Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (331)

Search Parameters:
Keywords = sparse array

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4067 KiB  
Article
Enhancing Brain–Computer Interfaces through Kriging-Based Fusion of Sparse Regression Partial Differential Equations to Counter Injection Molding View of Node Displacement Effects
by Hanjui Chang, Yue Sun, Shuzhou Lu and Yuntao Lan
Polymers 2024, 16(17), 2507; https://doi.org/10.3390/polym16172507 - 3 Sep 2024
Viewed by 299
Abstract
Injection molding is an efficient and precise manufacturing technology that is widely used in the production of plastic products. In recent years, injection molding technology has made significant progress, especially with the combination of in-mold electronics (IME) technology, which makes it possible to [...] Read more.
Injection molding is an efficient and precise manufacturing technology that is widely used in the production of plastic products. In recent years, injection molding technology has made significant progress, especially with the combination of in-mold electronics (IME) technology, which makes it possible to embed electronic components directly into the surface of a product. IME technology improves the integration and performance of a product by embedding conductive materials and functional components in the mold. Brain–computer interfaces (BCIs) are a rapidly growing field of research that aims to capture, analyze, and feedback brain signals by directly connecting the brain to external devices. The Utah array, a high-density microelectrode array, has been widely used for the recording and transmission of brain signals. However, the traditional fabrication method of the Utah array suffers from high cost and low integration, which limits its promotion in practical applications. The lines that receive EEG signals are one of the key parts of a brain–computer interface system. The optimization of injection molding parameters is particularly important in order to effectively embed these lines into thin films and to ensure the precise displacement of the line nodes and the stability of signal transmission during the injection molding process. In this study, a method based on the Kriging prediction model and sparse regression partial differential equations (PDEs) is proposed to optimize the key parameters in the injection molding process. This method can effectively predict and control the displacement of nodes in the film, ensure the stability and reliability of the line during the injection process, and improve the accuracy of EEG signal transmission and system performance. The optimal injection parameters were finally obtained: a holding pressure of 525 MPa, a holding time of 50 s, and a melting temperature of 285 °C. Under this condition, the average node displacement of UA was reduced from the initial 0.19 mm to 0.89 µm, with an optimization rate of 95.32%. Full article
(This article belongs to the Special Issue Developments in Polymer Injection Molding)
Show Figures

Figure 1

22 pages, 5423 KiB  
Article
Thinned and Sparse Beamforming for Semicircular FDAs in the Transmit–Receive Domain
by Anyi Wang, Xiao Huang, Yanhong Xu, Xiao Meng and Yumeng Lu
Remote Sens. 2024, 16(17), 3262; https://doi.org/10.3390/rs16173262 - 3 Sep 2024
Viewed by 173
Abstract
The thinned and sparse beamforming for semicircular FDAs were investigated, where the excitation amplitudes were also considered in thinned semicircular FDAs, and only the elements’ positions were incorporated into the sparse semicircular FDA. Firstly, the transmit–receive model was introduced to handle the inherent [...] Read more.
The thinned and sparse beamforming for semicircular FDAs were investigated, where the excitation amplitudes were also considered in thinned semicircular FDAs, and only the elements’ positions were incorporated into the sparse semicircular FDA. Firstly, the transmit–receive model was introduced to handle the inherent time-varying issue of FDA, followed by the thinned and sparse implementations successively. Note that three types of non-linearly varying frequency offsets (FO), i.e., log-FO, sin-FO, and tanh-FO, were adopted during the investigations. Under the same assumption that 50% of the elements should be saved, the sidelobe levels (SLLs) of the thinned semicircular -FDAs were reduced by 5.8 dB, 4.4 dB, and 4.4 dB, and the widths of the mainlobes were all widened by 3° in their angle dimension. Compared with the thinned semicircular FDAs, the phenomenon of mainlobe widening was alleviated in the sparse semicircular FDAs where the SLLs were reduced by 2.2 dB, 3.7 dB and 3.5 dB, and the mainlobes’ widths in the angle dimension were widened by 1°, 0° and 1°, respectively. It should be highlighted that the sparse semicircular FDA with sin-FO did not broaden the mainlobe in the angle dimension. Therefore, it can be concluded that a sparse semicircular FDA is superior over a thinned semicircular FDA, since it can reduce the same cost with a higher array resolution. Full article
Show Figures

Figure 1

21 pages, 4181 KiB  
Article
Detection of Harmful H2S Concentration Range, Health Classification, and Lifespan Prediction of CH4 Sensor Arrays in Marine Environments
by Kai Zhang, Yongwei Zhang, Jian Wu, Tao Wang, Wenkai Jiang, Min Zeng and Zhi Yang
Chemosensors 2024, 12(9), 172; https://doi.org/10.3390/chemosensors12090172 - 29 Aug 2024
Viewed by 354
Abstract
Underwater methane (CH4) detection technology is of great significance to the leakage monitoring and location of marine natural gas transportation pipelines, the exploration of submarine hydrothermal activity, and the monitoring of submarine volcanic activity. In order to improve the safety of [...] Read more.
Underwater methane (CH4) detection technology is of great significance to the leakage monitoring and location of marine natural gas transportation pipelines, the exploration of submarine hydrothermal activity, and the monitoring of submarine volcanic activity. In order to improve the safety of underwater CH4 detection mission, it is necessary to study the effect of hydrogen sulfide (H2S) in leaking CH4 gas on sensor performance and harmful influence, so as to evaluate the health status and life prediction of underwater CH4 sensor arrays. In the process of detecting CH4, the accuracy decreases when H2S is found in the ocean water. In this study, we proposed an explainable sorted-sparse (ESS) transformer model for concentration interval detection under industrial conditions. The time complexity was decreased to O (n logn) using an explainable sorted-sparse block. Additionally, we proposed the Ocean X generative pre-trained transformer (GPT) model to achieve the online monitoring of the health of the sensors. The ESS transformer model was embedded in the Ocean X GPT model. When the program satisfied the special instructions, it would jump between models, and the online-monitoring question-answering session would be completed. The accuracy of the online monitoring of system health is equal to that of the ESS transformer model. This Ocean-X-generated model can provide a lot of expert information about sensor array failures and electronic noses by text and speech alone. This model had an accuracy of 0.99, which was superior to related models, including transformer encoder (0.98) and convolutional neural networks (CNN) + support vector machine (SVM) (0.97). The Ocean X GPT model for offline question-and-answer tasks had a high mean accuracy (0.99), which was superior to the related models, including long short-term memory–auto encoder (LSTM–AE) (0.96) and GPT decoder (0.98). Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

27 pages, 8277 KiB  
Article
High-Resolution Identification of Sound Sources Based on Sparse Bayesian Learning with Grid Adaptive Split Refinement
by Wei Pan, Daofang Feng, Youtai Shi, Yan Chen and Min Li
Appl. Sci. 2024, 14(16), 7374; https://doi.org/10.3390/app14167374 - 21 Aug 2024
Viewed by 335
Abstract
Sound source identification technology based on a microphone array has many application scenarios. The compressive beamforming method has attracted much attention due to its high accuracy and high-resolution performance. However, for the far-field measurement problem of large microphone arrays, existing methods based on [...] Read more.
Sound source identification technology based on a microphone array has many application scenarios. The compressive beamforming method has attracted much attention due to its high accuracy and high-resolution performance. However, for the far-field measurement problem of large microphone arrays, existing methods based on fixed grids have the defect of basis mismatch. Due to the large number of grid points representing potential sound source locations, the identification accuracy of traditional grid adjustment methods also needs to be improved. To solve this problem, this paper proposes a sound source identification method based on adaptive grid splitting and refinement. First, the initial source locations are obtained through a sparse Bayesian learning framework. Then, higher-weight candidate grids are retained, and local regions near them are split and updated. During the iteration process, Green’s function and the source strength obtained in the previous iteration are multiplied to get the sound pressure matrix. The robust principal component analysis model of the Gaussian mixture separates and replaces the sound pressure matrix with a low-rank matrix. The actual sound source locations are gradually approximated through the dynamically adjusted sound pressure low-rank matrix and optimized grid transfer matrix. The performance of the method is verified through numerical simulations. In addition, experiments on a standard aircraft model are conducted in a wind tunnel and speakers are installed on the model, proving that the proposed method can achieve fast, high-precision imaging of low-frequency sound sources in an extensive dynamic range at long distances. Full article
(This article belongs to the Special Issue Noise Measurement, Acoustic Signal Processing and Noise Control)
Show Figures

Figure 1

26 pages, 7359 KiB  
Article
Volume-Mediated Lake-Ice Phenology in Southwest Alaska Revealed through Remote Sensing and Survival Analysis
by Peter B. Kirchner and Michael P. Hannam
Water 2024, 16(16), 2309; https://doi.org/10.3390/w16162309 - 16 Aug 2024
Viewed by 590
Abstract
Lakes in Southwest Alaska are a critical habitat to many species and provide livelihoods to many communities through subsistence fishing, transportation, and recreation. Consistent and reliable data are rarely available for even the largest lakes in this sparsely populated region, so data-intensive methods [...] Read more.
Lakes in Southwest Alaska are a critical habitat to many species and provide livelihoods to many communities through subsistence fishing, transportation, and recreation. Consistent and reliable data are rarely available for even the largest lakes in this sparsely populated region, so data-intensive methods utilizing long-term observations and physical data are not possible. To address this, we used optical remote sensing (MODIS 2002–2016) to establish a phenology record for key lakes in the region, and we modeled lake-ice formation and breakup for the years 1982–2022 using readily available temperature and solar radiation-based predictors in a survival modeling framework that accounted for years when lakes did not freeze. Results were validated with observations recorded at two lakes, and stratification measured by temperature arrays in three others. Our model provided good predictions (mean absolute error, freeze-over = 11 days, breakup = 16 days). Cumulative freeze-degree days and cumulative thaw-degree days were the strongest predictors of freeze-over and breakup, respectively. Lake volume appeared to mediate lake-ice phenology, as ice-cover duration tended to be longer and less variable in lower-volume lakes. Furthermore, most lakes < 10 km3 showed a trend toward shorter ice seasons of −1 to −6 days/decade, while most higher-volume lakes showed undiscernible or positive trends of up to 2 days/decade. Lakes > 20 km3 also showed a greater number of years when freeze-over was neither predicted by our model (37 times, n = 200) nor observed in the MODIS record (19 times, n = 60). While three lakes in our study did not commonly freeze throughout our study period, four additional high-volume lakes began experiencing years in which they did not freeze, starting in the late 1990s. Our study provides a novel approach to lake-ice prediction and an insight into the future of lake ice in the Boreal region. Full article
(This article belongs to the Special Issue Ice and Snow Properties and Their Applications)
Show Figures

Graphical abstract

20 pages, 579 KiB  
Article
2D DOA and Polarization Estimation Using Parallel Synthetic Coprime Array of Non-Collocated EMVSs
by Yunlong Yang, Mengru Shan and Guojun Jiang
Remote Sens. 2024, 16(16), 3004; https://doi.org/10.3390/rs16163004 - 16 Aug 2024
Viewed by 398
Abstract
For target detection and recognition in a complicated electromagnetic environment, the two-dimensional direction-of-arrival and polarization estimation using a polarization-sensitive array has been receiving increased attention. To efficiently improve the performance of such multi-parameter estimation in practice, this paper proposes a parallel synthetic coprime [...] Read more.
For target detection and recognition in a complicated electromagnetic environment, the two-dimensional direction-of-arrival and polarization estimation using a polarization-sensitive array has been receiving increased attention. To efficiently improve the performance of such multi-parameter estimation in practice, this paper proposes a parallel synthetic coprime array with reduced mutual coupling and hardware cost saving and then presents a dimension-reduction compressive sensing-based estimation method. For the proposed array, the polarization types, numbers, and positions of antennas in each subarray are jointly considered to effectively mitigate mutual coupling in the physical array domain and to both enhance degrees of freedom and extend the aperture in the difference coarray domain with the limited physical antennas. By exploring the array configuration, the parameter estimation can be formulated as a block-sparse signal reconstruction problem, and then the one-dimensional sparse reconstruction algorithm is only used once to achieve multi-parameter estimation with automatic pair-matching. The theoretical analysis and simulation results are provided to demonstrate the superior performance of the proposed array and method over the existing techniques. Full article
Show Figures

Figure 1

21 pages, 10907 KiB  
Article
A Point Cloud Improvement Method for High-Resolution 4D mmWave Radar Imagery
by Qingmian Wan, Hongli Peng, Xing Liao, Weihao Li, Kuayue Liu and Junfa Mao
Remote Sens. 2024, 16(15), 2856; https://doi.org/10.3390/rs16152856 - 4 Aug 2024
Viewed by 1037
Abstract
To meet the requirement of autonomous driving development, high-quality point cloud generation of the environment has become the focus of 4D mmWave radar development. On the basis of mass producibility and physical verifiability, a design method for improving the quality and density of [...] Read more.
To meet the requirement of autonomous driving development, high-quality point cloud generation of the environment has become the focus of 4D mmWave radar development. On the basis of mass producibility and physical verifiability, a design method for improving the quality and density of point cloud imagery is proposed in this paper, including antenna design, array design, and the dynamic detection method. The utilization of apertures is promoted through antenna design and sparse MIMO array optimization using the genetic algorithm (GA). The hybrid strategy for complex point clouds is adopted using the proposed dynamic CFAR algorithm, which enables dynamic adjustment of the threshold by discriminating and calculating different scanning regions. The effectiveness of the proposed method is verified by simulations and practical experiments. Aiming at system manufacture, analysis methods for the ambiguity function (AF) and shooting and bouncing rays (SBR) tracing are introduced, and an mmWave radar system is realized based on the proposed method, with its performance proven by practical experiments. Full article
Show Figures

Figure 1

24 pages, 5669 KiB  
Article
Design of Multichannel Spectrum Intelligence Systems Using Approximate Discrete Fourier Transform Algorithm for Antenna Array-Based Spectrum Perception Applications
by Arjuna Madanayake, Keththura Lawrance, Bopage Umesha Kumarasiri, Sivakumar Sivasankar, Thushara Gunaratne, Chamira U. S. Edussooriya and Renato J. Cintra
Algorithms 2024, 17(8), 338; https://doi.org/10.3390/a17080338 - 1 Aug 2024
Viewed by 646
Abstract
The radio spectrum is a scarce and extremely valuable resource that demands careful real-time monitoring and dynamic resource allocation. Dynamic spectrum access (DSA) is a new paradigm for managing the radio spectrum, which requires AI/ML-driven algorithms for optimum performance under rapidly changing channel [...] Read more.
The radio spectrum is a scarce and extremely valuable resource that demands careful real-time monitoring and dynamic resource allocation. Dynamic spectrum access (DSA) is a new paradigm for managing the radio spectrum, which requires AI/ML-driven algorithms for optimum performance under rapidly changing channel conditions and possible cyber-attacks in the electromagnetic domain. Fast sensing across multiple directions using array processors, with subsequent AI/ML-based algorithms for the sensing and perception of waveforms that are measured from the environment is critical for providing decision support in DSA. As part of directional and wideband spectrum perception, the ability to finely channelize wideband inputs using efficient Fourier analysis is much needed. However, a fine-grain fast Fourier transform (FFT) across a large number of directions is computationally intensive and leads to a high chip area and power consumption. We address this issue by exploiting the recently proposed approximate discrete Fourier transform (ADFT), which has its own sparse factorization for real-time implementation at a low complexity and power consumption. The ADFT is used to create a wideband multibeam RF digital beamformer and temporal spectrum-based attention unit that monitors 32 discrete directions across 32 sub-bands in real-time using a multiplierless algorithm with low computational complexity. The output of this spectral attention unit is applied as a decision variable to an intelligent receiver that adapts its center frequency and frequency resolution via FFT channelizers that are custom-built for real-time monitoring at high resolution. This two-step process allows the fine-gain FFT to be applied only to directions and bands of interest as determined by the ADFT-based low-complexity 2D spacetime attention unit. The fine-grain FFT provides a spectral signature that can find future use cases in neural network engines for achieving modulation recognition, IoT device identification, and RFI identification. Beamforming and spectral channelization algorithms, a digital computer architecture, and early prototypes using a 32-element fully digital multichannel receiver and field programmable gate array (FPGA)-based high-speed software-defined radio (SDR) are presented. Full article
Show Figures

Figure 1

14 pages, 1929 KiB  
Article
Exploring Conventional and Green Extraction Methods for Enhancing the Polyphenol Yield and Antioxidant Activity of Hyssopus officinalis Extracts
by Sofia Polaki, Vasiliki Stamatelopoulou, Konstantina Kotsou, Theodoros Chatzimitakos, Vassilis Athanasiadis, Eleni Bozinou and Stavros I. Lalas
Plants 2024, 13(15), 2105; https://doi.org/10.3390/plants13152105 - 29 Jul 2024
Viewed by 668
Abstract
Hyssopus officinalis L. (HO) is, as one of the most prevalently utilized plants, used in traditional medicine to cure various diseases as well as the in food and cosmetic industries. Moreover, HO is a rich source of polyphenols with potent antioxidant properties. However, [...] Read more.
Hyssopus officinalis L. (HO) is, as one of the most prevalently utilized plants, used in traditional medicine to cure various diseases as well as the in food and cosmetic industries. Moreover, HO is a rich source of polyphenols with potent antioxidant properties. However, the studies on the extraction of such compounds from HO are scanty and sparse. This study aims to optimize the extraction of polyphenols and maximize the antioxidant activity in HO extracts. A comprehensive experimental design was employed, encompassing varied extraction parameters to determine the most effective ones. Alongside conventional stirring (ST), two green approaches, the ultrasonic treatment (US) and the pulsed electric field (PEF), were explored, either alone or in combination. The extracted polyphenolic compounds were identified with a high-performance liquid chromatography–diode array detector (HPLC-DAD). According to the results, the employment of ST along with an ethanolic solvent at 80 °C for 150 min seems beneficial in maximizing the extraction of polyphenols from HO, resulting in extracts with enhanced antioxidant activity. The total polyphenol was noted at 70.65 ± 2.76 mg gallic acid equivalents (GAE)/g dry weight (dw) using the aforementioned techniques, and the antioxidant activity was noted as 582.23 ± 16.88 μmol ascorbic acid equivalents (AAE)/g dw (with FRAP method) and 343.75 ± 15.61 μmol AAE/g dw (with the DPPH method). The as-prepared extracts can be utilized in the food and cosmetics industries to bestow or enhance the antioxidant properties of commercial products. Full article
Show Figures

Figure 1

14 pages, 3815 KiB  
Article
Sparsity-Based Nondestructive Evaluations of Downhole Casings Technique Using the Uniform Linear Array
by Jingxin Dang, Ling Yang, Yan Zhou and Bo Dang
Appl. Sci. 2024, 14(15), 6588; https://doi.org/10.3390/app14156588 - 28 Jul 2024
Viewed by 418
Abstract
Borehole pulsed eddy-current (PEC) systems based on uniform linear multicoil arrays (ULMAs) perform efficient nondestructive evaluations (NDEs) of metal casings. However, the limited physical space of the borehole restricts the degrees of freedom (DoFs) of ULMAs to be less than the number of [...] Read more.
Borehole pulsed eddy-current (PEC) systems based on uniform linear multicoil arrays (ULMAs) perform efficient nondestructive evaluations (NDEs) of metal casings. However, the limited physical space of the borehole restricts the degrees of freedom (DoFs) of ULMAs to be less than the number of constraints, which leads to the difficulty of compensating for the differences in signals acquired by different receivers with different transmitting-to-receiving distances (TRDs), and thus limits the effectiveness of the ULMA system. To solve this problem, this paper proposes sparse linear constraint minimum variance (S-LCMV) for NDEs of downhole casings employing ULMAs. By transforming and characterizing the original PEC signal, it was observed that the signal power dramatically decreased with increasing Legendre polynomial stage, confirming that the signal was sparsely distributed over the Gauss–Legendre stages. Using this property, the S-LCMV cost function with reduced constraints was constructed to provide enough DoFs to accurately calculate the weight coefficients, thus improving the detection performance. The effectiveness of the proposed method was verified through field experiments on an 8-element ULMA installed in a borehole PEC system for NDEs of oil-well casings. The results demonstrate that the proposed method could improve the weighting effect by reducing the number of constraints by 70% while ensuring the approximation accuracy, which effectively improved the signal-to-noise ratio of the measured signals and reduced the computational cost by about 87.9%. Full article
(This article belongs to the Special Issue Advances and Applications of Nondestructive Testing)
Show Figures

Figure 1

15 pages, 5966 KiB  
Article
Research on a Near-Field Millimeter Wave Imaging Algorithm and System Based on Multiple-Input Multiple-Output Sparse Sampling
by He Zhang, Hua Zong and Jinghui Qiu
Photonics 2024, 11(8), 698; https://doi.org/10.3390/photonics11080698 - 27 Jul 2024
Viewed by 396
Abstract
In order to reduce the hardware cost and data acquisition time in near-field scenarios, such as airport security imaging systems, this paper discusses the layout of a multiple-input multiple-output (MIMO) radar array. In view of the existing multi-input multiple-output imaging algorithm, the reconstructed [...] Read more.
In order to reduce the hardware cost and data acquisition time in near-field scenarios, such as airport security imaging systems, this paper discusses the layout of a multiple-input multiple-output (MIMO) radar array. In view of the existing multi-input multiple-output imaging algorithm, the reconstructed image artifacts and aliasing problems caused by sparse sampling are discussed. In this paper, a multi-station radar array and a corresponding sparse MIMO imaging algorithm based on combined sparse sub-channels are proposed. By studying the wave–number spectrum of backscattered MIMO synthetic aperture radar (SAR) data, the nonlinear relationship between the wave number spectrum and reconstructed image is established. By selecting a complex gain vector, multiple channels are coherently combined effectively, thus eliminating aliasing and artifacts in the reconstructed image. At the same time, the algorithm can be used for the MIMO–SAR configuration of arbitrarily distributed transmitting and receiving arrays. A new multi-station millimeter wave imaging system is designed by using a frequency-modulated continuous wave (FMCW) chip and sliding rail platform as a planar SAR. The combination of the hardware system provides reconfiguration, convenience and economy for the combination of millimeter wave imaging systems in multiple scenes. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

15 pages, 6874 KiB  
Technical Note
A Novel Modified Symmetric Nested Array for Mixed Far-Field and Near-Field Source Localization
by Zheng Xiang, Hanke Jin, Yinsheng Wang, Peng Ren, Long Yang and Baoyi Xu
Remote Sens. 2024, 16(15), 2732; https://doi.org/10.3390/rs16152732 - 26 Jul 2024
Viewed by 383
Abstract
In the process of locating mixed far-field and near-field sources, sparse nonlinear arrays (SNAs) can achieve larger array apertures and higher degrees of freedom compared to traditional uniform linear arrays (ULAs) with the same number of sensors. This paper introduces a Modified Symmetric [...] Read more.
In the process of locating mixed far-field and near-field sources, sparse nonlinear arrays (SNAs) can achieve larger array apertures and higher degrees of freedom compared to traditional uniform linear arrays (ULAs) with the same number of sensors. This paper introduces a Modified Symmetric Nested Array (MSNA), which can automatically generate the optimal array structure with the maximum continuous lags for a given number of sensors. To effectively address mixed source localization, we designed an estimation algorithm based on high-order cumulants and the subarray partition method, applied to the MSNA. Firstly, a specialized fourth-order cumulant matrix, relevant only to Direction of Arrival (DOA) information, is constructed for the DOA estimation of mixed sources. Then, peak searching using the estimated DOA information enables the estimation of the distance parameters, effectively separating mixed sources. The algorithm has moderate computational complexity and provides high resolution and estimation accuracy. Numerical simulation results demonstrate that, with the same number of physical sensors, the proposed MSNA provides more continuous lags than existing arrays, offering higher degrees of freedom and estimation accuracy. Full article
Show Figures

Figure 1

20 pages, 8798 KiB  
Article
Smart Sleep Monitoring: Sparse Sensor-Based Spatiotemporal CNN for Sleep Posture Detection
by Dikun Hu, Weidong Gao, Kai Keng Ang, Mengjiao Hu, Gang Chuai and Rong Huang
Sensors 2024, 24(15), 4833; https://doi.org/10.3390/s24154833 - 25 Jul 2024
Viewed by 583
Abstract
Sleep quality is heavily influenced by sleep posture, with research indicating that a supine posture can worsen obstructive sleep apnea (OSA) while lateral postures promote better sleep. For patients confined to beds, regular changes in posture are crucial to prevent the development of [...] Read more.
Sleep quality is heavily influenced by sleep posture, with research indicating that a supine posture can worsen obstructive sleep apnea (OSA) while lateral postures promote better sleep. For patients confined to beds, regular changes in posture are crucial to prevent the development of ulcers and bedsores. This study presents a novel sparse sensor-based spatiotemporal convolutional neural network (S3CNN) for detecting sleep posture. This S3CNN holistically incorporates a pair of spatial convolution neural networks to capture cardiorespiratory activity maps and a pair of temporal convolution neural networks to capture the heart rate and respiratory rate. Sleep data were collected in actual sleep conditions from 22 subjects using a sparse sensor array. The S3CNN was then trained to capture the spatial pressure distribution from the cardiorespiratory activity and temporal cardiopulmonary variability from the heart and respiratory data. Its performance was evaluated using three rounds of 10 fold cross-validation on the 8583 data samples collected from the subjects. The results yielded 91.96% recall, 92.65% precision, and 93.02% accuracy, which are comparable to the state-of-the-art methods that use significantly more sensors for marginally enhanced accuracy. Hence, the proposed S3CNN shows promise for sleep posture monitoring using sparse sensors, demonstrating potential for a more cost-effective approach. Full article
Show Figures

Figure 1

28 pages, 9765 KiB  
Article
DOA Estimation Based on Virtual Array Aperture Expansion Using Covariance Fitting Criterion
by Teng Ma, Minglei Yang, Hangui Zhu, Yule Zhang and Dingsen Zhou
Remote Sens. 2024, 16(14), 2517; https://doi.org/10.3390/rs16142517 - 9 Jul 2024
Viewed by 679
Abstract
Providing higher precision Direction of Arrival (DOA) estimation has become a hot topic in the field of array signal processing for parameter estimation in recent years. However, when the physical aperture of the actual array is small, its aperture limitation means that even [...] Read more.
Providing higher precision Direction of Arrival (DOA) estimation has become a hot topic in the field of array signal processing for parameter estimation in recent years. However, when the physical aperture of the actual array is small, its aperture limitation means that even with super-resolution estimation algorithms, the achievable estimation precision is limited. This paper takes a novel approach by constructing an optimization algorithm using the covariance fitting criterion based on the array output’s covariance matrix to fit and obtain the covariance matrix of a large aperture virtual array, thereby providing high-precision angular resolution through virtual aperture expansion. The covariance fitting expansion analysis and discussion are unfolded for both uniform linear arrays (ULAs) and sparse linear arrays (SLAs) under four different scenarios. Theoretical analysis and simulation experiments demonstrate that these methods can enhance the effective performance of angle estimation, especially in low signal-to-noise ratios (SNRs) and at small angular intervals by fitting virtual extended aperture data. Full article
Show Figures

Graphical abstract

24 pages, 8534 KiB  
Article
A Data and Model-Driven Clutter Suppression Method for Airborne Bistatic Radar Based on Deep Unfolding
by Weijun Huang, Tong Wang and Kun Liu
Remote Sens. 2024, 16(14), 2516; https://doi.org/10.3390/rs16142516 - 9 Jul 2024
Viewed by 413
Abstract
Space–time adaptive processing (STAP) based on sparse recovery achieves excellent clutter suppression and target detection performance, even with a limited number of available training samples. However, most of these methods face performance degradation due to grid mismatch, which impedes their application in bistatic [...] Read more.
Space–time adaptive processing (STAP) based on sparse recovery achieves excellent clutter suppression and target detection performance, even with a limited number of available training samples. However, most of these methods face performance degradation due to grid mismatch, which impedes their application in bistatic clutter suppression. Some gridless methods, such as atomic norm minimization (ANM), can effectively address grid mismatch issues, yet they are sensitive to parameter settings and array errors. In this article, the authors propose a data and model-driven algorithm that unfolds the iterative process of atomic norm minimization into a deep network. This approach establishes a concrete and systematic link between iterative algorithms, extensively utilized in signal processing, and deep neural networks. This methodology not only addresses the challenges associated with parameter settings in traditional optimization algorithms, but also mitigates the lack of interpretability issues commonly found in deep neural networks. Moreover, due to more rational parameter settings, the proposed algorithm achieves effective clutter suppression with fewer iterations, thereby reducing computational time. Finally, extensive simulation experiments demonstrate the effectiveness of the proposed algorithm in clutter suppression for airborne bistatic radar. Full article
Show Figures

Figure 1

Back to TopTop