Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (447)

Search Parameters:
Keywords = spatial–temporal data analysis and prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5654 KiB  
Article
A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction
by Xu Huang, Leying Wang, Leijiao Ge, Luyang Hou, Tianshuo Du, Yiwen Zheng and Yanbo Chen
Electronics 2024, 13(17), 3536; https://doi.org/10.3390/electronics13173536 - 6 Sep 2024
Abstract
Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar [...] Read more.
Accurate PV power prediction is crucial for enhancing grid planning, optimizing dispatch operations, and advancing management strategies. In pursuit of this objective, this study proposes a short-term distributed PV power prediction method that incorporates temporal and spatial feature extraction as well as similar day analysis. Firstly, to address the poor adaptability of traditional clustering methods to time-series data, the K-shape clustering algorithm is employed to categorize the time series into different weather types. Secondly, to overcome the challenges posed by varying time resolutions in similar day analysis, a novel method based on Dynamic Time Warping (DTW) is proposed. This method calculates the similarity between the target days and the days to be collected, considering both the time of day and the day of the week. Subsequently, a PV power generation prediction model based on a convolutional long short-term memory (CNN-LSTM) network is developed to enhance prediction accuracy. To tackle the difficulty of manual hyperparameter tuning, the chaos reverse sparrow search algorithm (CRSSA) is introduced. Finally, a case study is conducted on the measured data of a distributed photovoltaic power station in a certain region of China. By comparing RMSE and MAPE, compared with other prediction models, the proposed prediction model and solving algorithm effectively reduced the relative error by more than 1%, verifying the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Advances in Enhancing Energy and Power System Stability and Control)
Show Figures

Figure 1

24 pages, 6269 KiB  
Article
Aboveground Biomass Mapping in SemiArid Forests by Integrating Airborne LiDAR with Sentinel-1 and Sentinel-2 Time-Series Data
by Linjing Zhang, Xinran Yin, Yaru Wang and Jing Chen
Remote Sens. 2024, 16(17), 3241; https://doi.org/10.3390/rs16173241 - 1 Sep 2024
Viewed by 490
Abstract
Aboveground biomass (AGB) is a vital indicator for studying carbon sinks in forest ecosystems. Semiarid forests harbor substantial carbon storage but received little attention due to the high spatial–temporal heterogeneity that complicates the modeling of AGB in this environment. This study assessed the [...] Read more.
Aboveground biomass (AGB) is a vital indicator for studying carbon sinks in forest ecosystems. Semiarid forests harbor substantial carbon storage but received little attention due to the high spatial–temporal heterogeneity that complicates the modeling of AGB in this environment. This study assessed the performance of different data sources (annual monthly time-series radar was Sentinel-1 [S1]; annual monthly time series optical was Sentinel-2 [S2]; and single-temporal airborne light detection and ranging [LiDAR]) and seven prediction approaches to map AGB in the semiarid forests on the border between Gansu and Qinghai Provinces in China. Five experiments were conducted using different data configurations from synthetic aperture radar backscatter, multispectral reflectance, LiDAR point cloud, and their derivatives (polarimetric combination indices, texture information, vegetation indices, biophysical features, and tree height- and canopy-related indices). The results showed that S2 acquired better prediction (coefficient of determination [R2]: 0.62–0.75; root mean square error [RMSE]: 30.08–38.83 Mg/ha) than S1 (R2: 0.24–0.45; RMSE: 47.36–56.51 Mg/ha). However, their integration further improved the results (R2: 0.65–0.78; RMSE: 28.68–35.92 Mg/ha). The addition of single-temporal LiDAR highlighted its structural importance in semiarid forests. The best mapping accuracy was achieved by XGBoost, with the metrics from the S2 and S1 time series and the LiDAR-based canopy height information being combined (R2: 0.87; RMSE: 21.63 Mg/ha; relative RMSE: 14.45%). Images obtained during the dry season were effective for AGB prediction. Tree-based models generally outperformed other models in semiarid forests. Sequential variable importance analysis indicated that the most important S1 metric to estimate AGB was the polarimetric combination indices sum, and the S2 metrics were associated with red-edge spectral regions. Meanwhile, the most important LiDAR metrics were related to height percentiles. Our methodology advocates for an economical, extensive, and precise AGB retrieval tailored for semiarid forests. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

23 pages, 4788 KiB  
Article
Forecasting of Standardized Precipitation Index Using Hybrid Models: A Case Study of Cape Town, South Africa
by Siphamandla Sibiya, Nkanyiso Mbatha, Shaun Ramroop, Sileshi Melesse and Felix Silwimba
Water 2024, 16(17), 2469; https://doi.org/10.3390/w16172469 - 30 Aug 2024
Viewed by 908
Abstract
Droughts have negative impacts on agricultural productivity and economic growth. Effective monitoring and accurate forecasting of drought occurrences and trends are crucial for minimizing drought losses and mitigating their spatial and temporal effects. In this study, trend dynamics in monthly total rainfall time [...] Read more.
Droughts have negative impacts on agricultural productivity and economic growth. Effective monitoring and accurate forecasting of drought occurrences and trends are crucial for minimizing drought losses and mitigating their spatial and temporal effects. In this study, trend dynamics in monthly total rainfall time series measured at Cape Town International Airport were analyzed using the Mann–Kendall (MK) test, Modified Mann–Kendall (MMK) test and innovative trend analysis (ITA). Additionally, we utilized a hybrid prediction method that combined the model with the complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) technique, the autoregressive integrated moving average (ARIMA) model, and the long short-term memory (LSTM) network (i.e., CEEMDAN-ARIMA-LSTM) to forecast SPI values of 6-, 9-, and 12-months using rainfall data between 1995 and 2020 from Cape Town International Airport meteorological rainfall stations. In terms of trend analysis of the monthly total rainfall, the MK and MMK tests detected a significant decreasing trend with negative z-scores of −3.7541 and −4.0773, respectively. The ITA also indicated a significant downward trend of total monthly rainfall, especially for values between 10 and 110 mm/month. The SPI forecasting results show that the hybrid model (CEEMDAN-ARIMA-LSTM) had the highest prediction accuracy of the models at all SPI timescales. The Root Mean Square Error (RMSE) values of the CEEMDAN-ARIMA-LSTM hybrid model are 0.121, 0.044, and 0.042 for SPI-6, SPI-9, and SPI-12, respectively. The directional symmetry for this hybrid model is 0.950, 0.917, and 0.950, for SPI-6, SPI-9, and SPI-12, respectively. This indicates that this is the most suitable model for forecasting long-term drought conditions in Cape Town. Additionally, models that use a decomposition step and those that are built by combining independent models seem to produce improved SPI prediction accuracy. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

28 pages, 25203 KiB  
Article
Integrating Physical-Based Models and Structure-from-Motion Photogrammetry to Retrieve Fire Severity by Ecosystem Strata from Very High Resolution UAV Imagery
by José Manuel Fernández-Guisuraga, Leonor Calvo, Luis Alfonso Pérez-Rodríguez and Susana Suárez-Seoane
Fire 2024, 7(9), 304; https://doi.org/10.3390/fire7090304 - 27 Aug 2024
Viewed by 473
Abstract
We propose a novel mono-temporal framework with a physical basis and ecological consistency to retrieve fire severity at very high spatial resolution. First, we sampled the Composite Burn Index (CBI) in 108 field plots that were subsequently surveyed through unmanned aerial vehicle (UAV) [...] Read more.
We propose a novel mono-temporal framework with a physical basis and ecological consistency to retrieve fire severity at very high spatial resolution. First, we sampled the Composite Burn Index (CBI) in 108 field plots that were subsequently surveyed through unmanned aerial vehicle (UAV) flights. Then, we mimicked the field methodology for CBI assessment in the remote sensing framework. CBI strata were identified through individual tree segmentation and geographic object-based image analysis (GEOBIA). In each stratum, wildfire ecological effects were estimated through the following methods: (i) the vertical structural complexity of vegetation legacies was computed from 3D-point clouds, as a proxy for biomass consumption; and (ii) the vegetation biophysical variables were retrieved from multispectral data by the inversion of the PROSAIL radiative transfer model, with a direct physical link with the vegetation legacies remaining after canopy scorch and torch. The CBI scores predicted from UAV ecologically related metrics at the strata level featured high fit with respect to the field-measured CBI scores (R2 > 0.81 and RMSE < 0.26). Conversely, the conventional retrieval of fire effects using a battery of UAV structural and spectral predictors (point height distribution metrics and spectral indices) computed at the plot level provided a much worse performance (R2 = 0.677 and RMSE = 0.349). Full article
(This article belongs to the Special Issue Drone Applications Supporting Fire Management)
Show Figures

Figure 1

20 pages, 5658 KiB  
Article
Spatial and Temporal Variability of Rainfall Erosivity in the Niyang River Basin
by Qingqin Bai, Lei Wang and Yangzong Cidan
Atmosphere 2024, 15(9), 1032; https://doi.org/10.3390/atmos15091032 - 26 Aug 2024
Viewed by 377
Abstract
Rainfall erosivity is a crucial factor in the evaluation of soil erosion, significantly influencing the complex relationships among water, soil, and the environment. Understanding its attributes and variations in space and time is essential for effective water resource management, erosion mitigation, and land-use [...] Read more.
Rainfall erosivity is a crucial factor in the evaluation of soil erosion, significantly influencing the complex relationships among water, soil, and the environment. Understanding its attributes and variations in space and time is essential for effective water resource management, erosion mitigation, and land-use planning. This paper utilizes daily precipitation data from 123 grid points in the Niyang River Basin, spanning from 2008 to 2016, to calculate rainfall erosivity using a straightforward algorithmic model. Ordinary Kriging was used to examine the spatial and temporal variations in rainfall erosivity, while Spearman’s correlation analysis was employed to examine the relationships between annual rainfall erosivity and various factors, including multi-year average precipitation, erosive rainfall, dry-season rainfall, wet-season rainfall, temperature, and elevation. The results indicate a year-by-year increase in rainfall erosivity in the basin, with a trend towards stabilization. The average annual rainfall erosivity over the years is 711 MJ·mm·hm2·h1, peaking at 1098 MJ·mm·hm2·h1 in 2014. A significant 93.9% of rainfall erosivity is concentrated in the wet season, with a maximum of 191 MJ·mm·hm2·h1 in July. The left bank of the mainstream, especially the central and lower sections of the main river and its tributaries, experiences the highest rainfall erosivity. Rainfall factors predominantly influence erosivity, with erosive rainfall showing the strongest correlation (rho = 0.93), while temperature and elevation have relatively minor effects. This study enhances the understanding of rainfall erosive forces in the plateau region and provides a scientific basis for predicting soil loss, developing effective erosion control measures, and ensuring sustainable land use. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

15 pages, 3486 KiB  
Article
Assessing the Impact of Straw Burning on PM2.5 Using Explainable Machine Learning: A Case Study in Heilongjiang Province, China
by Zehua Xu, Baiyin Liu, Wei Wang, Zhimiao Zhang and Wenting Qiu
Sustainability 2024, 16(17), 7315; https://doi.org/10.3390/su16177315 - 26 Aug 2024
Viewed by 621
Abstract
Straw burning is recognized as a significant contributor to deteriorating air quality, but its specific impacts, particularly on PM2.5 concentrations, are still not fully understood or quantified. In this study, we conducted a detailed examination of the spatial and temporal patterns of [...] Read more.
Straw burning is recognized as a significant contributor to deteriorating air quality, but its specific impacts, particularly on PM2.5 concentrations, are still not fully understood or quantified. In this study, we conducted a detailed examination of the spatial and temporal patterns of straw burning in Heilongjiang Province, China—a key agricultural area—utilizing high-resolution fire-point data from the Fengyun-3 satellite. We subsequently employed random forest (RF) models alongside Shapley Additive Explanations (SHAPs) to systematically evaluate the impact of various determinants, including straw burning (as indicated by crop fire-point data), meteorological conditions, and aerosol optical depth (AOD), on PM2.5 levels across spatial and temporal dimensions. Our findings indicated a statistically nonsignificant downward trend in the number of crop fires in Heilongjiang Province from 2015 to 2023, with hotspots mainly concentrated in the western and southern parts of the province. On a monthly scale, straw burning was primarily observed from February to April and October to November—which are critical periods in the agricultural calendar—accounting for 97% of the annual fire counts. The RF models achieved excellent performance in predicting PM2.5 levels, with R2 values of 0.997 for temporal and 0.746 for spatial predictions. The SHAP analysis revealed the number of fire points to be the key determinant of temporal PM2.5 variations during straw-burning periods, explaining 72% of the variance. However, the significance was markedly reduced in the spatial analysis. This study leveraged machine learning and interpretable modeling techniques to provide a comprehensive understanding of the influence of straw burning on PM2.5 levels, both temporally and spatially. The detailed analysis offers valuable insights for policymakers to formulate more targeted and effective strategies to combat air pollution. Full article
Show Figures

Figure 1

17 pages, 10729 KiB  
Article
Evolution and Mechanism Analysis of Terrestrial Ecosystems in China with Respect to Gross Primary Productivity
by Hanshi Sun, Yongming Cheng, Qiang An and Liu Liu
Land 2024, 13(9), 1346; https://doi.org/10.3390/land13091346 - 24 Aug 2024
Viewed by 387
Abstract
The gross primary productivity (GPP) of vegetation stores atmospheric carbon dioxide as organic compounds through photosynthesis. Its spatial heterogeneity is primarily influenced by the carbon uptake period (CUP) and maximum photosynthetic productivity (GPPmax). Grassland, cropland, and forest are crucial components of [...] Read more.
The gross primary productivity (GPP) of vegetation stores atmospheric carbon dioxide as organic compounds through photosynthesis. Its spatial heterogeneity is primarily influenced by the carbon uptake period (CUP) and maximum photosynthetic productivity (GPPmax). Grassland, cropland, and forest are crucial components of China’s terrestrial ecosystems and are strongly influenced by the seasonal climate. However, it remains unclear whether the evolutionary characteristics of GPP are attributable to physiology or phenology. In this study, terrestrial ecosystem models and remote sensing observations of multi-source GPP data were utilized to quantitatively analyze the spatio-temporal dynamics from 1982 to 2018. We found that GPP exhibited a significant upward trend in most areas of China’s terrestrial ecosystems over the past four decades. Over 60% of Chinese grassland and over 50% of its cropland and forest exhibited a positive growth trend. The average annual GPP growth rates were 0.23 to 3.16 g C m−2 year−1 for grassland, 0.40 to 7.32 g C m−2 year−1 for cropland, and 0.67 to 7.81 g C m−2 year−1 for forest. GPPmax also indicated that the overall growth rate was above 1 g C m−2 year−1 in most regions of China. The spatial trend pattern of GPPmax closely mirrored that of GPP, although local vegetation dynamics remain uncertain. The partial correlation analysis results indicated that GPPmax controlled the interannual GPP changes in most of the terrestrial ecosystems in China. This is particularly evident in grassland, where more than 99% of the interannual variation in GPP is controlled by GPPmax. In the context of rapid global change, our study provides an accurate assessment of the long-term dynamics of GPP and the factors that regulate interannual variability across China’s terrestrial ecosystems. This is helpful for estimating and predicting the carbon budget of China’s terrestrial ecosystems. Full article
Show Figures

Figure 1

18 pages, 2209 KiB  
Article
Extraction of Spatiotemporal Information of Rainfall-Induced Landslides from Remote Sensing
by Tongxiao Zeng, Jun Zhang, Yulin Chen and Shaonan Zhu
Remote Sens. 2024, 16(16), 3089; https://doi.org/10.3390/rs16163089 - 22 Aug 2024
Viewed by 468
Abstract
With global climate change and increased human activities, landslides increasingly threaten human safety and property. Precisely extracting large-scale spatiotemporal information on landslides is crucial for risk management. However, existing methods are either locally based or have coarse temporal resolution, which is insufficient for [...] Read more.
With global climate change and increased human activities, landslides increasingly threaten human safety and property. Precisely extracting large-scale spatiotemporal information on landslides is crucial for risk management. However, existing methods are either locally based or have coarse temporal resolution, which is insufficient for regional analysis. In this study, spatiotemporal information on landslides was extracted using multiple remote sensing data from Emilia, Italy. An automated algorithm for extracting spatial information of landslides was developed with NDVI datasets. Then, we established a landslide prediction model based on a hydrometeorological threshold of three-day soil moisture and three-day accumulated rainfall. Based on this model, the locations and dates of rainfall-induced landslides were identified. Then, we further matched these identified locations with the extracted landslides from remote sensing data and finally determined the occurrence time. This approach was validated with recorded landslides events in Emilia. Despite some temporal clustering, the overall trend matched historical records, accurately reflecting the dynamic impacts of rainfall and soil moisture on landslides. The temporal bias for 87.3% of identified landslides was within seven days. Furthermore, higher rainfall magnitude was associated with better temporal accuracy, validating the effectiveness of the model and the reliability of rainfall as a landslide predictor. Full article
(This article belongs to the Special Issue Study on Hydrological Hazards Based on Multi-source Remote Sensing)
Show Figures

Figure 1

26 pages, 5057 KiB  
Review
Artificial Intelligence Advancements for Accurate Groundwater Level Modelling: An Updated Synthesis and Review
by Saeid Pourmorad, Mostafa Kabolizade and Luca Antonio Dimuccio
Appl. Sci. 2024, 14(16), 7358; https://doi.org/10.3390/app14167358 - 21 Aug 2024
Viewed by 778
Abstract
Artificial Intelligence (AI) methods, including Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference Systems (ANFISs), Support Vector Machines (SVMs), Deep Learning (DL), Genetic Programming (GP) and Hybrid Algorithms, have proven to be important tools for accurate groundwater level (GWL) modelling. Through an analysis of [...] Read more.
Artificial Intelligence (AI) methods, including Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference Systems (ANFISs), Support Vector Machines (SVMs), Deep Learning (DL), Genetic Programming (GP) and Hybrid Algorithms, have proven to be important tools for accurate groundwater level (GWL) modelling. Through an analysis of the results obtained in numerous articles published in high-impact journals during 2001–2023, this comprehensive review examines each method’s capabilities, their combinations, and critical considerations about selecting appropriate input parameters, using optimisation algorithms, and considering the natural physical conditions of the territories under investigation to improve the models’ accuracy. For example, ANN takes advantage of its ability to recognise complex patterns and non-linear relationships between input and output variables. In addition, ANFIS shows potential in processing diverse environmental data and offers higher accuracy than alternative methods such as ANN, SVM, and GP. SVM excels at efficiently modelling complex relationships and heterogeneous data. Meanwhile, DL methods, such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs), are crucial in improving prediction accuracy at different temporal and spatial scales. GP methods have also shown promise in modelling complex and nonlinear relationships in groundwater data, providing more accurate and reliable predictions when combined with optimisation techniques and uncertainty analysis. Therefore, integrating these methods and optimisation techniques (Hybrid Algorithms), tailored to specific hydrological and hydrogeological conditions, can significantly increase the predictive capability of GWL models and improve the planning and management of water resources. These findings emphasise the importance of thoroughly understanding (a priori) the functionalities and capabilities of each potentially beneficial AI-based methodology, along with the knowledge of the physical characteristics of the territory under investigation, to optimise GWL predictive models. Full article
(This article belongs to the Special Issue Feature Review Papers in "Earth Sciences and Geography" Section)
Show Figures

Figure 1

15 pages, 5666 KiB  
Article
Assessing and Predicting Nearshore Seawater Quality with Spatio-Temporal Semivariograms: The Case of Coastal Waters in Fujian Province, China
by Wei Wang, Wenfang Cheng and Jing Chen
ISPRS Int. J. Geo-Inf. 2024, 13(8), 292; https://doi.org/10.3390/ijgi13080292 - 17 Aug 2024
Viewed by 497
Abstract
The scientific assessment and prediction of nearshore water quality are crucial for marine environment protection efforts. This study is based on a comprehensive analysis of existing assessment and prediction methods and considers the regular and random characteristics of nearshore seawater quality due to [...] Read more.
The scientific assessment and prediction of nearshore water quality are crucial for marine environment protection efforts. This study is based on a comprehensive analysis of existing assessment and prediction methods and considers the regular and random characteristics of nearshore seawater quality due to both natural and anthropogenic influences. It proposes a new method that applies the kriging interpolation algorithm to empirically generated spatio-temporal semivariograms to assess and predict seawater quality. The application of this method in Fujian coastal areas shows that it is able to flexibly and scientifically estimate the variations in various indicators in the region. Combined with GIS spatial data overlay analysis operations, it can be used to quantitatively evaluate different qualities of seawater and provide scientific guidance for marine environmental protection. Full article
Show Figures

Figure 1

14 pages, 563 KiB  
Article
Communication-Efficient Wireless Traffic Prediction with Federated Learning
by Fuwei Gao, Chuanting Zhang, Jingping Qiao, Kaiqiang Li and Yi Cao
Mathematics 2024, 12(16), 2539; https://doi.org/10.3390/math12162539 - 17 Aug 2024
Viewed by 336
Abstract
Wireless traffic prediction is essential to developing intelligent communication networks that facilitate efficient resource allocation. Along this line, decentralized wireless traffic prediction under the paradigm of federated learning is becoming increasingly significant. Compared to traditional centralized learning, federated learning satisfies network operators’ requirements [...] Read more.
Wireless traffic prediction is essential to developing intelligent communication networks that facilitate efficient resource allocation. Along this line, decentralized wireless traffic prediction under the paradigm of federated learning is becoming increasingly significant. Compared to traditional centralized learning, federated learning satisfies network operators’ requirements for sensitive data protection and reduces the consumption of network resources. In this paper, we propose a novel communication-efficient federated learning framework, named FedCE, by developing a gradient compression scheme and an adaptive aggregation strategy for wireless traffic prediction. FedCE achieves gradient compression through top-K sparsification and can largely relieve the communication burdens between local clients and the central server, making it communication-efficient. An adaptive aggregation strategy is designed by quantifying the different contributions of local models to the global model, making FedCE aware of spatial dependencies among various local clients. We validate the effectiveness of FedCE on two real-world datasets. The results demonstrate that FedCE can improve prediction accuracy by approximately 27% with only 20% of communications in the baseline method. Full article
(This article belongs to the Section Mathematics and Computer Science)
Show Figures

Figure 1

13 pages, 670 KiB  
Article
Power Forecasting for Photovoltaic Microgrid Based on MultiScale CNN-LSTM Network Models
by Honglin Xue, Junwei Ma, Jianliang Zhang, Penghui Jin, Jian Wu and Feng Du
Energies 2024, 17(16), 3877; https://doi.org/10.3390/en17163877 - 6 Aug 2024
Viewed by 571
Abstract
Photovoltaic (PV) microgrids comprise a multitude of small PV power stations distributed across a specific geographical area in a decentralized manner. Computational services for forecasting the output power of power stations are crucial for optimizing resource deployment. This paper proposes a deep-learning-based architecture [...] Read more.
Photovoltaic (PV) microgrids comprise a multitude of small PV power stations distributed across a specific geographical area in a decentralized manner. Computational services for forecasting the output power of power stations are crucial for optimizing resource deployment. This paper proposes a deep-learning-based architecture for short-term prediction of PV power. Firstly, in order to make full use of the spatial information between different power stations, a spatio–temporal feature fusion method is proposed. This method is capable of exploiting both the power information of neighboring power stations with strong correlations and meteorological information with the PV feature data of the target power station. By using a multiscale convolutional neural network–long short-term memory (CNN-LSTM) network model, it is capable of generating a PV feature dataset containing spatio–temporal attributes that expand the data source and enhance the feature constraints. It is capable of predicting the output power sequences of power stations in PV microgrids with high model generalization and responsiveness. To validate the effectiveness of the proposed framework, an extensive numerical analysis is also conducted based on a real-world PV dataset. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

25 pages, 14572 KiB  
Article
Temporal and Spatial Variations in Rainfall Erosivity on Hainan Island and the Influence of the El Niño/Southern Oscillation
by Xudong Lu, Jiadong Chen, Jianchao Guo, Shi Qi, Ruien Liao, Jinlin Lai, Maoyuan Wang and Peng Zhang
Land 2024, 13(8), 1210; https://doi.org/10.3390/land13081210 - 5 Aug 2024
Viewed by 594
Abstract
Rainfall erosivity (RE), a pivotal external force driving soil erosion, is impacted by El Niño/Southern Oscillation (ENSO). Studying the spatiotemporal variations in RE and their response to ENSO is essential for regional ecological security. In this study, a daily RE model was identified [...] Read more.
Rainfall erosivity (RE), a pivotal external force driving soil erosion, is impacted by El Niño/Southern Oscillation (ENSO). Studying the spatiotemporal variations in RE and their response to ENSO is essential for regional ecological security. In this study, a daily RE model was identified as a calculation model through an evaluation of model suitability. Daily precipitation data from 1971 to 2020 from 38 meteorological stations on Hainan Island, China, were utilized to calculate the RE. The multivariate ENSO index (MEI), Southern Oscillation Index (SOI), and Oceanic Niño Index (ONI) were used as the ENSO characterization indices, and the effects of ENSO on RE were investigated via cross-wavelet analysis and binary and multivariate wavelet coherence analysis. During the whole study period, the average RE of Hainan Island was 15,671.28 MJ·mm·ha−1·h−1, with a fluctuating overall upward trend. There were spatial and temporal distribution differences in RE, with temporal concentrations in summer (June–August) and a spatial pattern of decreasing from east to west. During ENSO events, the RE was greater during the El Niño period than during the La Niña period. For the ENSO characterization indices, the MEI, SOI, and ONI showed significant correlations and resonance effects with RE, but there were differences in the time of occurrence, direction of action, and intensity. In addition, the MEI and MEI–ONI affected RE individually or jointly at different time scales. This study contributes to a deeper understanding of the influence of ENSO on RE and can provide important insights for the prediction of soil erosion and the development of related coping strategies. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

36 pages, 6102 KiB  
Article
Prediction of Ionospheric Scintillation with ConvGRU Networks Using GNSS Ground-Based Data across South America
by Alireza Atabati, Iraj Jazireeyan, Mahdi Alizadeh and Richard B. Langley
Remote Sens. 2024, 16(15), 2757; https://doi.org/10.3390/rs16152757 - 28 Jul 2024
Viewed by 496
Abstract
This study investigates the relationship between geomagnetic activities and ionospheric scintillations, focusing on how solar and geomagnetic parameters influence ionospheric disturbances across varying time frames and latitudes. Utilizing indices such as Kp, Dst, sunspot numbers, and the F10.7 solar flux, we elucidate the [...] Read more.
This study investigates the relationship between geomagnetic activities and ionospheric scintillations, focusing on how solar and geomagnetic parameters influence ionospheric disturbances across varying time frames and latitudes. Utilizing indices such as Kp, Dst, sunspot numbers, and the F10.7 solar flux, we elucidate the dynamics influencing ionospheric conditions, which are vital for the reliability of satellite communications, particularly in low-latitude regions. Our analysis demonstrates a clear correlation between periods of high solar activity and increased geomagnetic disturbances, leading to heightened ionospheric scintillations, such as occurred during the solar maximum of 2015. In contrast, 2020—a solar minimum period—exhibited fewer disturbances, highlighting the impact of solar activity levels on ionospheric conditions. Innovatively employing ConvGRU networks, this research advances the modeling and prediction of ionospheric scintillations by integrating deep learning techniques suited to the spatiotemporal complexities of ionospheric data. The ConvGRU model effectively captures both temporal sequences and spatial distributions, offering enhanced accuracy in depicting ionospheric scintillation patterns crucial for satellite-based navigation and communication systems. Ground-based GNSS data from 121 stations across South America, collected during 2015 and 2020, provide a robust dataset for our analysis. The study highlights the influence of the solar cycle on ionospheric scintillations, with the years of maximum and minimum solar activity showing significant differences in scintillation intensity and frequency. Our evaluation of the ConvGRU models using statistical parameters demonstrated their potential for reliable ionospheric scintillation prediction. The research underscores the necessity of integrating adaptive mechanisms within models to effectively handle the dynamic nature of ionospheric disturbances influenced by external geomagnetic and solar factors. This study enhances the understanding of ionospheric scintillations and significantly advances predictive modeling capabilities using advanced machine learning techniques. The potential establishment of real-time alert systems for ionospheric disturbances could significantly benefit civilian applications, enhancing the operational efficiency of technologies reliant on accurate ionospheric information. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

27 pages, 7162 KiB  
Article
Simulation and Prediction of Snowmelt Runoff in the Tangwang River Basin Based on the NEX-GDDP-CMIP6 Climate Model
by Yi-Xin Zhang, Geng-Wei Liu, Chang-Lei Dai, Zhen-Wei Zou and Qiang Li
Water 2024, 16(15), 2082; https://doi.org/10.3390/w16152082 - 24 Jul 2024
Viewed by 588
Abstract
In this study, the future snowmelt runoff in the chilly northeast region’s Tangwang River Basin was simulated and predicted using the SWAT model, which was built and used based on the NEX-GDDP-CMIP6 climate model. This study conducted a detailed analysis of the spatial [...] Read more.
In this study, the future snowmelt runoff in the chilly northeast region’s Tangwang River Basin was simulated and predicted using the SWAT model, which was built and used based on the NEX-GDDP-CMIP6 climate model. This study conducted a detailed analysis of the spatial and temporal distribution characteristics of snowmelt runoff using high-resolution DEM, land use, and soil data, along with data from historical and future climatic scenarios. Using box plots and the Bflow digital filtering approach, this study first determined the snowmelt runoff period before precisely defining the snowmelt periods. Sensitivity analysis and parameter rate determination ensured the simulation accuracy of the SWAT model, and the correlation coefficients of the total runoff validation period and rate period were 0.75 and 0.76, with Nashiness coefficients of 0.75 for both. The correlation coefficients of the snowmelt runoff were 0.73 and 0.74, with Nashiness coefficients of 0.7 and 0.68 for both, and the model was in good agreement with the measured data. It was discovered that while temperatures indicate an increasing tendency across all future climate scenarios, precipitation is predicted to increase under the SSP2-4.5 scenario. The SSP2-4.5 scenario predicted a decreasing trend regarding runoff, while the SSP1-2.6 and SSP5-8.5 scenarios showed an increasing trend with little overall change and the SSP5-8.5 scenario even showed a decrease of 6.35%. These differences were evident in the monthly runoff simulation projections. Overall, the findings point to the possibility that, despite future climate change having a negligible effect on the hydrological cycle of the Tangwang River Basin, it may intensify and increase the frequency of extreme weather events, creating difficulties for the management of water resources and the issuing of flood warnings. For the purpose of planning water resources and studying hydrological change in this basin and other basins in cold regions, this study offers a crucial scientific foundation. An in-depth study of snowmelt runoff is of great practical significance for optimizing water resource management, rational planning of water use, spring flood prevention, and disaster mitigation and prevention, and provides valuable data support for future research on snowmelt runoff. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

Back to TopTop