Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,117)

Search Parameters:
Keywords = slice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4426 KiB  
Article
An Optimized Additive Manufacturing Strategy for Low-Impedance Electronics
by Tobias Hehn, Felix Zimmer, Markus Klein and Jens Holtmannspötter
Electronics 2025, 14(4), 695; https://doi.org/10.3390/electronics14040695 (registering DOI) - 11 Feb 2025
Viewed by 111
Abstract
The additive manufacturing of electronics allows the printing of complex structures, such as antenna matrixes, motors, and system-in-packages, directly into a three-dimensional shape. This freedom enables new design approaches for various applications in different fields. The additive manufacturing system under investigation uses inkjet [...] Read more.
The additive manufacturing of electronics allows the printing of complex structures, such as antenna matrixes, motors, and system-in-packages, directly into a three-dimensional shape. This freedom enables new design approaches for various applications in different fields. The additive manufacturing system under investigation uses inkjet technology, which is capable of applying a conductive and a non-conductive ink layer-by-layer at the desired places. This layer-by-layer approach creates a rough outline of the conductive material that negatively impacts high-frequency signal transmission. This article proposes a blockwise printing strategy to smooth the contours of the conductive material, enhancing its high-frequency properties. The evaluation of representative geometries, resembling printed samples that can be obtained using a custom slicing software, showed that the blockwise strategy reduced electrical losses by a factor of two compared to the conventional layer-by-layer approach. Numerical simulations demonstrated that this method achieves improved impedance performance in materials with low-loss tangents. These findings highlight the potential of alternative additive manufacturing strategies to optimize high-frequency performance in electronic devices. Full article
Show Figures

Figure 1

14 pages, 2216 KiB  
Article
L-Lactate Administration Improved Synaptic Plasticity and Cognition in Early 3xTg-AD Mice
by Yaxin Wang, Jinfeng Zhao and Li Zhao
Int. J. Mol. Sci. 2025, 26(4), 1486; https://doi.org/10.3390/ijms26041486 - 11 Feb 2025
Viewed by 142
Abstract
Synaptic plasticity impairment and behavioral deficits constitute classical pathological hallmarks in early-stage Alzheimer’s disease (AD). Emerging evidence suggests these synaptic dysfunctions may stem from metabolic dysregulation, particularly impaired aerobic glycolysis. As a key product of astrocyte-mediated aerobic glycolysis, lactate serves dual roles as [...] Read more.
Synaptic plasticity impairment and behavioral deficits constitute classical pathological hallmarks in early-stage Alzheimer’s disease (AD). Emerging evidence suggests these synaptic dysfunctions may stem from metabolic dysregulation, particularly impaired aerobic glycolysis. As a key product of astrocyte-mediated aerobic glycolysis, lactate serves dual roles as both an energy substrate and a signaling molecule, playing a critical regulatory role in synaptic plasticity and long-term memory formation. This study investigated whether exogenous L-lactate supplementation could ameliorate synaptic dysfunction and cognitive deficits in early-stage AD models. Our findings reveal significant reductions in hippocampal lactate levels in experimental AD mice. Systemic administration of L-lactate (200 mg/kg) effectively restored physiological lactate concentrations in both hippocampal tissue and cerebrospinal fluid (CSF). Chronic L-lactate treatment significantly improved spatial learning and memory performance in behavioral assessments. Electrophysiological recordings demonstrated that either acute bath application of L-lactate (2 mM) to hippocampal slices or chronic intraperitoneal administration enhanced high-frequency stimulation (HFS)-induced long-term potentiation (LTP) magnitude in 3xTg-AD mice. Ultrastructural analysis revealed that L-lactate treatment enhanced synaptic density and improved morphological features of hippocampal synapses. At the molecular level, L-lactate administration upregulated synaptic marker synaptophysin (SYP) expression while downregulating activity-regulated cytoskeletal-associated protein (ARC) levels in AD mice. These multimodal findings demonstrate that exogenous L-lactate supplementation effectively restores synaptic plasticity and cognitive function in early-stage 3xTg-AD mice through concurrent improvements at behavioral, structural, and molecular levels. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases—4th Edition)
Show Figures

Figure 1

18 pages, 7914 KiB  
Article
Characterizing Metabolic Shifts in Septic Murine Kidney Tissue Using 2P-FLIM for Early Sepsis Detection
by Stella Greiner, Mahyasadat Ebrahimi, Marko Rodewald, Annett Urbanek, Tobias Meyer-Zedler, Michael Schmitt, Ute Neugebauer and Jürgen Popp
Bioengineering 2025, 12(2), 170; https://doi.org/10.3390/bioengineering12020170 - 10 Feb 2025
Viewed by 307
Abstract
In this study, thin mouse kidney sections from healthy mice and those infected leading to acute and chronic sepsis were examined with two-photon excited fluorescence lifetime imaging (2P-FLIM) using the endogenous fluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). The [...] Read more.
In this study, thin mouse kidney sections from healthy mice and those infected leading to acute and chronic sepsis were examined with two-photon excited fluorescence lifetime imaging (2P-FLIM) using the endogenous fluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). The results presented show that this approach is a powerful tool for investigating cell metabolism in thin tissue sections. An adapted measurement routine was established for these samples by performing a spectral scan, identifying a combination of two excitation wavelengths and two detection ranges suitable for detailed scan images of NADH and FAD. Selected positions in thin slices of the renal cortex of nine mice (three healthy, three with chronic sepsis, and three with acute sepsis) were studied using 2P-FLIM. In addition, overview images were obtained using two-photon excited fluorescence (2PEF) intensity. This study shows that healthy kidney slices differ considerably from those with acute sepsis with regard to their fluorescence lifetime signatures. The latter shows a difference in metabolism between the inner and outer cortex, indicating that outer cortical tubular cells switch their metabolism from oxidative phosphorylation to glycolysis in kidneys from mice with acute sepsis and back in later stages, as seen for mice with chronic infections. These findings suggest that 2P-FLIM could serve as a powerful tool for early-stage sepsis diagnosis and monitoring metabolic recovery during treatment. Full article
(This article belongs to the Section Biosignal Processing)
13 pages, 895 KiB  
Article
Pulsed Electric Field Treatment of Sweet Potatoes to Reduce Oil and Acrylamide in Kettle Chips
by Mark M. Skinner, Morgan A. Fong, Tauras P. Rimkus, Alyssa N. Hendricks, Tina P. Truong, Luke G. Woodbury, Xinzhu Pu and Owen M. McDougal
Foods 2025, 14(4), 577; https://doi.org/10.3390/foods14040577 (registering DOI) - 10 Feb 2025
Viewed by 462
Abstract
The purpose of this investigation was to utilize pulsed electric field (PEF) technology to make sweet potato kettle chips (SPKC) healthier by lowering the amount of oil absorbed and reducing the amount of acrylamide formed during frying. Sweet potatoes were treated continuously in [...] Read more.
The purpose of this investigation was to utilize pulsed electric field (PEF) technology to make sweet potato kettle chips (SPKC) healthier by lowering the amount of oil absorbed and reducing the amount of acrylamide formed during frying. Sweet potatoes were treated continuously in an Elea PEF Advantage Belt One system and prepared as SPKC, without peeling and sliced to a thickness of 1.7 mm. The specific energy for PEF application was set to either low (1.5 kJ/kg) or high (3.0 kJ/kg) with a field strength of 1.0 kV/cm and a pulse width of 6 μm. Batches of 500 g unrinsed potato slices were fried in canola oil at 130 °C for 360 s. The oil content in 3.0 g of fried SPKC was 1.39 g or 46.3%, whereas the oil content was 37.9% for high and 37.7% for low PEF-treatment conditions. Acrylamide (AA) in the fried SPKC was quantified by mass spectrometry to be 0.668 μg/g in the non-PEF control and 0.498 μg/g for low and 0.370 μg/g for high PEF treatment. The results of this study support the use of PEF in SPKC processing to reduce oil absorbance during frying by up to 9% and lower AA by up to 45%. Full article
(This article belongs to the Special Issue Impacts of Innovative Processing Technologies on Food Quality)
Show Figures

Figure 1

11 pages, 11809 KiB  
Article
A Fast Slicing Method for Colored Models Based on Colored Triangular Prism and OpenGL
by Lei Xia and Ran Yan
Micromachines 2025, 16(2), 199; https://doi.org/10.3390/mi16020199 - 9 Feb 2025
Viewed by 463
Abstract
Colored 3D printing, as one of the crucial directions in 3D printing technology, has been widely applied in various fields in recent years. Compared to traditional 3D printing, colored 3D printing introduces color information to achieve multi-material identification of different regions in the [...] Read more.
Colored 3D printing, as one of the crucial directions in 3D printing technology, has been widely applied in various fields in recent years. Compared to traditional 3D printing, colored 3D printing introduces color information to achieve multi-material identification of different regions in the model structure, enabling the fabrication of heterogeneous and complex components. This presents unique advantages in both visual effects and functionality, making it of significant value in fields such as metal manufacturing, bioengineering, and artistic design. However, during the construction of colored models, technical challenges such as low-slicing contour accuracy and poor color reproduction persist. Existing slicing methods for colored models are often accompanied by contour offset, deformation, color distortion, and low rendering efficiency, severely limiting the application scope of colored 3D printing technology. To address these challenges, this paper proposes a “Fast Slicing Method for Colored Models Based on Colored Triangular Prisms and OpenGL”. This method first constructs colored triangular prisms to effectively solve the problems of color contour offset and deformation, achieving uniform thickness offset of the colors. Then, by utilizing OpenGL rendering technology, the method overcomes color abruptness, simplifies bitmap rendering processes, and ensures smooth color transitions while significantly improving rendering efficiency. In summary, the proposed slicing method can effectively enhance the accuracy of slicing contours and color reproduction, significantly expanding the application range of colored 3D printing. Full article
21 pages, 16141 KiB  
Article
The Development of a Sorting System Based on Point Cloud Weight Estimation for Fattening Pigs
by Luo Liu, Yangsen Ou, Zhenan Zhao, Mingxia Shen, Ruqian Zhao and Longshen Liu
Agriculture 2025, 15(4), 365; https://doi.org/10.3390/agriculture15040365 - 8 Feb 2025
Viewed by 303
Abstract
As large-scale and intensive fattening pig farming has become mainstream, the increase in farm size has led to more severe issues related to the hierarchy within pig groups. Due to genetic differences among individual fattening pigs, those that grow faster enjoy a higher [...] Read more.
As large-scale and intensive fattening pig farming has become mainstream, the increase in farm size has led to more severe issues related to the hierarchy within pig groups. Due to genetic differences among individual fattening pigs, those that grow faster enjoy a higher social rank. Larger pigs with greater aggression continuously acquire more resources, further restricting the survival space of weaker pigs. Therefore, fattening pigs must be grouped rationally, and the management of weaker pigs must be enhanced. This study, considering current fattening pig farming needs and actual production environments, designed and implemented an intelligent sorting system based on weight estimation. The main hardware structure of the partitioning equipment includes a collection channel, partitioning channel, and gantry-style collection equipment. Experimental data were collected, and the original scene point cloud was preprocessed to extract the back point cloud of fattening pigs. Based on the morphological characteristics of the fattening pigs, the back point cloud segmentation method was used to automatically extract key features such as hip width, hip height, shoulder width, shoulder height, and body length. The segmentation algorithm first calculates the centroid of the point cloud and the eigenvectors of the covariance matrix to reconstruct the point cloud coordinate system. Then, based on the variation characteristics and geometric shape of the consecutive horizontal slices of the point cloud, hip width and shoulder width slices are extracted, and the related features are calculated. Weight estimation was performed using Random Forest, Multilayer perceptron (MLP), linear regression based on the least squares method, and ridge regression models, with parameter tuning using Bayesian optimization. The mean squared error, mean absolute error, and mean relative error were used as evaluation metrics to assess the model’s performance. Finally, the classification capability was evaluated using the median and average weights of the fattening pigs as partitioning standards. The experimental results show that the system’s average relative error in weight estimation is approximately 2.90%, and the total time for the partitioning process is less than 15 s, which meets the needs of practical production. Full article
(This article belongs to the Special Issue Modeling of Livestock Breeding Environment and Animal Behavior)
Show Figures

Figure 1

24 pages, 25381 KiB  
Article
Curved-Layer Slicing and Continuous Path Planning for Multi-Axis Printing of Fiber-Reinforced Composite Structures
by Yamin Li, Chenyang Shi and Xin Yan
Processes 2025, 13(2), 473; https://doi.org/10.3390/pr13020473 - 8 Feb 2025
Viewed by 348
Abstract
Fiber-reinforced composite (FRC) additive manufacturing technologies have successfully overcome the limitations of traditional autoclave forming, offering significantly enhanced design freedom. However, one of the remaining key challenges is the planning of continuous printing paths that align with a defined fiber orientation vector field [...] Read more.
Fiber-reinforced composite (FRC) additive manufacturing technologies have successfully overcome the limitations of traditional autoclave forming, offering significantly enhanced design freedom. However, one of the remaining key challenges is the planning of continuous printing paths that align with a defined fiber orientation vector field within FRC structures. This paper introduces a comprehensive framework for multi-axis curved-layer printing of 3D FRC parts. First, a novel multi-axis curved-layer slicing method based on deformed space mapping is proposed. This approach ensures that the sliced curved layers are as parallel as possible to the intended fiber orientations, improving the alignment between the printing process and fiber direction. Next, a vector field-driven printing path planning method for each curved layer is developed, which guarantees that the generated printing paths conform to the specified fiber orientations while also ensuring continuous material deposition. Additionally, a new algorithm for generating support structures tailored to curved layers is proposed, preventing material collapse during the printing process. The effectiveness of the proposed slicing method, path planning, and support structure generation are validated through extensive experiments and simulations, demonstrating their potential to significantly improve the performance and versatility of FRC additive manufacturing. Full article
(This article belongs to the Special Issue Advanced Manufacturing Processes of Composite Materials)
Show Figures

Figure 1

19 pages, 6136 KiB  
Article
Synaptic Dysregulation Drives Hyperexcitability in Pyramidal Neurons Surrounding Freeze-Induced Neocortical Malformations in Rats
by Sergey L. Malkin, Dmitry V. Amakhin, Elena B. Soboleva, Tatiana Y. Postnikova and Aleksey V. Zaitsev
Int. J. Mol. Sci. 2025, 26(4), 1423; https://doi.org/10.3390/ijms26041423 - 8 Feb 2025
Viewed by 256
Abstract
Focal cortical dysplasia (FCD) is a leading cause of drug-resistant epilepsy; however, the mechanisms underlying hyperexcitability in the affected cortical regions remain poorly understood. In this study, we employed a freeze-induced neocortical malformation model in rats to investigate the electrophysiological properties of pyramidal [...] Read more.
Focal cortical dysplasia (FCD) is a leading cause of drug-resistant epilepsy; however, the mechanisms underlying hyperexcitability in the affected cortical regions remain poorly understood. In this study, we employed a freeze-induced neocortical malformation model in rats to investigate the electrophysiological properties of pyramidal neurons surrounding the microgyrus and to evaluate changes in synaptic transmission. Using whole-cell patch-clamp recordings, we analyzed passive and active membrane properties, synaptic responses, and epileptiform activity in brain slices from rats with FCD and sham-operated controls. Our results revealed that while the intrinsic biophysical properties of neurons remained largely unchanged, the summation of excitatory and inhibitory inputs was significantly enhanced. Notably, the balance of inhibitory and excitatory synaptic currents was shifted toward excitation, making the perilesional cortex more susceptible to seizure generation. In a model of epileptiform activity induced by GABAA receptor blockade and reduced Mg2+ concentration, we observed early ictal activity originating in the microgyrus and spreading to adjacent regions. These findings demonstrate that synaptic perturbations, rather than alterations in intrinsic neuronal properties, are the primary drivers of hyperexcitability in this model. Our study highlights the importance of synaptic dysregulation in FCD-related epilepsy and suggests that targeting synaptic transmission may offer a promising therapeutic strategy for controlling seizures in patients with cortical malformations. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 3817 KiB  
Article
The Impact of Aortic Arch Morphology on Periprocedural Stroke in Transcatheter Aortic Valve Replacement
by Stephanie Voss, Katerina Rusa, Caterina Campanella, Teodora Georgescu, Keti Vitanova, Hendrik Ruge, Andrea Amabile, Konstantinos Sideris, Markus Krane and Melchior Burri
J. Clin. Med. 2025, 14(4), 1045; https://doi.org/10.3390/jcm14041045 - 7 Feb 2025
Viewed by 280
Abstract
Objectives: Stroke after transcatheter aortic valve replacement (TAVR) continues to be one of the most concerning complications. Anatomical variations of the aortic arch may increase the risk of embolic debris entering the brain during transfemoral catheter manipulation. We aimed to analyze the [...] Read more.
Objectives: Stroke after transcatheter aortic valve replacement (TAVR) continues to be one of the most concerning complications. Anatomical variations of the aortic arch may increase the risk of embolic debris entering the brain during transfemoral catheter manipulation. We aimed to analyze the influence of aortic arch morphology on the occurrence of ischemic stroke during TAVR. Methods: We performed a retrospective, 1:2 propensity-matched case–control study to compare patients with and without periprocedural stroke (defined according to the Valve Academic Research Consortium III endpoints) after transfemoral TAVR between June 2007 and September 2022. Multi-slice computed tomography (MSCT) analysis of pre-TAVR aortograms was performed to investigate arch anatomy, configuration, curvature, and the take-off angles of the epi-aortic vessels. Results: A total of 2371 patients were enrolled in this study. Periprocedural ischemic stroke was observed in 67 patients. After propensity score matching, this study included 201 patients: 67 (case) vs. 134 (control). The mean age was 80.0 ± 13.2 and 81.6 ± 6.4 years (p = 0.5), and the mean Euroscore II was 4.1 ± 3.6 and 4.3 ± 41 (p = 0.7). There was no difference in arch anatomy (p = 0.2) and configuration (p = 0.8) between the groups. Arch curvature (p = 0.9) and angulation of the brachiocephalic (p = 0.3) and left common carotid artery (p = 0.058) also did not differ significantly between the case and control groups. Conclusions: MSCT analysis in this propensity score-matched study found no correlation between aortic arch geometry and TAVR-associated stroke. Full article
Show Figures

Figure 1

22 pages, 5550 KiB  
Article
Optimal 5G Network Sub-Slicing Orchestration in a Fully Virtualised Smart Company Using Machine Learning
by Abimbola Efunogbon, Enjie Liu, Renxie Qiu and Taiwo Efunogbon
Future Internet 2025, 17(2), 69; https://doi.org/10.3390/fi17020069 - 6 Feb 2025
Viewed by 316
Abstract
This paper introduces Optimal 5G Network Sub-Slicing Orchestration (ONSSO), a novel machine learning framework for dynamic and autonomous 5G network slice orchestration. The framework leverages the LazyPredict module to automatically select optimal supervised learning algorithms based on real-time network conditions and historical data. [...] Read more.
This paper introduces Optimal 5G Network Sub-Slicing Orchestration (ONSSO), a novel machine learning framework for dynamic and autonomous 5G network slice orchestration. The framework leverages the LazyPredict module to automatically select optimal supervised learning algorithms based on real-time network conditions and historical data. We propose Enhanced Sub-Slice (eSS), a machine learning pipeline that enables granular resource allocation through network sub-slicing, reducing service denial risks and enhancing user experience. This leads to the introduction of Company Network as a Service (CNaaS), a new enterprise service model for mobile network operators (MNOs). The framework was evaluated using Google Colab for machine learning implementation and MATLAB/Simulink for dynamic testing. The results demonstrate that ONSSO improves MNO collaboration through real-time resource information sharing, reducing orchestration delays and advancing adaptive 5G network management solutions. Full article
Show Figures

Figure 1

16 pages, 4076 KiB  
Article
Imaging and Image Processing Techniques for High-Resolution Visualization of Connective Tissue with MRI: Application to Fascia, Aponeurosis, and Tendon
by Meeghage Randika Perera, Graeme M. Bydder, Samantha J. Holdsworth and Geoffrey G. Handsfield
J. Imaging 2025, 11(2), 43; https://doi.org/10.3390/jimaging11020043 - 4 Feb 2025
Viewed by 499
Abstract
Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T2* decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have [...] Read more.
Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T2* decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generating high-signal images of these tissues. To further these advances, we discuss the integration of UTE with Diffusion Tensor Imaging (DTI) and explore image processing techniques to enhance the localization, labeling, and modeling of connective tissues. These techniques are especially valuable for extracting features from thin tissues that may be difficult to distinguish. We present data from lower leg scans of 30 healthy subjects using a non-Cartesian MRI sequence to acquire axial 2D images to segment skeletal muscle and connective tissue. DTI helped differentiate aponeurosis from deep fascia by analyzing muscle fiber orientations. The dual echo imaging methods yielded high-resolution images of deep fascia, where in-plane spatial resolutions were between 0.3 × 0.3 mm to 0.5 × 0.5 mm with a slice thickness of 3–5 mm. Techniques such as K-Means clustering, FFT edge detection, and region-specific scaling were most effective in enhancing images of deep fascia, aponeurosis, and tendon to enable high-fidelity modeling of these tissues. Full article
(This article belongs to the Special Issue Progress and Challenges in Biomedical Image Analysis)
Show Figures

Figure 1

28 pages, 2234 KiB  
Article
The Effect of the Use of Unconventional Solutions for Osmotic Dehydration on Selected Properties of Fresh-Cut Oranges
by Sabina Galus, Katarzyna Rybak, Magdalena Dadan, Dorota Witrowa-Rajchert and Małgorzata Nowacka
Foods 2025, 14(3), 468; https://doi.org/10.3390/foods14030468 - 1 Feb 2025
Viewed by 430
Abstract
This study investigated the effects of unconventional solutions on the osmotic dehydration of oranges. These solutions included xylitol, fruit concentrates (strawberry, cherry, orange), rosehip juice, and sucrose. The study examined dehydration kinetics, dry matter, total soluble solids, water activity, color, texture, sugars, vitamin [...] Read more.
This study investigated the effects of unconventional solutions on the osmotic dehydration of oranges. These solutions included xylitol, fruit concentrates (strawberry, cherry, orange), rosehip juice, and sucrose. The study examined dehydration kinetics, dry matter, total soluble solids, water activity, color, texture, sugars, vitamin C, polyphenols, carotenoids, and antioxidant potential, alongside microstructural observations. The results indicated that osmotic solutions and the dehydration time (3 h) significantly influenced the oranges’ physical and chemical properties. Cherry and strawberry concentrate solutions caused the greatest color changes, enhancing the dried product’s visual appeal. Oranges dehydrated with strawberry concentrate exhibited the highest polyphenol content (2909 mg chlorogenic acid/100 g d.m.) and antioxidant potential (11.0 mg TE/d.m.), while rosehip solution yielded the highest vitamin C levels (80.27 g/100 g d.m.), followed by strawberry (62.32 g/100 g d.m.) and orange (47.67 g/100 g d.m.) concentrates. These findings highlight the benefits of using fruit concentrates and juices in osmotic dehydration. The unconventional osmotic solutions resulted in a reduction in the hardness of dehydrated orange sliced from 0.65 N to the range of 0.36–0.60 N, except for strawberry concentrate, which resulted in the highest value (0.72 N). Key parameters, such as the water activity, dry matter, and dehydration efficiency, were more favorable compared to those in the sucrose solution samples. The organoleptic assessment recommended xylitol for maintaining sweetness without altering taste or smell, whereas strawberry juice scored lowest due to its foreign taste and smell. Overall, osmotic dehydration enhanced the nutritional and sensory attributes of oranges by allowing the penetration of bioactive compounds, making them superior to fresh raw material in tested parameters. Full article
Show Figures

Graphical abstract

19 pages, 15226 KiB  
Article
A Comparative Study in Microstructure and Mechanical Properties of Symmetric and Asymmetric Double-Sided FSW Joints of AA7A65
by Chen Chen, Yichao Zhu, Zhiping He, Hongjian Lu, Weifeng Xu, Tengfei Cui, Wenjing Liu, Chenyang Qiu and Zhanping Gao
Materials 2025, 18(3), 645; https://doi.org/10.3390/ma18030645 - 31 Jan 2025
Viewed by 468
Abstract
Double-sided friction stir welding (DS-FSW) demands a low requirement of the welding tool and equipment and can lower the heat input, showing advantages in joining thick-plate joints. However, the intrinsic twice thermal cycle inevitably leads to the twice grain growth and softening, troubling [...] Read more.
Double-sided friction stir welding (DS-FSW) demands a low requirement of the welding tool and equipment and can lower the heat input, showing advantages in joining thick-plate joints. However, the intrinsic twice thermal cycle inevitably leads to the twice grain growth and softening, troubling the performance of the joints. To alleviate this phenomenon, this work proposed an asymmetric DS-FSW (Asy-DS-FSW) in which the first weld and second weld are obtained via a large tool and a small tool, respectively. The results suggest that the Asy-DS-FSW effectively refines the grains and inhibits twice-grain growth in the 27 mm thick AA7A65 joints. The hardness of Asy-DS-FSW is higher and more homogeneously distributed than the conventional symmetric DS-FSW (Sym-DS-FSW). The ultimate tensile strength of the slices is enhanced by 0.5–11%, and the eased strain localization can be achieved by the Asy-DS-FSW, compared with the Sym-DS-FSW. This work offers valuable references to the high-quality joining of thick-plate aluminum alloys in aerospace. Full article
Show Figures

Figure 1

21 pages, 3108 KiB  
Article
Synergistic Effect of Ultrasound and Osmotic Pretreatment on the Drying Kinetics and Antioxidant Properties of Satkara (Citrus macroptera): A Novel Preservation Strategy
by Mohammad Afzal Hossain, Limon Chandra Shaha, Tasnim Islam Romen, Animesh Sarkar, Rahul Biswas, Shafi Ahmed, Md. Atiqual Islam, Fahim Muntasir, Md. Amjad Patwary, Rui M. S. C. Morais and Alcina M. M. B. Morais
Processes 2025, 13(2), 384; https://doi.org/10.3390/pr13020384 - 31 Jan 2025
Viewed by 478
Abstract
This study aimed to investigate the effects of combined ultrasound and osmotic pretreatment conditions on the drying kinetics and antioxidant properties, such as total phenolic content (TPC), total flavonoid content (TFC), vitamin C content, and DPPH radical scavenging activity, of dried Citrus macroptera [...] Read more.
This study aimed to investigate the effects of combined ultrasound and osmotic pretreatment conditions on the drying kinetics and antioxidant properties, such as total phenolic content (TPC), total flavonoid content (TFC), vitamin C content, and DPPH radical scavenging activity, of dried Citrus macroptera (Satkara) fruits. The fruit slices were immersed in 10% aqueous solutions of sucrose (S), glucose (G), and fructose (F) followed by an ultrasound treatment (40 kHz) for 10, 20, or 30 min. The samples were then dried in a convective oven at 50, 60, or 70 °C and 30% relative humidity with a constant air velocity of 3 m s−1. Four thin-layer kinetic models, namely Page, Newton, Henderson and Pabis, and Logarithmic, were evaluated. Among these, Page was found to be the most suitable model for predicting the drying kinetics. The pretreatment process accelerated the drying process significantly, reducing the drying time up to 6 h. Additionally, the pretreated samples exhibited improved retention of quality attributes, with vitamin C being best preserved in S solutions, TPC in both S and F solutions, TFC in F solutions, and DPPH in all three sugar solutions (S, F, and G). The application of ultrasound during osmotic treatment also had a positive impact on TPC and TFC retention, whereas it presented a negative effect on vitamin C when used for a prolonged duration and a negligible one on the antioxidant capacity. Overall, this study provides a new perspective on the drying kinetics of Satkara fruits, and their respective properties after drying, and being subjected to combined ultrasound and osmotic pretreatment. These findings will contribute to the development of effective and efficient drying methods suitable for industrial applications to produce dried Satkara products with a minimum quality degradation. Full article
(This article belongs to the Special Issue Advanced Drying Technologies in Food Processing)
Show Figures

Figure 1

14 pages, 2614 KiB  
Article
Left Ventricular Twist and Circumferential Strain from MRI Tagging Predict Early Cardiovascular Disease in Duchenne Muscular Dystrophy
by Zhan-Qiu Liu, Patrick Magrath, Nyasha G. Maforo, Michael Loecher, Holden H. Wu, Ashley Prosper, Pierangelo Renella, Nancy Halnon and Daniel B. Ennis
Diagnostics 2025, 15(3), 326; https://doi.org/10.3390/diagnostics15030326 - 30 Jan 2025
Viewed by 349
Abstract
Background/Objectives: Duchenne Muscular Dystrophy (DMD) is a prevalent fatal genetic disorder, and heart failure is the leading cause of mortality. Peak left ventricular (LV) circumferential strain (Ecc), twist, and circumferential-longitudinal shear angle (θCL) are promising biomarkers for the improved [...] Read more.
Background/Objectives: Duchenne Muscular Dystrophy (DMD) is a prevalent fatal genetic disorder, and heart failure is the leading cause of mortality. Peak left ventricular (LV) circumferential strain (Ecc), twist, and circumferential-longitudinal shear angle (θCL) are promising biomarkers for the improved and early diagnosis of incipient heart failure. Our goals were as follows: 1) to characterize a spectrum of functional and rotational LV biomarkers in boys with DMD compared with healthy age-matched controls; and 2) to identify LV biomarkers of early cardiomyopathy in the absence of abnormal LVEF or LGE. Methods: Boys with DMD (N = 43) and age-matched healthy volunteers (N = 16) were prospectively enrolled and underwent a 3T CMR exam after obtaining informed consent. Breath-held MRI tagging was used to estimate left ventricular Ecc at the mid-ventricular level as well as the twist, torsion, and θCL between basal and apical LV short-axis slices. A two-tailed t-test with unequal variance was used to test group-wise differences. Multiple comparisons were performed with Holm–Sidak post hoc correction. Multiple-regression analysis was used to test for correlations among biomarkers. A binomial logistic regression model assessed each biomarker’s ability to distinguish the following: (1) healthy volunteers vs. DMD patients, (2) healthy volunteers vs. LGE(−) DMD patients, and (3) LGE(−) DMD patients vs. LGE(+) DMD patients. Results: There was a significant impairment in the peak mid-wall Ecc [−17.0 ± 4.2% vs. −19.5 ± 1.9%, p < 7.8 × 10−3], peak LV twist (10.4 ± 4.3° vs. 15.6 ± 3.1°, p < 8.1 × 10−4), and peak LV torsion (2.03 ± 0.82°/mm vs. 2.8 ± 0.5°/mm, p < 2.6 × 10−3) of LGE(−) DMD patients when compared to healthy volunteers. There was a further significant reduction in the Ecc, twist, torsion, and θCL for LGE(+) DMD patients when compared to LGE(−) DMD patients. In the LGE(+) DMD patients, age significantly correlated with LVEF (r2 = 0.42, p = 9 × 10−3), peak mid-wall Ecc (r2 = 0.27, p = 0.046), peak LV Twist (r2 = 0.24, p = 0.06), peak LV torsion (r2 = 0.28, p = 0.04), and peak LV θCL (r2 = 0.23, p = 0.07). In the LGE(−) DMD patients, only the peak mid-wall Ecc was significantly correlated with age (r2 = 0.25, p = 0.006). The peak LV twist outperformed the peak mid-wall LV Ecc and EF in distinguishing DMD patients from healthy volunteer groups (AUC = 0.88, 0.80, and 0.72), as well as in distinguishing LGE(−) DMD patients from healthy volunteers (AUC = 0.83, 0.74, and 0.62). The peak LV twist and peak mid-wall LV Ecc performed similarly in distinguishing the LGE(−) and LGE(+) DMD cohorts (AUC = 0.74, 0.77, and 0.79). Conclusions: The peak mid-wall LV Ecc, peak LV twist, peak LV torsion, and peak LV θCL were significantly impaired in advance of the decreased LVEF and the development of focal myocardial fibrosis in boys with DMD and therefore were apparent prior to significant irreversible injury. Full article
(This article belongs to the Special Issue New Trends in Cardiovascular Imaging)
Show Figures

Figure 1

Back to TopTop