Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = soft time window

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 964 KiB  
Article
A Heuristic Routing Algorithm for Heterogeneous UAVs in Time-Constrained MEC Systems
by Long Chen, Guangrui Liu, Xia Zhu and Xin Li
Drones 2024, 8(8), 379; https://doi.org/10.3390/drones8080379 - 6 Aug 2024
Viewed by 300
Abstract
The rapid proliferation of Internet of Things (IoT) ground devices (GDs) has created an unprecedented demand for computing resources and real-time data-processing capabilities. Integrating unmanned aerial vehicles (UAVs) into Mobile Edge Computing (MEC) emerges as a promising solution to bring computation and storage [...] Read more.
The rapid proliferation of Internet of Things (IoT) ground devices (GDs) has created an unprecedented demand for computing resources and real-time data-processing capabilities. Integrating unmanned aerial vehicles (UAVs) into Mobile Edge Computing (MEC) emerges as a promising solution to bring computation and storage closer to the data sources. However, UAV heterogeneity and the time window constraints for task execution pose a significant challenge. This paper addresses the multiple heterogeneity UAV routing problem in MEC environments, modeling it as a multi-traveling salesman problem (MTSP) with soft time constraints. We propose a two-stage heuristic algorithm, heterogeneous multiple UAV routing (HMUR). The approach first identifies task areas (TAs) and optimal hovering positions for the UAVs and defines an effective fitness measurement to handle UAV heterogeneity. A novel scoring function further refines the path determination, prioritizing real-time task compliance to enhance Quality of Service (QoS). The simulation results demonstrate that our proposed HMUR method surpasses the existing baseline algorithms on multiple metrics, validating its effectiveness in optimizing resource scheduling in MEC environments. Full article
(This article belongs to the Special Issue Path Planning, Trajectory Tracking and Guidance for UAVs)
Show Figures

Figure 1

21 pages, 1726 KiB  
Article
Modeling a Multimodal Routing Problem with Flexible Time Window in a Multi-Uncertainty Environment
by Yan Ge, Yan Sun and Chen Zhang
Systems 2024, 12(6), 212; https://doi.org/10.3390/systems12060212 - 15 Jun 2024
Viewed by 674
Abstract
In this study, we extend the research on the multimodal routing problem by considering flexible time window and multi-uncertainty environment. A multi-uncertainty environment includes uncertainty regarding the demand for goods, the travel speed of the transportation mode, and the transfer time between different [...] Read more.
In this study, we extend the research on the multimodal routing problem by considering flexible time window and multi-uncertainty environment. A multi-uncertainty environment includes uncertainty regarding the demand for goods, the travel speed of the transportation mode, and the transfer time between different transportation modes. This environment further results in uncertainty regarding the delivery time of goods at their destination and the earliness and lateness caused by time window violations. This study adopts triangular fuzzy numbers to model the uncertain parameters and the resulting uncertain variables. Then, a fuzzy mixed integer nonlinear programming model is established to formulate the specific problem, including both fuzzy parameters and fuzzy variables. To make the problem easily solvable, this study employs chance-constrained programming and linearization to process the proposed model to obtain an equivalent credibilistic chance-constrained linear programming reformulation with an attainable global optimum solution. A numerical case study based on a commonly used multimodal network structure is presented to demonstrate the feasibility of the proposed method. Compared to hard and soft time windows, the numerical case analysis reveals the advantages of the flexible time window in reducing the total costs, avoiding low reliability regarding timeliness, and providing confidence level-sensitive route schemes to achieve flexible routing decision-making under uncertainty. Furthermore, the numerical case analysis verifies that it is necessary to model the multi-uncertainty environment to satisfy the improved customer requirements for timeliness and enhance the flexibility of the routing, and multimodal transportation is better than unimodal transportation when routing goods in an uncertain environment. The sensitivity analysis in the numerical case study shows the conflicting relationship between the economic objective and the reliability regarding the timeliness of the routing, and the result provides a reference for the customer to find a balance between them. Full article
Show Figures

Figure 1

22 pages, 3497 KiB  
Article
Two-Phase Fuzzy Real-Time Approach for Fuzzy Demand Electric Vehicle Routing Problem with Soft Time Windows
by Mohamed A. Wahby Shalaby and Sally S. Kassem
Computers 2024, 13(6), 135; https://doi.org/10.3390/computers13060135 - 27 May 2024
Viewed by 494
Abstract
Environmental concerns have called for several measures to be taken within the logistics and transportation fields. Among these measures is the adoption of electric vehicles instead of diesel-operated vehicles for personal and commercial-delivery use. The optimized routing of electric vehicles for the commercial [...] Read more.
Environmental concerns have called for several measures to be taken within the logistics and transportation fields. Among these measures is the adoption of electric vehicles instead of diesel-operated vehicles for personal and commercial-delivery use. The optimized routing of electric vehicles for the commercial delivery of products is the focus of this paper. We study the effect of several practical challenges that are faced when routing electric vehicles. Electric vehicle routing faces the additional challenge of the potential need for recharging while en route, leading to more travel time, and hence cost. Therefore, in this work, we address the issue of electric vehicle routing problem, allowing for partial recharging while en route. In addition, the practical mandate of the time windows set by customers is also considered, where electric vehicle routing problems with soft time windows are studied. Real-life experience shows that the delivery of customers’ demands might be uncertain. In addition, real-time traffic conditions are usually uncertain due to congestion. Therefore, in this work, uncertainties in customers’ demands and traffic conditions are modeled and solved using fuzzy methods. The problems of fuzzy real-time, fuzzy demand, and electric vehicle routing problems with soft time windows are addressed. A mixed-integer programming mathematical model to represent the problem is developed. A novel two-phase solution approach is proposed to solve the problem. In phase I, the classical genetic algorithm (GA) is utilized to obtain an optimum/near-optimum solution for the fuzzy demand electric vehicle routing problem with soft time windows (FD-EVRPSTW). In phase II, a novel fuzzy real-time-adaptive optimizer (FRTAO) is developed to overcome the challenges of recharging and real-time traffic conditions facing FD-EVRPSTW. The proposed solution approach is tested on several modified benchmark instances, and the results show the significance of recharging and congestion challenges for routing costs. In addition, the results show the efficiency of the proposed two-phase approach in overcoming the challenges and reducing the total costs. Full article
(This article belongs to the Special Issue Recent Advances in Autonomous Vehicle Solutions)
Show Figures

Figure 1

25 pages, 3551 KiB  
Article
A Sustainable Multi-Objective Model for Capacitated-Electric-Vehicle-Routing-Problem Considering Hard and Soft Time Windows as Well as Partial Recharging
by Amir Hossein Sheikh Azadi, Mohammad Khalilzadeh, Jurgita Antucheviciene, Ali Heidari and Amirhossein Soon
Biomimetics 2024, 9(4), 242; https://doi.org/10.3390/biomimetics9040242 - 18 Apr 2024
Cited by 2 | Viewed by 1710
Abstract
Due to the high pollution of the transportation sector, nowadays the role of electric vehicles has been noticed more and more by governments, organizations, and environmentally friendly people. On the other hand, the problem of electric vehicle routing (EVRP) has been widely studied [...] Read more.
Due to the high pollution of the transportation sector, nowadays the role of electric vehicles has been noticed more and more by governments, organizations, and environmentally friendly people. On the other hand, the problem of electric vehicle routing (EVRP) has been widely studied in recent years. This paper deals with an extended version of EVRP, in which electric vehicles (EVs) deliver goods to customers. The limited battery capacity of EVs causes their operational domains to be less than those of gasoline vehicles. For this purpose, several charging stations are considered in this study for EVs. In addition, depending on the operational domain, a full charge may not be needed, which reduces the operation time. Therefore, partial recharging is also taken into account in the present research. This problem is formulated as a multi-objective integer linear programming model, whose objective functions include economic, environmental, and social aspects. Then, the preemptive fuzzy goal programming method (PFGP) is exploited as an exact method to solve small-sized problems. Also, two hybrid meta-heuristic algorithms inspired by nature, including MOSA, MOGWO, MOPSO, and NSGAII_TLBO, are utilized to solve large-sized problems. The results obtained from solving the numerous test problems demonstrate that the hybrid meta-heuristic algorithm can provide efficient solutions in terms of quality and non-dominated solutions in all test problems. In addition, the performance of the algorithms was compared in terms of four indexes: time, MID, MOCV, and HV. Moreover, statistical analysis is performed to investigate whether there is a significant difference between the performance of the algorithms. The results indicate that the MOSA algorithm performs better in terms of the time index. On the other hand, the NSGA-II-TLBO algorithm outperforms in terms of the MID, MOCV, and HV indexes. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2024)
Show Figures

Figure 1

17 pages, 2369 KiB  
Article
Collaborative Multiple Players to Address Label Sparsity in Quality Prediction of Batch Processes
by Ling Zhao, Zheng Zhang, Jinlin Zhu, Hongchao Wang and Zhenping Xie
Sensors 2024, 24(7), 2073; https://doi.org/10.3390/s24072073 - 24 Mar 2024
Viewed by 631
Abstract
For decades, soft sensors have been extensively renowned for their efficiency in real-time tracking of expensive variables for advanced process control. However, despite the diverse efforts lavished on enhancing their models, the issue of label sparsity when modeling the soft sensors has always [...] Read more.
For decades, soft sensors have been extensively renowned for their efficiency in real-time tracking of expensive variables for advanced process control. However, despite the diverse efforts lavished on enhancing their models, the issue of label sparsity when modeling the soft sensors has always posed challenges across various processes. In this paper, a fledgling technique, called co-training, is studied for leveraging only a small ratio of labeled data, to hone and formulate a more advantageous framework in soft sensor modeling. Dissimilar to the conventional routine where only two players are employed, we investigate the efficient number of players in batch processes, making a multiple-player learning scheme to assuage the sparsity issue. Meanwhile, a sliding window spanning across both time and batch direction is used to aggregate the samples for prediction, and account for the unique 2D correlations among the general batch process data. Altogether, the forged framework can outperform the other prevalent methods, especially when the ratio of unlabeled data is climbing up, and two case studies are showcased to demonstrate its effectiveness. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

25 pages, 9067 KiB  
Review
Management Information Systems for Tree Fruit–2: Design of a Mango Harvest Forecast Engine
by Hari Krishna Dhonju, Thakur Bhattarai, Marcelo H. Amaral, Martina Matzner and Kerry B. Walsh
Horticulturae 2024, 10(3), 301; https://doi.org/10.3390/horticulturae10030301 - 20 Mar 2024
Cited by 1 | Viewed by 1668
Abstract
Spatially enabled yield forecasting is a key component of farm Management Information Systems (MISs) for broadacre grain production, enabling management decisions such as variable rate fertilization. However, such a capability has been lacking for soft (fleshy)-tree-fruit harvest load, with relevant tools for automated [...] Read more.
Spatially enabled yield forecasting is a key component of farm Management Information Systems (MISs) for broadacre grain production, enabling management decisions such as variable rate fertilization. However, such a capability has been lacking for soft (fleshy)-tree-fruit harvest load, with relevant tools for automated assessment having been developed only recently. Such tools include improved estimates of the heat units required for fruit maturation and in-field machine vision for flower and fruit count and fruit sizing. Feedback on the need for and issues in forecasting were documented. A mango ‘harvest forecast engine’ was designed for the forecasting of harvest timing and fruit load, to aid harvest management. Inputs include 15 min interval temperature data per orchard block, weekly manual or machine-vision-derived estimates of flowering, and preharvest manual or machine-vision-derived estimates of fruit load on an orchard block level across the farm. Outputs include predicted optimal harvest time and fruit load, on a per block and per week basis, to inform harvest scheduling. Use cases are provided, including forecast of the order of harvest of blocks within the orchard, management of harvest windows to match harvesting resources such as staff availability, and within block spatial allocation of resources, such as adequate placement of harvest field bin and frost fans. Design requirements for an effective harvest MIS software artefact incorporating the forecast engine are documented, including an integrated database supporting spatial query, data analysis, processing and mapping, an integrated geospatial database for managing of large spatial–temporal datasets, and use of dynamic web map services to enable rapid visualization of large datasets. Full article
Show Figures

Graphical abstract

16 pages, 1655 KiB  
Article
Chance-Constrained Optimization for a Green Multimodal Routing Problem with Soft Time Window under Twofold Uncertainty
by Xinya Li, Yan Sun, Jinfeng Qi and Danzhu Wang
Axioms 2024, 13(3), 200; https://doi.org/10.3390/axioms13030200 - 16 Mar 2024
Cited by 3 | Viewed by 1467
Abstract
This study investigates a green multimodal routing problem with soft time window. The objective of routing is to minimize the total costs of accomplishing the multimodal transportation of a batch of goods. To improve the feasibility of optimization, this study formulates the routing [...] Read more.
This study investigates a green multimodal routing problem with soft time window. The objective of routing is to minimize the total costs of accomplishing the multimodal transportation of a batch of goods. To improve the feasibility of optimization, this study formulates the routing problem in an uncertain environment where the capacities and carbon emission factors of the travel process and the transfer process in the multimodal network are considered fuzzy. Taking triangular fuzzy numbers to describe the uncertainty, this study proposes a fuzzy nonlinear programming model to deal with the specific routing problem. To make the problem solvable, this study adopts the fuzzy chance-constrained programming approach based on the possibility measure to remove the fuzziness of the proposed model. Furthermore, we use linear inequality constraints to reformulate the nonlinear equality constraints represented by the continuous piecewise linear functions and realize the linearization of the nonlinear programming model to improve the computational efficiency of problem solving. After model processing, we can utilize mathematical programming software to run exact solution algorithms to solve the specific routing problem. A numerical experiment is given to show the feasibility of the proposed model. The sensitivity analysis of the numerical experiment further clarifies how improving the confidence level of the chance constraints to enhance the possibility that the multimodal route planned in advance satisfies the real-time capacity constraint in the actual transportation, i.e., the reliability of the routing, increases both the total costs and carbon emissions of the route. The numerical experiment also finds that charging carbon emissions is not absolutely effective in emission reduction. In this condition, bi-objective analysis indicates the conflicting relationship between lowering transportation activity costs and reducing carbon emissions in routing optimization. The sensitivity of the Pareto solutions concerning the confidence level reveals that reliability, economy, and environmental sustainability are in conflict with each other. Based on the findings of this study, the customer and the multimodal transport operator can organize efficient multimodal transportation, balancing the above objectives using the proposed model. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure 1

19 pages, 2500 KiB  
Article
Optimization of Electric Vehicle Routes Considering Multi-Temperature Co-Distribution in Cold Chain Logistics with Soft Time Windows
by Meiling He, Mei Yang, Wenqing Fu, Xiaohui Wu and Kazuhiro Izui
World Electr. Veh. J. 2024, 15(3), 80; https://doi.org/10.3390/wevj15030080 - 22 Feb 2024
Viewed by 1964
Abstract
Inspired by the practice of urban distribution of fresh products, we introduce a new electric vehicle routing problem with soft time windows. In this problem, goods with different temperature layers can be distributed in ordinary electric vehicles simultaneously based on the cold storage [...] Read more.
Inspired by the practice of urban distribution of fresh products, we introduce a new electric vehicle routing problem with soft time windows. In this problem, goods with different temperature layers can be distributed in ordinary electric vehicles simultaneously based on the cold storage insulation box. The primary objective is to devise optimized distribution routes for logistics companies to minimize distribution costs, including transportation, refrigeration, and charging costs. To address this, we present a mathematical model for the problem and propose an improved ant colony optimization algorithm combined with a 2-opt algorithm. Based on Solomon dataset, we conduct numerical experiments to verify the effectiveness of the proposed model and algorithm. The numerical results demonstrate that multi-temperature co-distribution can lead to a reduction in distribution cost and an improvement in distribution efficiency. Full article
(This article belongs to the Special Issue Advanced Vehicle System Dynamics and Control)
Show Figures

Graphical abstract

15 pages, 26726 KiB  
Article
Visual Detection of Lost Ear Tags in Breeding Pigs in a Production Environment Using the Enhanced Cascade Mask R-CNN
by Fang Wang, Xueliang Fu, Weijun Duan, Buyu Wang and Honghui Li
Agriculture 2023, 13(10), 2011; https://doi.org/10.3390/agriculture13102011 - 17 Oct 2023
Cited by 5 | Viewed by 1220
Abstract
As the unique identifier of individual breeding pigs, the loss of ear tags can result in the loss of breeding pigs’ identity information, leading to data gaps and confusion in production and genetic breeding records, which can have catastrophic consequences for breeding efforts. [...] Read more.
As the unique identifier of individual breeding pigs, the loss of ear tags can result in the loss of breeding pigs’ identity information, leading to data gaps and confusion in production and genetic breeding records, which can have catastrophic consequences for breeding efforts. Detecting the loss of ear tags in breeding pigs can be challenging in production environments due to factors such as overlapping breeding pig clusters, imbalanced pig-to-tag ratios, and relatively small-sized ear tags. This study proposes an improved method for the detection of lost ear tags in breeding pigs based on Cascade Mask R-CNN. Firstly, the model utilizes ResNeXt combined with a feature pyramid network (FPN) as the feature extractor; secondly, the classification branch incorporates the online hard example mining (OHEM) technique to improve the utilization of ear tags and low-confidence samples; finally, the regression branch employs a decay factor of Soft-NMS to reduce the overlap of redundant bounding boxes. The experiment employs a sliding window detection method to evaluate the algorithm’s performance in detecting lost ear tags in breeding pigs in a production environment. The results show that the accuracy of the detection can reach 92.86%. This improvement effectively enhances the accuracy and real-time performance of lost ear tag detection, which is highly significant for the production and breeding of breeding pigs. Full article
(This article belongs to the Special Issue Artificial Intelligence in Livestock Farming)
Show Figures

Graphical abstract

19 pages, 2111 KiB  
Article
C-DTW for Human Action Recognition Based on Nanogenerator
by Haifeng Xu, Renhai Feng and Weikang Zhang
Sensors 2023, 23(16), 7230; https://doi.org/10.3390/s23167230 - 17 Aug 2023
Cited by 3 | Viewed by 1242
Abstract
Sensor-based human action recognition (HAR) is considered to have broad practical prospects. It applies to wearable devices to collect plantar pressure or acceleration information at human joints during human actions, thereby identifying human motion patterns. Existing related works have mainly focused on improving [...] Read more.
Sensor-based human action recognition (HAR) is considered to have broad practical prospects. It applies to wearable devices to collect plantar pressure or acceleration information at human joints during human actions, thereby identifying human motion patterns. Existing related works have mainly focused on improving recognition accuracy, and have rarely considered energy-efficient management of portable HAR systems. Considering the high sensitivity and energy harvesting ability of triboelectric nanogenerators (TENGs), in this research a TENG which achieved output performance of 9.98 mW/cm2 was fabricated using polydimethylsiloxane and carbon nanotube film for sensor-based HAR as a wearable sensor. Considering real-time identification, data are acquired using a sliding window approach. However, the classification accuracy is challenged by quasi-periodic characteristics of the intercepted sequence. To solve this problem, compensatory dynamic time warping (C-DTW) is proposed, which adjusts the DTW result based on the proportion of points separated by small distances under DTW alignment. Our simulation results show that the classification accuracy of C-DTW is higher than that of DTW and its improved versions (e.g., WDTW, DDTW and softDTW), with almost the same complexity. Moreover, C-DTW is much faster than shapeDTW under the same classification accuracy. Without loss of generality, the performance of the existing DTW versions can be enhanced using the compensatory mechanism of C-DTW. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

39 pages, 8427 KiB  
Article
Modeling a Carbon-Efficient Road–Rail Intermodal Routing Problem with Soft Time Windows in a Time-Dependent and Fuzzy Environment by Chance-Constrained Programming
by Yan Sun, Guohua Sun, Baoliang Huang and Jie Ge
Systems 2023, 11(8), 403; https://doi.org/10.3390/systems11080403 - 6 Aug 2023
Cited by 3 | Viewed by 1627
Abstract
This study explores a road–rail intermodal routing problem. To improve the carbon efficiency of transportation, reducing CO2 emissions is considered by the routing. Soft time windows are incorporated into the routing to optimize the timeliness of the first-mile pickup and last-mile delivery [...] Read more.
This study explores a road–rail intermodal routing problem. To improve the carbon efficiency of transportation, reducing CO2 emissions is considered by the routing. Soft time windows are incorporated into the routing to optimize the timeliness of the first-mile pickup and last-mile delivery services in intermodal transportation. The routing is further modeled in a time-dependent and fuzzy environment where the average truck speeds of the road depend on the truck departure times and are simultaneously considered fuzzy along with rail capacities. The fuzzy truck speed leads to the fuzziness of three aspects, including speed-dependent CO2 emissions of the road, a timetable-constrained transfer process from road to rail, and delivery time window violation. This study formulates the routing problem under the above considerations and carbon tax regulation as a combination of transportation path planning problem and truck departure time and speed matching problem. A fuzzy nonlinear optimization model is then established for the proposed routing problem. Furthermore, chance-constrained programming with general fuzzy measure is used to conduct the defuzzification of the model to make the problem solvable, and linearization techniques are adopted to linearize the model to enhance the efficiency of problem-solving. Finally, this study presents an empirical case to demonstrate the effectiveness of the designed approach. This case study evaluates the performance of carbon tax regulation by comparing it with multi-objective optimization. It also focuses on sensitivity analysis to discuss the influence of the optimistic–pessimistic parameter and confidence level on the optimization results. Several managerial insights are revealed based on the case study. Full article
Show Figures

Figure 1

17 pages, 2015 KiB  
Article
Solving Bi-Objective Vehicle Routing Problems with Driving Risk Consideration for Hazardous Materials Transportation
by Huo Chai, Ruichun He, Ronggui Kang, Xiaoyan Jia and Cunjie Dai
Sustainability 2023, 15(9), 7619; https://doi.org/10.3390/su15097619 - 5 May 2023
Cited by 3 | Viewed by 1539
Abstract
Driving behavior is an important factor affecting the risk of hazardous materials transportation. In this paper, we propose a transport risk evaluation method that considers driving risk. We consider driving risk and establish a model of vehicle routing problems with a soft time [...] Read more.
Driving behavior is an important factor affecting the risk of hazardous materials transportation. In this paper, we propose a transport risk evaluation method that considers driving risk. We consider driving risk and establish a model of vehicle routing problems with a soft time window for the transportation of hazardous materials and design a non-dominated genetic algorithm to solve the bi-objective optimization model. Taking a network of 23 nodes and 38 road segments as an example, 59 pareto-optimal solutions were obtained for six drivers on nine different paths. Comparing different solutions, it was found that driving risk, road population density, and transportation distance have different impacts on transport cost and risk. Choosing drivers and routes can adjust the propensity of cost and risk, allowing the decision-maker to select a solution for allocating drivers and routing vehicles according to their risk preference. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

14 pages, 2454 KiB  
Article
Automatic Casting Control Method of Continuous Casting Based on Improved Soft Actor–Critic Algorithm
by Xiaojun Wu, Wenze Jiang, Sheng Yuan, Hongjia Kang, Qi Gao and Jinzhou Mi
Metals 2023, 13(4), 820; https://doi.org/10.3390/met13040820 - 21 Apr 2023
Cited by 2 | Viewed by 1930
Abstract
Continuous casting production is an important stage in smelting high-quality steel, and automatic casting control based on artificial intelligence is a key technology to improve the continuous casting process and the product quality. By controlling the opening degree of the stopper rod reasonably, [...] Read more.
Continuous casting production is an important stage in smelting high-quality steel, and automatic casting control based on artificial intelligence is a key technology to improve the continuous casting process and the product quality. By controlling the opening degree of the stopper rod reasonably, the mold can be filled with liquid steel stably in the specified time window, and automatic casting can be realized. In this paper, an automatic casting control method of continuous casting based on an improved Soft Actor–Critic (SAC) algorithm is proposed. Firstly, a relational model of the stopper rod opening degree and the liquid steel outflow velocity is established according to historical casting data. Then the Markov Decision Process (MDP) model of the automatic casting problem and the reinforcement learning framework based on the SAC algorithm are established. Finally, a Heterogeneous Experience Pool (HEP) is introduced to improve the SAC algorithm. According to the simulation results, the proposed algorithm can predict the stopper rod opening degree sequence under the constraint of the target liquid level curve. Under different billet specifications and interference conditions, an accuracy of 80% of liquid level in the mold and a stopper rod opening degree stability rate of 75% can be achieved, which is 4.29% and 3.17% higher than those for the baseline algorithms, respectively. Full article
(This article belongs to the Special Issue Advanced Tundish Metallurgy and Clean Steel Technology)
Show Figures

Figure 1

11 pages, 1475 KiB  
Article
Viscoelastic Properties of Zona Pellucida of Oocytes Characterized by Transient Electrical Impedance Spectroscopy
by Danyil Azarkh, Yuan Cao, Julia Floehr and Uwe Schnakenberg
Biosensors 2023, 13(4), 442; https://doi.org/10.3390/bios13040442 - 30 Mar 2023
Cited by 5 | Viewed by 2170
Abstract
The success rate in vitro fertilization is significantly linked to the quality of the oocytes. The oocyte’s membrane is encapsulated by a shell of gelatinous extracellular matrix, called zona pellucida, which undergoes dynamic changes throughout the reproduction cycle. During the window of highest [...] Read more.
The success rate in vitro fertilization is significantly linked to the quality of the oocytes. The oocyte’s membrane is encapsulated by a shell of gelatinous extracellular matrix, called zona pellucida, which undergoes dynamic changes throughout the reproduction cycle. During the window of highest fertility, the zona pellucida exhibits a softening phase, while it remains rigid during oocyte maturation and again after fertilization. These variations in mechanical properties facilitate or inhibit sperm penetration. Since successful fertilization considerably depends on the state of the zona pellucida, monitoring of the hardening process of the zona pellucida is vital. In this study, we scrutinized two distinct genetic mouse models, namely, fetuin-B wild-type and fetuin-B/ovastacin double deficient with normal and super-soft zona pellucida, respectively. We evaluated the hardening with the help of a microfluidic aspiration-assisted electrical impedance spectroscopy system. An oocyte was trapped by a microhole connected to a microfluidic channel by applying suction pressure. Transient electrical impedance spectra were taken by microelectrodes surrounding the microhole. The time-depending recovery of zona pellucida deflections to equilibrium was used to calculate the Young’s modulus and, for the first time, absolute viscosity values. The values were obtained by fitting the curves with an equivalent mechanical circuit consisting of a network of dashpots and springs. The observer-independent electrical readout in combination with a fitting algorithm for the calculation of the viscoelastic properties demonstrates a step toward a more user-friendly and easy-to-use tool for the characterizing and better understanding of the rheological properties of oocytes. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

19 pages, 2451 KiB  
Article
Cross-Correlation Multifractal Analysis of Technological Innovation, Financial Market and Real Economy Indices
by Jinchuan Ke, Yu Duan, Chao Xu and Yue Zhang
Fractal Fract. 2023, 7(3), 267; https://doi.org/10.3390/fractalfract7030267 - 17 Mar 2023
Cited by 2 | Viewed by 1581
Abstract
Technological innovation, the financial market, and the real economy are mutually promoting and restricting. Considering the interference of market-noise information, this paper applies the wavelet-denoising method of the soft- and hard-threshold compromise functions to process the original information so as to eliminate the [...] Read more.
Technological innovation, the financial market, and the real economy are mutually promoting and restricting. Considering the interference of market-noise information, this paper applies the wavelet-denoising method of the soft- and hard-threshold compromise functions to process the original information so as to eliminate the noise information, and combines multifractal detrended cross-correlation analysis with the sliding-window approach, focusing on the change in the Hurst index and the parameter change in the multifractal spectrum to explore the interaction in between. The research results show that there is a certain cross-correlation among technological-innovation, financial-market, and real-economy indices. Firstly, the cross-correlation among them has significant multifractal characteristics rather than single-fractal characteristics. Secondly, the fractal characteristics reveal the long memory of the interaction among the three indices. Thirdly, there are also obvious differences in the degree of local chaos and volatility of the interaction. Fourthly, the cross-correlation among technological-innovation, financial-market, and real-economy indices has significant multifractal characteristics rather than single-fractal characteristics. In comparison, the cross-correlation multifractal characteristics among technological innovation, the financial market, and the real economy are time-varying, and the cross-correlation multifractal characteristics between the technological-innovation index and the real-economy index are the most obvious. Full article
Show Figures

Figure 1

Back to TopTop