviate from this trend, showing increased proliferation and migration during this period. This study assessed the effects of smoltification and adaptation to seawater in a controlled experiment. Analyses were conducted on the head kidney, spleen, gill, and both visceral and subcutaneous fat (VAT, SAT) across four time points: parr, early and complete smoltification, and twelve weeks post-seawater transfer. Gene expression analysis was performed to track the distribution and developmental changes in their B cells. Expression profiles of three types of immunoglobulins (ig), including membrane-bound and secreted forms of igm, as well as B cell-specific markers pax1 and cd79, showed strong correlations and contrasted with profiles of other immune cell markers. The highest levels of expression were observed in the lymphatic tissue, followed by the VAT. Enhanced expression in the gill and adipose tissues of smolts suggested an increase in B cell populations. Parallel sequencing of the variable region of the IgM heavy chain was used to track B cell traffic, assessed by the co-occurrence of the most abundant sequences (clonotypes) across different tissues. Smoltification markedly enhanced traffic between all tissues, which returned to initial levels after twelve weeks in the sea. The preferred migration between the head kidney, spleen, and VAT supports the role of abdominal fat as a reservoir of lymphocytes. These findings are discussed in the context of recent studies that suggested the functional significance of B cell traffic in Atlantic salmon. Specifically, the migration of B cells expressing secreted immunoglobulins to virus-infected hearts has been identified as a key factor in the disease recovery and survival of fish challenged with salmon alphavirus (SAV); this process is accelerated by vaccination. Additionally, the study of melanized foci in the skeletal muscles revealed an association between antigen-dependent differentiation and the migration of B cells, indicating a transfer from local to systemic immune responses. Updating the antibody repertoire in the lymphatic and peripheral tissues of smolts may assist in their adaptation to the marine environment and in encountering new pathogens. Emerging evidence highlights B cell migration as an important and previously unrecognized immune mechanism in salmonids. Full article
(This article belongs to the Special Issue Genetic Studies of Fish)
Show Figures

Figure 1

18 pages, 4720 KiB  
Article
Dynamic Transcriptome Profile Analysis of Mechanisms Related to Melanin Deposition in Chicken Muscle Development
by Gaige Ji, Ming Zhang, Xiaojun Ju, Yifan Liu, Yanju Shan, Yunjie Tu, Jianmin Zou, Jingting Shu, Hua Li and Weidong Zhao
Animals 2024, 14(18), 2702; https://doi.org/10.3390/ani14182702 - 18 Sep 2024
Abstract
The pectoral muscle is an important component of skeletal muscle. The blackness of pectoral muscles can directly affect the economic value of black-boned chickens. Although the genes associated with melanogenesis in mammals and birds have been thoroughly investigated, only little is known about [...] Read more.
The pectoral muscle is an important component of skeletal muscle. The blackness of pectoral muscles can directly affect the economic value of black-boned chickens. Although the genes associated with melanogenesis in mammals and birds have been thoroughly investigated, only little is known about the key genes involved in muscle hyperpigmentation during embryonic development. Here, we analyzed melanin deposition patterns in the pectoral muscle of Yugan black-boned chickens and compared differentially expressed genes (DEGs) between the muscles of Wenchang (non-black-boned chickens) and Yugan black-boned chickens on embryonic days 9, 13, 17, and 21. Melanin pigments were found to gradually accumulate in the muscle fibers over time. Using RNA-seq, there were 40, 97, 169, and 94 genes were identified as DEGs, respectively, between Yugan black-boned chicken muscles and Wenchang chickens at embryonic day 9, 13, 17, and 21 stages (fold change ≥2.0, false discovery rate (FDR) < 0.05). Thirteen DEGs, such as MSTRG.720, EDNRB2, TYRP1, and DCT, were commonly identified among the time points observed. These DEGs were mainly involved in pigmentation, melanin biosynthetic and metabolic processes, and secondary metabolite biosynthetic processes. Pathway analysis of the DEGs revealed that they were mainly associated with melanogenesis and tyrosine metabolism. Moreover, weighted gene co-expression network analysis (WGCNA) was used to detect core modules and central genes related to melanogenesis in the muscles of black-boned chickens. A total of 24 modules were identified. Correlation analysis indicated that one of them (the orange module) was positively correlated with muscle pigmentation traits (r > 0.8 and p < 0.001). Correlations between gene expression and L* values of the breast muscle were investigated in Yugan and Taihe black-boned chickens after hatching. The results confirmed that EDNRB2, GPNMB, TRPM1, TYR, and DCT expression levels were significantly associated with L* values (p < 0.01) in black-boned chickens (p < 0.05). Our results suggest that EDNRB2, GPNMB, TRPM1, TYR, and DCT are the essential genes regulating melanin deposition in the breast muscle of black-boned chickens. MSTRG.720 is a potential candidate gene involved in melanin deposition in the breast muscles of Yugan black-boned chickens. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

16 pages, 1092 KiB  
Review
Myotube Guidance: Shaping up the Musculoskeletal System
by Aaron N. Johnson
J. Dev. Biol. 2024, 12(3), 25; https://doi.org/10.3390/jdb12030025 - 17 Sep 2024
Viewed by 135
Abstract
Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are [...] Read more.
Myofibers are highly specialized contractile cells of skeletal muscles, and dysregulation of myofiber morphogenesis is emerging as a contributing cause of myopathies and structural birth defects. Myotubes are the myofiber precursors and undergo a dramatic morphological transition into long bipolar myofibers that are attached to tendons on two ends. Similar to axon growth cones, myotube leading edges navigate toward target cells and form cell–cell connections. The process of myotube guidance connects myotubes with the correct tendons, orients myofiber morphology with the overall body plan, and generates a functional musculoskeletal system. Navigational signaling, addition of mass and volume, and identification of target cells are common events in myotube guidance and axon guidance, but surprisingly, the mechanisms regulating these events are not completely overlapping in myotubes and axons. This review summarizes the strategies that have evolved to direct myotube leading edges to predetermined tendon cells and highlights key differences between myotube guidance and axon guidance. The association of myotube guidance pathways with developmental disorders is also discussed. Full article
Show Figures

Figure 1

13 pages, 2151 KiB  
Article
Effects of Gossypetin on Glucose Homeostasis in Diet-Induced Pre-Diabetic Rats
by Karishma Naidoo and Andile Khathi
Molecules 2024, 29(18), 4410; https://doi.org/10.3390/molecules29184410 - 17 Sep 2024
Viewed by 244
Abstract
Natural flavonoids exert many potential health benefits, including anti-hyperglycaemic effects. However, the effects of gossypetin (GTIN) on glucose homeostasis in pre-diabetes have not yet been investigated. This study examined the effects of GTIN on key markers of glucose homeostasis in a diet-induced pre-diabetic [...] Read more.
Natural flavonoids exert many potential health benefits, including anti-hyperglycaemic effects. However, the effects of gossypetin (GTIN) on glucose homeostasis in pre-diabetes have not yet been investigated. This study examined the effects of GTIN on key markers of glucose homeostasis in a diet-induced pre-diabetic rat model. Pre-diabetes was induced by allowing the animals to feed on a high-fat high-carbohydrate (HFHC) diet supplemented with 15% fructose water for 20 weeks. Following pre-diabetes induction, the pre-diabetic animals were sub-divided into five groups (n = 6), where they were either orally treated with GTIN (15 mg/kg) or metformin (MET) (500 mg/kg), both with and without dietary intervention, over a 12-week period. The results demonstrated that animals in the untreated pre-diabetic (PD) control group exhibited significantly higher fasting and postprandial blood glucose levels, as well as elevated plasma insulin concentrations and increased homeostatic model assessment for insulin resistance (HOMA2-IR) index, relative to the non-pre-diabetic (NPD) group. Similarly, increased caloric intake, body weight and plasma ghrelin levels were observed in the PD control group. Notably, these parameters were significantly reduced in the PD animals receiving GTIN treatment. Additionally, glycogen levels in the liver and skeletal muscle, which were disturbed in the PD control group, showed significant improvement in both GTIN-treated groups. These findings may suggest that GTIN administration, with or without dietary modifications, may offer therapeutic benefits in ameliorating glucose homeostasis disturbances associated with the PD state. Full article
(This article belongs to the Special Issue Bioactivity of Natural Compounds: From Plants to Humans)
Show Figures

Figure 1

15 pages, 634 KiB  
Perspective
Does Vitamin B6 Act as an Exercise Mimetic in Skeletal Muscle?
by Norihisa Kato, Yongshou Yang, Chanikan Bumrungkit and Thanutchaporn Kumrungsee
Int. J. Mol. Sci. 2024, 25(18), 9962; https://doi.org/10.3390/ijms25189962 - 15 Sep 2024
Viewed by 329
Abstract
Marginal vitamin B6 (B6) deficiency is common in various segments worldwide. In a super-aged society, sarcopenia is a major concern and has gained significant research attention focused on healthy aging. To date, the primary interventions for sarcopenia have been physical exercise therapy. Recent [...] Read more.
Marginal vitamin B6 (B6) deficiency is common in various segments worldwide. In a super-aged society, sarcopenia is a major concern and has gained significant research attention focused on healthy aging. To date, the primary interventions for sarcopenia have been physical exercise therapy. Recent evidence suggests that inadequate B6 status is associated with an increased risk of sarcopenia and mortality among older adults. Our previous study showed that B6 supplementation to a marginal B6-deficient diet up-regulated the expression of various exercise-induced genes in the skeletal muscle of rodents. Notably, a supplemental B6-to-B6-deficient diet stimulates satellite cell-mediated myogenesis in rodents, mirroring the effects of physical exercise. These findings suggest the potential role of B6 as an exercise-mimetic nutrient in skeletal muscle. To test this hypothesis, we reviewed relevant literature and compared the roles of B6 and exercise in muscles. Here, we provide several pieces of evidence supporting this hypothesis and discuss the potential mechanisms behind the similarities between the effects of B6 and exercise on muscle. This research, for the first time, provides insight into the exercise-mimetic roles of B6 in skeletal muscle. Full article
Show Figures

Figure 1

18 pages, 2964 KiB  
Article
Targeted Gene Delivery to Muscle Cells In Vitro and In Vivo Using Electrostatically Stabilized DNA—Peptide Complexes
by Anna Egorova, Sergei Chepanov, Sergei Selkov, Igor Kogan and Anton Kiselev
Sci. Pharm. 2024, 92(3), 51; https://doi.org/10.3390/scipharm92030051 - 14 Sep 2024
Viewed by 418
Abstract
Genetic constructs must be delivered selectively to target tissues and intracellular compartments at the necessary concentrations in order to achieve the maximum therapeutic effect in gene therapy. Development of targeted carriers for non-viral delivery of nucleic acids into cells, including those in muscle, [...] Read more.
Genetic constructs must be delivered selectively to target tissues and intracellular compartments at the necessary concentrations in order to achieve the maximum therapeutic effect in gene therapy. Development of targeted carriers for non-viral delivery of nucleic acids into cells, including those in muscle, which is one of the most challenging tissues to transfect in vivo, remains a topical issue. We have studied ternary complexes of plasmid DNA and an arginine–histidine-rich peptide-based carrier coated with a glutamate–histidine-rich polymer bearing skeletal muscle targeting peptide (SMTP) for the gene delivery to muscle tissue. The relaxation of the ternary complexes after polyanion treatment was assessed using the ethidium bromide displacement assay. The developed polyplexes were used to transfect C2C12 myoblasts in full-media conditions, followed by analysis of their toxic properties using the Alamar Blue assay and expression analysis of lacZ and GFP reporter genes. After delivering plasmids containing the GFP and lacZ genes into the femoral muscles of mdx mice, which are model of Duchenne muscular dystrophy, GFP fluorescence and β-galactosidase activity were detected. We observed that the modification of ternary polyplexes with 10 mol% of SMTP ligand resulted in a 2.3-fold increase in lacZ gene expression when compared to unmodified control polyplexes in vivo. Thus, we have demonstrated that the developed DNA/carrier complexes and SMTP-modified coating are nontoxic, are stable against polyanion-induced relaxation, and can provide targeted gene delivery to muscle cells and tissues. The results of this study are useful for a range of therapeutic applications, from immunization to amelioration of inherited neuromuscular diseases. Full article
Show Figures

Figure 1

14 pages, 2795 KiB  
Article
Effects of Bifidobacterium-Fermented Milk on Obesity: Improved Lipid Metabolism through Suppression of Lipogenesis and Enhanced Muscle Metabolism
by Hitomi Maruta, Yusuke Fujii, Naoki Toyokawa, Shoji Nakamura and Hiromi Yamashita
Int. J. Mol. Sci. 2024, 25(18), 9934; https://doi.org/10.3390/ijms25189934 - 14 Sep 2024
Viewed by 279
Abstract
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and Bifidobacterium, have garnered attention for their potential in obesity prevention. However, the effects of Bifidobacterium [...] Read more.
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and Bifidobacterium, have garnered attention for their potential in obesity prevention. However, the effects of Bifidobacterium-fermented products on obesity have not been thoroughly elucidated. Bifidobacterium, which exists in the gut of animals, is known to enhance lipid metabolism. During fermentation, it produces acetic acid, which has been reported to improve glucose tolerance and insulin resistance, and exhibit anti-obesity and anti-diabetic effects. Functional foods have been very popular around the world, and fermented milk is a good candidate for enrichment with probiotics. In this study, we aim to evaluate the beneficial effects of milks fermented with Bifidobacterium strains on energy metabolism and obesity prevention. Three Bifidobacterium strains (Bif-15, Bif-30, and Bif-39), isolated from newborn human feces, were assessed for their acetic acid production and viability in milk. These strains were used to ferment milk. Otsuka–Long–Evans Tokushima Fatty (OLETF) rats administered Bif-15-fermented milk showed significantly lower weight gain compared to those in the water group. The phosphorylation of AMPK was increased and the expression of lipogenic genes was suppressed in the liver of rats given Bif-15-fermented milk. Additionally, gene expression related to respiratory metabolism was significantly increased in the soleus muscle of rats given Bif-15-fermented milk. These findings suggest that milk fermented with the Bifidobacterium strain Bif-15 can improve lipid metabolism and suppress obesity. Full article
Show Figures

Figure 1

25 pages, 1169 KiB  
Review
Non-Coding RNAs in Myasthenia Gravis: From Immune Regulation to Personalized Medicine
by Nicola Iacomino, Maria Cristina Tarasco, Alessia Berni, Jacopo Ronchi, Renato Mantegazza, Paola Cavalcante and Maria Foti
Cells 2024, 13(18), 1550; https://doi.org/10.3390/cells13181550 - 14 Sep 2024
Viewed by 236
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder characterized by altered neuromuscular transmission, which causes weakness and fatigability in the skeletal muscles. The etiology of MG is complex, being associated with multiple genetic and environmental factors. Over recent years, progress has been made [...] Read more.
Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder characterized by altered neuromuscular transmission, which causes weakness and fatigability in the skeletal muscles. The etiology of MG is complex, being associated with multiple genetic and environmental factors. Over recent years, progress has been made in understanding the immunological alterations implicated in the disease, but the exact pathogenesis still needs to be elucidated. A pathogenic interplay between innate immunity and autoimmunity contributes to the intra-thymic MG development. Epigenetic changes are critically involved in both innate and adaptive immune response regulation. They can act as (i) pathological factors besides genetic predisposition and (ii) co-factors contributing to disease phenotypes or patient-specific disease course/outcomes. This article reviews the role of non-coding RNAs (ncRNAs) as epigenetic factors implicated in MG. Particular attention is dedicated to microRNAs (miRNAs), whose expression is altered in MG patients’ thymuses and circulating blood. The long ncRNA (lncRNA) contribution to MG, although not fully characterized yet, is also discussed. By summarizing the most recent and fast-growing findings on ncRNAs in MG, we highlight the therapeutic potential of these molecules for achieving immune regulation and their value as biomarkers for the development of personalized medicine approaches to improve disease care. Full article
Show Figures

Figure 1

16 pages, 1847 KiB  
Article
Machine Learning Approach for Predicting Hypertension Based on Body Composition in South Korean Adults
by Jeong-Woo Seo, Sanghun Lee and Mi Hong Yim
Bioengineering 2024, 11(9), 921; https://doi.org/10.3390/bioengineering11090921 - 14 Sep 2024
Viewed by 323
Abstract
(1) Background: Various machine learning techniques were used to predict hypertension in Korean adults aged 20 and above, using a range of body composition indicators. Muscle and fat components of body composition are closely related to hypertension. The aim was to identify which [...] Read more.
(1) Background: Various machine learning techniques were used to predict hypertension in Korean adults aged 20 and above, using a range of body composition indicators. Muscle and fat components of body composition are closely related to hypertension. The aim was to identify which body composition indicators are significant predictors of hypertension for each gender; (2) Methods: A model was developed to classify hypertension using six different machine learning techniques, utilizing age, BMI, and body composition indicators such as body fat mass, lean mass, and body water of 2906 Korean men and women; (3) Results: The elastic-net technique demonstrated the highest classification accuracy. In the hypertension prediction model, the most important variables for men were age, skeletal muscle mass (SMM), and body fat mass (BFM), in that order. For women, the significant variables were age and BFM. However, there was no difference between soft lean mass and SMM; (4) Conclusions: Hypertension affects not only BFM but also SMM in men, whereas in women, BFM has a stronger effect than SMM. Full article
(This article belongs to the Special Issue Machine Learning Technology in Biomedical Engineering—2nd Edition)
Show Figures

Figure 1

17 pages, 2502 KiB  
Article
Impact of Uniaxial Static Strain on Myoblast Differentiation in Collagen-Coated PCL Microfilament Scaffolds: Role of Onset Time of Mechanical Stimulation
by María Laura Espinoza-Álvarez, Laura Rojas-Rojas, Johan Morales-Sánchez and Teodolito Guillén-Girón
Bioengineering 2024, 11(9), 919; https://doi.org/10.3390/bioengineering11090919 - 13 Sep 2024
Viewed by 423
Abstract
Tissue engineering endeavors to create in vitro constructs that replicate the properties of native tissue, such as skeletal muscle. This study investigated the use of mechanical stimulation to promote myogenic differentiation and enhance the functionality of bioengineered tissues. Specifically, it aimed to facilitate [...] Read more.
Tissue engineering endeavors to create in vitro constructs that replicate the properties of native tissue, such as skeletal muscle. This study investigated the use of mechanical stimulation to promote myogenic differentiation and enhance the functionality of bioengineered tissues. Specifically, it aimed to facilitate the differentiation of myoblasts within a three-dimensional scaffold using a defined pattern of mechanical stimulation. C2C12 cells were cultured on a collagen-coated PCL microfilament scaffold and subjected to 24 h of uniaxial static strain using a biomechanical stimulation system. Two onset times of stimulation, 72 h and 120 h post-seeding, were evaluated. Cell proliferation, myogenic marker expression, and alterations in cell morphology and orientation were assessed. Results indicate that static strain on the scaffold promoted myoblast differentiation, evidenced by morphological and molecular changes. Notably, strain initiated at 72 h induced an early differentiation stage marked by MyoD expression, whereas stimulation beginning at 120 h led to a mid-stage differentiation characterized by the co-expression of MyoD and Myogenin, culminating in myotube formation. These results highlight the critical influence of myoblast maturity at the time of strain application on the differentiation outcome. This study provides insights that could guide the optimization of mechanical stimulation protocols in tissue engineering applications. Full article
(This article belongs to the Special Issue Mechanobiology in Biomedical Engineering)
Show Figures

Graphical abstract

24 pages, 1733 KiB  
Review
Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition
by Mauro Lombardo, Gilda Aiello, Deborah Fratantonio, Sercan Karav and Sara Baldelli
Nutrients 2024, 16(18), 3097; https://doi.org/10.3390/nu16183097 - 13 Sep 2024
Viewed by 438
Abstract
Background/Objectives: Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related [...] Read more.
Background/Objectives: Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related muscle decline and other chronic diseases, such as sarcopenia. This review aims to provide an overview of the role of EVs in muscle function and to explore how nutritional and physical interventions can optimise their release and function. Methods: A literature review of studies examining the impact of exercise and nutritional interventions on MS-derived EVs was conducted. Major scientific databases, including PubMed, Scopus and Web of Science, were searched using keywords such as ‘extracellular vesicles’, ‘muscle’, ‘exercise’, ‘nutrition’ and ‘sarcopenia’. The selected studies included randomised controlled trials (RCTs), clinical trials and cohort studies. Data from these studies were synthesised to identify key findings related to the release of EVs, their composition and their potential role as therapeutic targets. Results: Dietary patterns, specific foods and supplements were found to significantly modulate EV release and composition, affecting muscle health and metabolism. Exercise-induced changes in EV content were observed after both acute and chronic interventions, with a marked impact on miRNAs and proteins related to muscle growth and inflammation. Nutritional interventions, such as the Mediterranean diet and omega-3 fatty acids, have also shown the ability to alter EV profiles, suggesting their potential to improve cardiovascular health and reduce inflammation. Conclusions: EVs are emerging as critical mediators of the beneficial effects of diet and exercise on muscle health. Both exercise and nutritional interventions can modulate the release and content of MS-derived EVs, offering promising avenues for the development of novel therapeutic strategies targeting sarcopenia and other muscle diseases. Future research should focus on large-scale RCT studies with standardised methodologies to better understand the role of EVs as biomarkers and therapeutic targets. Full article
Show Figures

Figure 1

14 pages, 1775 KiB  
Review
Skeletal Muscle Involvement in Friedreich Ataxia
by Elisabetta Indelicato, Julia Wanschitz, Wolfgang Löscher and Sylvia Boesch
Int. J. Mol. Sci. 2024, 25(18), 9915; https://doi.org/10.3390/ijms25189915 - 13 Sep 2024
Viewed by 303
Abstract
Friedreich Ataxia (FRDA) is an inherited neuromuscular disorder triggered by a deficit of the mitochondrial protein frataxin. At a cellular level, frataxin deficiency results in insufficient iron–sulfur cluster biosynthesis and impaired mitochondrial function and adenosine triphosphate production. The main clinical manifestation is a [...] Read more.
Friedreich Ataxia (FRDA) is an inherited neuromuscular disorder triggered by a deficit of the mitochondrial protein frataxin. At a cellular level, frataxin deficiency results in insufficient iron–sulfur cluster biosynthesis and impaired mitochondrial function and adenosine triphosphate production. The main clinical manifestation is a progressive balance and coordination disorder which depends on the involvement of peripheral and central sensory pathways as well as of the cerebellum. Besides the neurological involvement, FRDA affects also the striated muscles. The most prominent manifestation is a hypertrophic cardiomyopathy, which also represents the major determinant of premature mortality. Moreover, FRDA displays skeletal muscle involvement, which contributes to the weakness and marked fatigue evident throughout the course of the disease. Herein, we review skeletal muscle findings in FRDA generated by functional imaging, histology, as well as multiomics techniques in both disease models and in patients. Altogether, these findings corroborate a disease phenotype in skeletal muscle and support the notion of progressive mitochondrial damage as a driver of disease progression in FRDA. Furthermore, we highlight the relevance of skeletal muscle investigations in the development of biomarkers for early-phase trials and future therapeutic strategies in FRDA. Full article
(This article belongs to the Special Issue Molecular Research on Skeletal Muscle Biology)
Show Figures

Figure 1

19 pages, 7244 KiB  
Article
Reduction of Mitochondrial Calcium Overload via MKT077-Induced Inhibition of Glucose-Regulated Protein 75 Alleviates Skeletal Muscle Pathology in Dystrophin-Deficient mdx Mice
by Mikhail V. Dubinin, Anastasia E. Stepanova, Irina B. Mikheeva, Anastasia D. Igoshkina, Alena A. Cherepanova, Eugeny Yu. Talanov, Ekaterina I. Khoroshavina and Konstantin N. Belosludtsev
Int. J. Mol. Sci. 2024, 25(18), 9892; https://doi.org/10.3390/ijms25189892 - 13 Sep 2024
Viewed by 239
Abstract
Duchenne muscular dystrophy is secondarily accompanied by Ca2+ excess in muscle fibers. Part of the Ca2+ accumulates in the mitochondria, contributing to the development of mitochondrial dysfunction and degeneration of muscles. In this work, we assessed the effect of intraperitoneal administration [...] Read more.
Duchenne muscular dystrophy is secondarily accompanied by Ca2+ excess in muscle fibers. Part of the Ca2+ accumulates in the mitochondria, contributing to the development of mitochondrial dysfunction and degeneration of muscles. In this work, we assessed the effect of intraperitoneal administration of rhodacyanine MKT077 (5 mg/kg/day), which is able to suppress glucose-regulated protein 75 (GRP75)-mediated Ca2+ transfer from the sarcoplasmic reticulum (SR) to mitochondria, on the Ca2+ overload of skeletal muscle mitochondria in dystrophin-deficient mdx mice and the concomitant mitochondrial dysfunction contributing to muscle pathology. MKT077 prevented Ca2+ overload of quadriceps mitochondria in mdx mice, reduced the intensity of oxidative stress, and improved mitochondrial ultrastructure, but had no effect on impaired oxidative phosphorylation. MKT077 eliminated quadriceps calcification and reduced the intensity of muscle fiber degeneration, fibrosis level, and normalized grip strength in mdx mice. However, we noted a negative effect of MKT077 on wild-type mice, expressed as a decrease in the efficiency of mitochondrial oxidative phosphorylation, SR stress development, ultrastructural disturbances in the quadriceps, and a reduction in animal endurance in the wire-hanging test. This paper discusses the impact of MKT077 modulation of mitochondrial dysfunction on the development of skeletal muscle pathology in mdx mice. Full article
Show Figures

Figure 1

14 pages, 6828 KiB  
Article
Skeletal Muscle Segmentation at the Level of the Third Lumbar Vertebra (L3) in Low-Dose Computed Tomography: A Lightweight Algorithm
by Xuzhi Zhao, Yi Du and Haizhen Yue
Tomography 2024, 10(9), 1513-1526; https://doi.org/10.3390/tomography10090111 - 13 Sep 2024
Viewed by 236
Abstract
Background: The cross-sectional area of skeletal muscles at the level of the third lumbar vertebra (L3) measured from computed tomography (CT) images is an established imaging biomarker used to assess patients’ nutritional status. With the increasing prevalence of low-dose CT scans in clinical [...] Read more.
Background: The cross-sectional area of skeletal muscles at the level of the third lumbar vertebra (L3) measured from computed tomography (CT) images is an established imaging biomarker used to assess patients’ nutritional status. With the increasing prevalence of low-dose CT scans in clinical practice, accurate and automated skeletal muscle segmentation at the L3 level in low-dose CT images has become an issue to address. This study proposed a lightweight algorithm for automated segmentation of skeletal muscles at the L3 level in low-dose CT images. Methods: This study included 57 patients with rectal cancer, with both low-dose plain and contrast-enhanced pelvic CT image series acquired using a radiotherapy CT scanner. A training set of 30 randomly selected patients was used to develop a lightweight segmentation algorithm, and the other 27 patients were used as the test set. A radiologist selected the most representative axial CT image at the L3 level for both the image series for all the patients, and three groups of observers manually annotated the skeletal muscles in the 54 CT images of the test set as the gold standard. The performance of the proposed algorithm was evaluated in terms of the Dice similarity coefficient (DSC), precision, recall, 95th percentile of the Hausdorff distance (HD95), and average surface distance (ASD). The running time of the proposed algorithm was recorded. An open source deep learning-based AutoMATICA algorithm was compared with the proposed algorithm. The inter-observer variations were also used as the reference. Results: The DSC, precision, recall, HD95, ASD, and running time were 93.2 ± 1.9% (mean ± standard deviation), 96.7 ± 2.9%, 90.0 ± 2.9%, 4.8 ± 1.3 mm, 0.8 ± 0.2 mm, and 303 ± 43 ms (on CPU) for the proposed algorithm, and 94.1 ± 4.1%, 92.7 ± 5.5%, 95.7 ± 4.0%, 7.4 ± 5.7 mm, 0.9 ± 0.6 mm, and 448 ± 40 ms (on GPU) for AutoMATICA, respectively. The differences between the proposed algorithm and the inter-observer reference were 4.7%, 1.2%, 7.9%, 3.2 mm, and 0.6 mm, respectively, for the averaged DSC, precision, recall, HD95, and ASD. Conclusion: The proposed algorithm can be used to segment skeletal muscles at the L3 level in either the plain or enhanced low-dose CT images. Full article
Show Figures

Figure 1

13 pages, 1031 KiB  
Review
Therapeutic Strategy and Clinical Path of Facioscapulohumeral Muscular Dystrophy: Review of the Current Literature
by Qi Xie, Guangmei Ma and Yafeng Song
Appl. Sci. 2024, 14(18), 8222; https://doi.org/10.3390/app14188222 - 12 Sep 2024
Viewed by 304
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant genetic disease, which is caused by the mistaken expression of double homeobox protein 4 protein 4 (DUX4) in skeletal muscle. Patients with FSHD are usually accompanied by degenerative changes in the face, shoulders, and upper [...] Read more.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant genetic disease, which is caused by the mistaken expression of double homeobox protein 4 protein 4 (DUX4) in skeletal muscle. Patients with FSHD are usually accompanied by degenerative changes in the face, shoulders, and upper muscles, gradually accumulating in the lower limb muscles. The severity of patients is quite different, and most patients end up using wheelchairs and losing their self-care ability. At present, the exploration of treatment strategies for FSHD has shifted from relieving symptoms to gene therapy, which brings hope to the future of patients, but the current gene therapy is only in the clinical trial stage. Here, we conducted a comprehensive search of the relevant literature using the keywords FSHD, DUX4, and gene therapy methods including ASOs, CRISPR, and RNAi in the PubMed and Web of Science databases. We discussed the current advancements in treatment strategies for FSHD, as well as ongoing preclinical and clinical trials related to FSHD. Additionally, we evaluated the advantages and limitations of various gene therapy approaches targeting DUX4 aimed at correcting the underlying genetic defect. Full article
Show Figures

Figure 1

Back to TopTop