Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = speckle filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1248 KiB  
Article
A Power Law Reconstruction of Ultrasound Backscatter Images
by Kevin J. Parker
Acoustics 2024, 6(3), 782-791; https://doi.org/10.3390/acoustics6030043 - 31 Aug 2024
Viewed by 499
Abstract
Ultrasound B-scan images are traditionally formed from the envelope of the received radiofrequency echoes, but the image texture is dominated by granular speckle patterns. Longstanding efforts at speckle reduction and deconvolution have been developed to lessen the detrimental aspects of speckle. However, we [...] Read more.
Ultrasound B-scan images are traditionally formed from the envelope of the received radiofrequency echoes, but the image texture is dominated by granular speckle patterns. Longstanding efforts at speckle reduction and deconvolution have been developed to lessen the detrimental aspects of speckle. However, we now propose an alternative approach to estimation (and image rendering) of the underlying fine grain scattering density of tissues based on power law constraints. The key steps are a whitening of the spectrum of the received signal while conforming to the original envelope shape and statistics, followed by a power law filtering in accordance with the known scattering behavior of tissues. This multiple step approach results in a high-spatial-resolution map of scattering density that is constrained by the most important properties of scattering from tissues. Examples from in vivo liver scans are shown to illustrate the change in image properties from this framework. Full article
Show Figures

Figure 1

18 pages, 46447 KiB  
Article
Improved Coherent Processing of Synthetic Aperture Radar Data through Speckle Whitening of Single-Look Complex Images
by Luciano Alparone, Alberto Arienzo and Fabrizio Lombardini
Remote Sens. 2024, 16(16), 2955; https://doi.org/10.3390/rs16162955 - 12 Aug 2024
Viewed by 695
Abstract
In this study, we investigate the usefulness of the spectral whitening procedure, devised by one of the authors as a preprocessing stage of envelope-detected single-look synthetic aperture radar (SAR) images, in application contexts where phase information is relevant. In the first experiment, each [...] Read more.
In this study, we investigate the usefulness of the spectral whitening procedure, devised by one of the authors as a preprocessing stage of envelope-detected single-look synthetic aperture radar (SAR) images, in application contexts where phase information is relevant. In the first experiment, each of the raw datasets of an interferometric pair of COSMO-SkyMed images, representing industrial buildings amidst vegetated areas, was individually (1) synthesized by the SAR processor without Fourier-domain Hamming windowing; (2) synthesized with Hamming windowing, used to improve the focalization of targets, with the drawback of spatially correlating speckle; and (3) processed for the whitening of complex speckle, using the data obtained in (2). The interferograms were produced in the three cases, and interferometric coherence and phase maps were calculated through 3 × 3 boxcar filtering. In (1), coherence is low on vegetation; the presence of high sidelobes in the system’s point-spread function (PSF) causes the spread of areas featuring high backscattering. In (2), point targets and buildings are better defined, thanks to the sidelobe suppression achieved by the frequency windowing, but the background coherence is abnormally increased because of the spatial correlation introduced by the Hamming window. Case (3) is the most favorable because the whitening operation results in low coherence in vegetation and high coherence in buildings, where the effects of windowing are preserved. An analysis of the phase map reveals that (3) is likely to be facilitated also in terms of unwrapping. Results are presented on a TerraSAR-X/TanDEM-X (TSX-TDX) image pair by processing the interferograms of original and whitened data using a non-local filter. The main results are as follows: (1) with autocorrelated speckle, the estimation error of coherence may attain 16% and inversely depends on the heterogeneity of the scene; and (2) the cleanness and accuracy of the phase are increased by the preliminary whitening stage, as witnessed by the number of residues, reduced by 24%. Benefits are also expected not only for differential InSAR (DInSAR) but also for any coherent analysis and processing carried out performed on SLC data. Full article
Show Figures

Graphical abstract

26 pages, 41469 KiB  
Article
Analysis of Despeckling Filters Using Ratio Images and Divergence Measurement
by Luis Gómez, Ahmed Alejandro Cardona-Mesa, Rubén Darío Vásquez-Salazar and Carlos M. Travieso-González
Remote Sens. 2024, 16(16), 2893; https://doi.org/10.3390/rs16162893 - 8 Aug 2024
Viewed by 778
Abstract
This paper presents an analysis of different despeckling filters applied on both synthetically corrupted optical images and actual Synthetic Aperture Radar (SAR) images. Several authors use optical images as ground truth and then the images are corrupted by using a Gamma model to [...] Read more.
This paper presents an analysis of different despeckling filters applied on both synthetically corrupted optical images and actual Synthetic Aperture Radar (SAR) images. Several authors use optical images as ground truth and then the images are corrupted by using a Gamma model to simulate the speckle, while other approaches use methods like multitemporal fusion to generate a ground truth using actual SAR images, which provides a result somehow equivalent to the one from the common multi look technique. Well-known filters, like local, and non-local and some of them based on artificial intelligence and deep learning, are applied to these two types of images and their performance is assessed by a quantitative analysis. One last validation is performed with a newly proposed method by using ratio images, resulting from the mathematical division (Hadamard division) of filtered and noisy images, to measure how similar the initial and the remaining speckle are by considering its Gamma distribution and divergence measurement. Our findings suggest that despeckling models relying on artificial intelligence exhibit notable efficiency, albeit concurrently displaying inflexibility when applied to particular image types based on the training dataset. Additionally, our experiments underscore the utility of the divergence measurement in ratio images in facilitating both visual inspection and quantitative evaluation of residual speckles within the filtered images. Full article
Show Figures

Figure 1

12 pages, 11945 KiB  
Article
Evaluation of Denoising Performance of ResNet Deep Learning Model for Ultrasound Images Corresponding to Two Frequency Parameters
by Hyekyoung Kang, Chanrok Park and Hyungjin Yang
Bioengineering 2024, 11(7), 723; https://doi.org/10.3390/bioengineering11070723 - 16 Jul 2024
Viewed by 566
Abstract
Ultrasound imaging is widely used for accurate diagnosis due to its noninvasive nature and the absence of radiation exposure, which is achieved by controlling the scan frequency. In addition, Gaussian and speckle noises degrade image quality. To address this issue, filtering techniques are [...] Read more.
Ultrasound imaging is widely used for accurate diagnosis due to its noninvasive nature and the absence of radiation exposure, which is achieved by controlling the scan frequency. In addition, Gaussian and speckle noises degrade image quality. To address this issue, filtering techniques are typically used in the spatial domain. Recently, deep learning models have been increasingly applied in the field of medical imaging. In this study, we evaluated the effectiveness of a convolutional neural network-based residual network (ResNet) deep learning model for noise reduction when Gaussian and speckle noises were present. We compared the results with those obtained from conventional filtering techniques. A dataset of 500 images was prepared, and Gaussian and speckle noises were added to create noisy input images. The dataset was divided into training, validation, and test sets in an 8:1:1 ratio. The ResNet deep learning model, comprising 16 residual blocks, was trained using optimized hyperparameters, including the learning rate, optimization function, and loss function. For quantitative analysis, we calculated the normalized noise power spectrum, peak signal-to-noise ratio, and root mean square error. Our findings showed that the ResNet deep learning model exhibited superior noise reduction performance to median, Wiener, and median-modified Wiener filter algorithms. Full article
(This article belongs to the Special Issue Radiological Imaging and Its Applications)
Show Figures

Figure 1

16 pages, 29359 KiB  
Article
SAR Image Registration: The Combination of Nonlinear Diffusion Filtering, Hessian Features and Edge Points
by Guili Tang, Zhonghao Wei and Long Zhuang
Sensors 2024, 24(14), 4568; https://doi.org/10.3390/s24144568 - 14 Jul 2024
Viewed by 747
Abstract
Synthetic aperture radar (SAR) image registration is an important process in many applications, such as image stitching and remote sensing surveillance. The registration accuracy is commonly affected by the presence of speckle noise in SAR images. When speckle noise is intense, the number [...] Read more.
Synthetic aperture radar (SAR) image registration is an important process in many applications, such as image stitching and remote sensing surveillance. The registration accuracy is commonly affected by the presence of speckle noise in SAR images. When speckle noise is intense, the number of image features acquired by single-feature-based methods is insufficient. An SAR image registration method that combines nonlinear diffusion filtering, Hessian features and edge points is proposed in this paper to reduce speckle noise and obtain more image features. The proposed method uses the infinite symmetric exponential filter (ISEF) for image pre-processing and nonlinear diffusion filtering for scale-space construction. These measures can remove speckle noise from SAR images while preserving image edges. Hessian features and edge points are also employed as image features to optimize the utilization of feature information. Experiments with different noise levels, geometric transformations and image scenes demonstrate that the proposed method effectively improves the accuracy of SAR image registration compared with the SIFT-OCT, SAR-SIFT, Harris-SIFT, NF-Hessian and KAZE-SAR algorithms. Full article
(This article belongs to the Special Issue Applications of Synthetic-Aperture Radar (SAR) Imaging and Sensing)
Show Figures

Figure 1

15 pages, 5067 KiB  
Article
High-Temperature DIC Deformation Measurement under High-Intensity Blackbody Radiation
by Seng Min Han and Nam Seo Goo
Aerospace 2024, 11(6), 479; https://doi.org/10.3390/aerospace11060479 - 17 Jun 2024
Viewed by 620
Abstract
During the high-speed flight of a vehicle in the atmosphere, surface friction with the air generates aerodynamic heating. The aerodynamic heating phenomenon can create extremely high temperatures near the surface. These high temperatures impact material properties and the structure of the aircraft, so [...] Read more.
During the high-speed flight of a vehicle in the atmosphere, surface friction with the air generates aerodynamic heating. The aerodynamic heating phenomenon can create extremely high temperatures near the surface. These high temperatures impact material properties and the structure of the aircraft, so thermal deformation measurement is essential in aerospace engineering. This paper revisits high-temperature deformation measurement using the digital image correlation (DIC) technique under high-intensity blackbody radiation with a precise speckle pattern fabrication and a heat haze reduction method. The effects of the speckle pattern on the DIC measurement have been thoroughly studied at room temperature, but high-temperature measurement studies have not reported such effects so far. We found that the commonly used methods to reduce the heat haze effect could produce incorrect results. Hence, we propose a new method to mitigate heat haze effects. An infrared radiation heater was employed to make an experimental setup that could heat a specimen up to 950 °C. First, we mitigated image saturation using a short-wavelength bandpass filter with blue light illumination, a standard procedure for high-temperature DIC deformation measurement. Second, we studied how to determine the proper size of the speckle pattern in a high-temperature environment. Third, we devised a reduction method for the heat haze effect. As proof of the effectiveness of our developed experimental method, we successfully measured the deformation of stainless steel 304 specimens from 25 °C to 800 °C. The results confirmed that this method can be applied to the research and development of thermal protection systems in the aerospace field. Full article
Show Figures

Figure 1

15 pages, 4225 KiB  
Article
NSBR-Net: A Novel Noise Suppression and Boundary Refinement Network for Breast Tumor Segmentation in Ultrasound Images
by Yue Sun, Zhaohong Huang, Guorong Cai, Jinhe Su and Zheng Gong
Algorithms 2024, 17(6), 257; https://doi.org/10.3390/a17060257 - 12 Jun 2024
Viewed by 744
Abstract
Breast tumor segmentation of ultrasound images provides valuable tumor information for early detection and diagnosis. However, speckle noise and blurred boundaries in breast ultrasound images present challenges for tumor segmentation, especially for malignant tumors with irregular shapes. Recent vision transformers have shown promising [...] Read more.
Breast tumor segmentation of ultrasound images provides valuable tumor information for early detection and diagnosis. However, speckle noise and blurred boundaries in breast ultrasound images present challenges for tumor segmentation, especially for malignant tumors with irregular shapes. Recent vision transformers have shown promising performance in handling the variation through global context modeling. Nevertheless, they are often dominated by features of large patterns and lack the ability to recognize negative information in ultrasound images, which leads to the loss of breast tumor details (e.g., boundaries and small objects). In this paper, we propose a novel noise suppression and boundary refinement network, NSBR-Net, to simultaneously alleviate speckle noise interference and blurred boundary problems of breast tumor segmentation. Specifically, we propose two innovative designs, namely, the Noise Suppression Module (NSM) and the Boundary Refinement Module (BRM). The NSM filters noise information from the coarse-grained feature maps, while the BRM progressively refines the boundaries of significant lesion objects. Our method demonstrates superior accuracy over state-of-the-art deep learning models, achieving significant improvements of 3.67% on Dataset B and 2.30% on the BUSI dataset in mDice for testing malignant tumors. Full article
Show Figures

Figure 1

18 pages, 12154 KiB  
Article
Blind Edge-Retention Indicator for Assessing the Quality of Filtered (Pol)SAR Images Based on a Ratio Gradient Operator and Confidence Interval Estimation
by Xiaoshuang Ma, Le Li and Gang Wang
Remote Sens. 2024, 16(11), 1992; https://doi.org/10.3390/rs16111992 - 31 May 2024
Viewed by 417
Abstract
Speckle reduction is a key preprocessing approach for the applications of Synthetic Aperture Radar (SAR) data. For many interpretation tasks, high-quality SAR images with a rich texture and structure information are useful. Therefore, a satisfactory SAR image filter should retain this information well [...] Read more.
Speckle reduction is a key preprocessing approach for the applications of Synthetic Aperture Radar (SAR) data. For many interpretation tasks, high-quality SAR images with a rich texture and structure information are useful. Therefore, a satisfactory SAR image filter should retain this information well after processing. Some quantitative assessment indicators have been presented to evaluate the edge-preservation capability of single-polarization SAR filters, among which the non-clean-reference-based (i.e., blind) ones are attractive. However, most of these indicators are derived based only on the basic fact that the speckle is a kind of multiplicative noise, and they do not take into account the detailed statistical distribution traits of SAR data, making the assessment not robust enough. Moreover, to our knowledge, there are no specific blind assessment indicators for fully Polarimetric SAR (PolSAR) filters up to now. In this paper, a blind assessment indicator based on an SAR Ratio Gradient Operator (RGO) and Confidence Interval Estimation (CIE) is proposed. The RGO is employed to quantify the edge gradient between two neighboring image patches in both the speckled and filtered data. A decision is then made as to whether the ratio gradient value in the filtered image is close to that in the unobserved clean image by considering the statistical traits of speckle and a CIE method. The proposed indicator is also extended to assess the PolSAR filters by transforming the polarimetric scattering matrix into a scalar which follows a Gamma distribution. Experiments on the simulated SAR dataset and three real-world SAR images acquired by ALOS-PALSAR, AirSAR, and TerraSAR-X validate the robustness and reliability of the proposed indicator. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

22 pages, 18573 KiB  
Article
A Multi-Scale Fusion Strategy for Side Scan Sonar Image Correction to Improve Low Contrast and Noise Interference
by Ping Zhou, Jifa Chen, Pu Tang, Jianjun Gan and Hongmei Zhang
Remote Sens. 2024, 16(10), 1752; https://doi.org/10.3390/rs16101752 - 15 May 2024
Viewed by 886
Abstract
Side scan sonar images have great application prospects in underwater surveys, target detection, and engineering activities. However, the acquired sonar images exhibit low illumination, scattered noise, distorted outlines, and unclear edge textures due to the complicated undersea environment and intrinsic device flaws. Hence, [...] Read more.
Side scan sonar images have great application prospects in underwater surveys, target detection, and engineering activities. However, the acquired sonar images exhibit low illumination, scattered noise, distorted outlines, and unclear edge textures due to the complicated undersea environment and intrinsic device flaws. Hence, this paper proposes a multi-scale fusion strategy for side scan sonar (SSS) image correction to improve the low contrast and noise interference. Initially, an SSS image was decomposed into low and high frequency sub-bands via the non-subsampled shearlet transform (NSST). Then, modified multi-scale retinex (MMSR) was employed to enhance the contrast of the low frequency sub-band. Next, sparse dictionary learning (SDL) was utilized to eliminate high frequency noise. Finally, the process of NSST reconstruction was completed by fusing the emerging low and high frequency sub-band images to generate a new sonar image. The experimental results demonstrate that the target features, underwater terrain, and edge contours could be clearly displayed in the image corrected by the multi-scale fusion strategy when compared to eight correction techniques: BPDHE, MSRCR, NPE, ALTM, LIME, FE, WT, and TVRLRA. Effective control was achieved over the speckle noise of the sonar image. Furthermore, the AG, STD, and E values illustrated the delicacy and contrast of the corrected images processed by the proposed strategy. The PSNR value revealed that the proposed strategy outperformed the advanced TVRLRA technology in terms of filtering performance by at least 8.8%. It can provide sonar imagery that is appropriate for various circumstances. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

30 pages, 10540 KiB  
Article
An On-Site InSAR Terrain Imaging Method with Unmanned Aerial Vehicles
by Hsu-Yueh Chuang and Jean-Fu Kiang
Sensors 2024, 24(7), 2287; https://doi.org/10.3390/s24072287 - 3 Apr 2024
Viewed by 795
Abstract
An on-site InSAR imaging method carried out with unmanned aerial vehicles (UAVs) is proposed to monitor terrain changes with high spatial resolution, short revisit time, and high flexibility. To survey and explore a specific area of interest in real time, a combination of [...] Read more.
An on-site InSAR imaging method carried out with unmanned aerial vehicles (UAVs) is proposed to monitor terrain changes with high spatial resolution, short revisit time, and high flexibility. To survey and explore a specific area of interest in real time, a combination of a least-square phase unwrapping technique and a mean filter for removing speckles is effective in reconstructing the terrain profile. The proposed method is validated by simulations on three scenarios scaled down from the high-resolution digital elevation models of the US geological survey (USGS) 3D elevation program (3DEP) datasets. The efficacy of the proposed method and the efficiency in CPU time are validated by comparing with several state-of-the-art techniques. Full article
Show Figures

Figure 1

21 pages, 6432 KiB  
Article
A Texture Enhancement Method for Oceanic Internal Wave Synthetic Aperture Radar Images Based on Non-Local Mean Filtering and Texture Layer Enhancement
by Zhenghua Chen, Hongcheng Zeng, Yamin Wang, Wei Yang, Yanan Guan and Wei Liu
Remote Sens. 2024, 16(7), 1172; https://doi.org/10.3390/rs16071172 - 27 Mar 2024
Viewed by 851
Abstract
Synthetic aperture radar (SAR) is an important tool for observing the oceanic internal wave phenomenon. However, owing to the unstable imaging quality of SAR on oceanic internal waves, the texture details of internal wave images are usually unclear, which is not conducive to [...] Read more.
Synthetic aperture radar (SAR) is an important tool for observing the oceanic internal wave phenomenon. However, owing to the unstable imaging quality of SAR on oceanic internal waves, the texture details of internal wave images are usually unclear, which is not conducive to the subsequent applications of the images. To cope with this problem, a texture enhancement method for oceanic internal wave SAR images is proposed in this paper, which is based on non-local mean (NLM) filtering and texture layer enhancement (TLE). Since the strong speckle noise commonly present in internal wave images is simultaneously enhanced during texture enhancement, resulting in degraded image quality, NLM filtering is first performed to suppress speckle noise. Then, the denoised image is decomposed into the structure layer and the texture layer, and a texture layer enhancement method oriented to the texture characteristics of oceanic internal waves is proposed and applied. Finally, the enhanced texture layer and the structure layer are combined to reconstruct the final enhanced image. Experiments are conducted based on the Gaofen-3 real SAR data, and the results demonstrate that the proposed method performs well in suppressing speckle noise, maintaining overall image brightness, and enhancing internal wave texture details. Full article
Show Figures

Figure 1

23 pages, 17001 KiB  
Article
A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection
by Jiale Duan, Linyao Qiu, Guangjun He, Ling Zhao, Zhenshi Zhang and Haifeng Li
Remote Sens. 2024, 16(6), 997; https://doi.org/10.3390/rs16060997 - 12 Mar 2024
Viewed by 1146
Abstract
In synthetic aperture radar (SAR) imaging, intelligent object detection methods are facing significant challenges in terms of model robustness and application security, which are posed by adversarial examples. The existing adversarial example generation methods for SAR object detection can be divided into two [...] Read more.
In synthetic aperture radar (SAR) imaging, intelligent object detection methods are facing significant challenges in terms of model robustness and application security, which are posed by adversarial examples. The existing adversarial example generation methods for SAR object detection can be divided into two main types: global perturbation attacks and local perturbation attacks. Due to the dynamic changes and irregular spatial distribution of SAR coherent speckle backgrounds, the attack effectiveness of global perturbation attacks is significantly reduced by coherent speckle. In contrast, by focusing on the image objects, local perturbation attacks achieve targeted and effective advantages over global perturbations by minimizing interference from the SAR coherent speckle background. However, the adaptability of conventional local perturbations is limited because they employ a fixed size without considering the diverse sizes and shapes of SAR objects under various conditions. This paper presents a framework for region-adaptive local perturbations (RaLP) specifically designed for SAR object detection tasks. The framework consists of two modules. To address the issue of coherent speckle noise interference in SAR imagery, we develop a local perturbation generator (LPG) module. By filtering the original image, this module reduces the speckle features introduced during perturbation generation. It then superimposes adversarial perturbations in the form of local perturbations on areas of the object with weaker speckles, thereby reducing the mutual interference between coherent speckles and adversarial perturbation. To address the issue of insufficient adaptability in terms of the size variation in local adversarial perturbations, we propose an adaptive perturbation optimizer (APO) module. This optimizer adapts the size of the adversarial perturbations based on the size and shape of the object, effectively solving the problem of adaptive perturbation size and enhancing the universality of the attack. The experimental results show that RaLP reduces the detection accuracy of the YOLOv3 detector by 29.0%, 29.9%, and 32.3% on the SSDD, SAR-Ship, and AIR-SARShip datasets, respectively, and the model-to-model and dataset-to-dataset transferability of RaLP attacks are verified. Full article
Show Figures

Figure 1

17 pages, 4811 KiB  
Article
Speckle Reduction in Digital Holography by Fast Logistic Adaptive Non-Local Means Filtering
by Yiping Fu, Junmin Leng and Zhenqi Xu
Photonics 2024, 11(2), 147; https://doi.org/10.3390/photonics11020147 - 4 Feb 2024
Viewed by 948
Abstract
Digital holography is a promising imaging technology. However, there is speckle noise in the reconstructed image of a digital hologram. Speckle degrades the quality of the reconstructed image. Suppression of speckle noise is a challenging problem in digital holography. A novel method is [...] Read more.
Digital holography is a promising imaging technology. However, there is speckle noise in the reconstructed image of a digital hologram. Speckle degrades the quality of the reconstructed image. Suppression of speckle noise is a challenging problem in digital holography. A novel method is proposed to reduce speckle by a fast logistic adaptive non-local means (LA-NLM) algorithm. In the proposed method, the logistic function is incorporated into the weight calculation of the NLM algorithm to account for multiplicative speckle noise. Filtering parameters are dynamically adjusted according to the statistical property of speckle in the reconstructed image. To enhance computational efficiency, the proposed algorithm takes advantage of the integral image technique to speed up the calculation of the similarity between image patches. Simulated and experimental digital holograms are obtained to verify the proposed method. The results show that the speckle noise is effectively suppressed in digital holography. The proposed method is efficient and feasible, and can be applied to such fields as three-dimensional display, holographic measurement, and medical diagnosis. Full article
Show Figures

Figure 1

23 pages, 39867 KiB  
Article
Synthetic Aperture Radar Image Despeckling Based on a Deep Learning Network Employing Frequency Domain Decomposition
by Xueqing Zhao, Fuquan Ren, Haibo Sun and Qinghong Qi
Electronics 2024, 13(3), 490; https://doi.org/10.3390/electronics13030490 - 24 Jan 2024
Viewed by 1145
Abstract
Synthetic aperture radar (SAR) images are inevitably interspersed with speckle noise due to their coherent imaging mechanism, which greatly hinders subsequent related research and application. In recent studies, deep learning has become an effective tool for despeckling remote sensing images. However, preserving more [...] Read more.
Synthetic aperture radar (SAR) images are inevitably interspersed with speckle noise due to their coherent imaging mechanism, which greatly hinders subsequent related research and application. In recent studies, deep learning has become an effective tool for despeckling remote sensing images. However, preserving more texture details while removing speckle noise remains a challenging task in the field of SAR image despeckling. Furthermore, most despeckling algorithms are designed specifically for a specific look and seriously lack generalizability. Therefore, in order to remove speckle noise in SAR images, a novel end-to-end frequency domain decomposition network (SAR−FDD) is proposed. The method first performs frequency domain decomposition to generate high-frequency and low-frequency information. In the high-frequency branch, a mean filter is employed to effectively remove noise. Then, an interactive dual-branch framework is utilized to learn the details and structural information of SAR images, effectively reducing speckles by fully utilizing features from different frequencies. In addition, a blind denoising model is trained to handle noisy SAR images with unknown noise levels. The experimental results demonstrate that the SAR−FDD achieves good visual effects and high objective evaluation metrics on both simulated and real SAR test sets (peak signal-to-noise ratio (PSNR): 27.59 ± 1.57 and structural similarity index (SSIM): 0.78 ± 0.05 for different speckle noise levels), demonstrating its strong denoising performance and ability to preserve edge textures. Full article
(This article belongs to the Special Issue Application of Machine Learning and Intelligent Systems)
Show Figures

Figure 1

11 pages, 662 KiB  
Article
SAR Image Generation Method Using DH-GAN for Automatic Target Recognition
by Snyoll Oghim, Youngjae Kim, Hyochoong Bang, Deoksu Lim and Junyoung Ko
Sensors 2024, 24(2), 670; https://doi.org/10.3390/s24020670 - 20 Jan 2024
Cited by 4 | Viewed by 1397
Abstract
In recent years, target recognition technology for synthetic aperture radar (SAR) images has witnessed significant advancements, particularly with the development of convolutional neural networks (CNNs). However, acquiring SAR images requires significant resources, both in terms of time and cost. Moreover, due to the [...] Read more.
In recent years, target recognition technology for synthetic aperture radar (SAR) images has witnessed significant advancements, particularly with the development of convolutional neural networks (CNNs). However, acquiring SAR images requires significant resources, both in terms of time and cost. Moreover, due to the inherent properties of radar sensors, SAR images are often marred by speckle noise, a form of high-frequency noise. To address this issue, we introduce a Generative Adversarial Network (GAN) with a dual discriminator and high-frequency pass filter, named DH-GAN, specifically designed for generating simulated images. DH-GAN produces images that emulate the high-frequency characteristics of real SAR images. Through power spectral density (PSD) analysis and experiments, we demonstrate the validity of the DH-GAN approach. The experimental results show that not only do the SAR image generated using DH-GAN closely resemble the high-frequency component of real SAR images, but the proficiency of CNNs in target recognition, when trained with these simulated images, is also notably enhanced. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

Back to TopTop