Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,009)

Search Parameters:
Keywords = spin-forming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7130 KiB  
Article
Enhancing Tennis Practice: Sensor Fusion and Pose Estimation with a Smart Tennis Ball
by Yu Kit Foo, Xi Li and Rami Ghannam
Sensors 2024, 24(16), 5306; https://doi.org/10.3390/s24165306 - 16 Aug 2024
Viewed by 391
Abstract
This article demonstrates the integration of sensor fusion for pose estimation and data collection in tennis balls, aiming to create a smaller, less intrusive form factor for use in progressive learning during tennis practice. The study outlines the design and implementation of the [...] Read more.
This article demonstrates the integration of sensor fusion for pose estimation and data collection in tennis balls, aiming to create a smaller, less intrusive form factor for use in progressive learning during tennis practice. The study outlines the design and implementation of the Bosch BNO055 smart sensor, which features built-in managed sensor fusion capabilities. The article also discusses deriving additional data using various mathematical and simulation methods to present relevant orientation information from the sensor in Unity. Embedded within a Vermont practice foam tennis ball, the final prototype product communicates with Unity on a laptop via Bluetooth. The Unity interface effectively visualizes the ball’s rotation, the resultant acceleration direction, rotations per minute (RPM), and the orientation relative to gravity. The system successfully demonstrates accurate RPM measurement, provides real-time visualization of ball spin and offers a pathway for innovative applications in tennis training technology. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

12 pages, 3259 KiB  
Article
Highly Efficient Layer-by-Layer Organic Photovoltaics Enabled by Additive Strategy
by Yuheng Ni, Hongyue Tian, Ruifeng Gong, Hang Zhou, Wenjing Xu, Jian Wang, Xiaoling Ma and Fujun Zhang
Energies 2024, 17(16), 4022; https://doi.org/10.3390/en17164022 - 14 Aug 2024
Viewed by 268
Abstract
In this work, layer-by-layer organic photovoltaics (LbL OPVs) were prepared by sequentially spin-coating PM1 and L8-BO solutions. The solvent additive 1,8-diiodooctane (DIO), which has a high boiling point, and solid additive l,3,5-trichlorobenzene (TCB), which has a high volatile, were deliberately selected to incorporate [...] Read more.
In this work, layer-by-layer organic photovoltaics (LbL OPVs) were prepared by sequentially spin-coating PM1 and L8-BO solutions. The solvent additive 1,8-diiodooctane (DIO), which has a high boiling point, and solid additive l,3,5-trichlorobenzene (TCB), which has a high volatile, were deliberately selected to incorporate with the L8-BO solutions. The power conversion efficiency (PCE) of LbL OPVs was considerably enhanced from 17.43% to 18.50% by employing TCB as the additive, profiting by the concurrently increased short-circuit current density (JSC) of 26.74 mA cm−2 and a fill factor (FF) of 76.88%. The increased JSCs of LbL OPVs with TCB as additive were ascribed to the tilted-up absorption edge in the long wavelength range and the external quantum-efficiency spectral difference between LbL OPVs with and without TCB as an additive. The molecular arrangement of L8-BO and the PM1 domain was enhanced with TCB as an additive, which was most likely responsible for the increased charge mobilities in the layered films processed with additives. It was indicated that the dynamic film-forming process of the acceptor layers plays a vital role in achieving efficient LbL OPVs by employing additive strategy. Over 6% PCE improvement of the LbL OPVs with PM1/L8-BO as the active layers can be achieved by employing TCB as additive. Full article
Show Figures

Figure 1

19 pages, 1419 KiB  
Article
Continuous-Thrust Circular Orbit Phasing Optimization of Deep Space CubeSats
by Alessandro A. Quarta
Appl. Sci. 2024, 14(16), 7059; https://doi.org/10.3390/app14167059 - 12 Aug 2024
Viewed by 346
Abstract
The recent technology advancements in miniaturizing the primary components of spacecraft allow the classic CubeSats to be considered as a valid option in the design of a deep space scientific mission, not just to support a main typical interplanetary spacecraft. In this context, [...] Read more.
The recent technology advancements in miniaturizing the primary components of spacecraft allow the classic CubeSats to be considered as a valid option in the design of a deep space scientific mission, not just to support a main typical interplanetary spacecraft. In this context, the proposed ESA M-ARGO mission, whose launch is currently planned in 2026, will use the electric thruster installed onboard of a 12U CubeSat to transfer the small satellite from the Sun–Earth second Lagrangian point to the orbit of a small and rapidly spinning asteroid. Starting from the surrogate model of the M-ARGO propulsion system proposed in the recent literature, this paper analyzes a simplified thrust vector model that can be used to study the heliocentric optimal transfer trajectory with a classical indirect approach. This simplified thrust model is a variation of the surrogate one used to complete the preliminary design of the trajectory of the M-ARGO mission, and it allows to calculate, in an analytical form, the typical Euler–Lagrange equations without singularities. The thrust model is then used to study the performance of a M-ARGO-type CubeSat (MTC) in a different scenario (compared to that of the real mission), in which the small satellite moves along a circular heliocentric orbit in the context of a classic phasing maneuver. In this regard, the work discusses a simplified study of the optimal constrained MTC transfer towards one of the two Sun–Earth triangular Lagrangian points. Therefore, the contributions of this paper are essentially two: the first is the simplified thrust model that can be used to analyze the heliocentric trajectory of a MTC; the second is a novel mission application of a CubeSat, equipped with an electric thruster, moving along a circular heliocentric orbit in a phasing maneuver. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

12 pages, 3030 KiB  
Article
Critical Aluminum Etch Material Amount for Local Droplet-Etched Nanohole-Based GaAs Quantum Dots
by Timo Kruck, Hans Georg Babin, Andreas D. Wieck and Arne Ludwig
Crystals 2024, 14(8), 714; https://doi.org/10.3390/cryst14080714 - 9 Aug 2024
Viewed by 350
Abstract
Local droplet-etched-based GaAs quantum dots are promising candidates for high-quality single and entangled photon sources. They have excellent optical and spin properties thanks to their size, shape and nearly strain-free matrix integration. In this study, we investigate the onset of aluminum nanodroplet formation [...] Read more.
Local droplet-etched-based GaAs quantum dots are promising candidates for high-quality single and entangled photon sources. They have excellent optical and spin properties thanks to their size, shape and nearly strain-free matrix integration. In this study, we investigate the onset of aluminum nanodroplet formation for the local droplet etching process. Using molecular beam epitaxy, we grew several local droplet-etched quantum dot samples with different arsenic beam equivalent pressures. In each sample, we varied the etch material amount using a gradient technique and filled the nanoholes with GaAs to form optically active quantum dots after overgrowth. We repeated the local droplet etching process without the filling process, enabling us to characterize surface nanoholes with atomic force microscopy and compare them with photoluminescence from the buried quantum dots. We found a linear dependency on the arsenic beam-equivalent pressures for a critical aluminum amount necessary for nanohole formation and analyzed shape, density and optical properties close to this transition. Full article
(This article belongs to the Special Issue Materials and Devices Grown via Molecular Beam Epitaxy)
Show Figures

Figure 1

14 pages, 1740 KiB  
Article
A Vestibular Training to Reduce Dizziness
by Heiko Hecht, Carla Aulenbacher, Laurin Helmbold, Henrik Eichhorn and Christoph von Castell
Appl. Sci. 2024, 14(16), 6870; https://doi.org/10.3390/app14166870 - 6 Aug 2024
Viewed by 522
Abstract
Many situations can induce dizziness in healthy participants, be it when riding a carrousel or when making head movements while wearing a head-mounted display. Everybody—maybe with the exception of vestibular loss patients—is prone to dizziness, albeit to widely varying degrees. Some people get [...] Read more.
Many situations can induce dizziness in healthy participants, be it when riding a carrousel or when making head movements while wearing a head-mounted display. Everybody—maybe with the exception of vestibular loss patients—is prone to dizziness, albeit to widely varying degrees. Some people get dizzy after a single rotation around the body axis, while others can perform multiple pirouettes without the slightest symptoms. We have developed a form of vestibular habituation training with the purpose of reducing proneness to dizziness. The training consists of a short (8 min) exercise routine which is moderate enough that it can easily be integrated into a daily routine. Twenty volunteers performed the training over the course of two weeks. We measured subjective dizziness before and after each daily session. We also performed several vestibular tests before (pre-test) and after (post-test) the two-week training period. They included exposure to a rotating and pitching visual environment while standing upright, as well as a physical rotation that was abruptly stopped. The results show that the dizziness induced during a given daily session decreased over the course of the two weeks. The dizziness induced by the rotating visual stimulus was significantly less after completion of the training period compared with the initial pre-test. Also, postural stability and post-rotatory spinning sensations had improved when comparing the post-test with the pre-test. We conclude that a short regular vestibular training can significantly improve proneness to dizziness. Full article
Show Figures

Figure 1

15 pages, 895 KiB  
Article
Superconductivity of Co-Doped CaKFe4As4 Investigated via Point-Contact Spectroscopy and London Penetration Depth Measurements
by Erik Piatti, Daniele Torsello, Francesca Breccia, Tsuyoshi Tamegai, Gianluca Ghigo and Dario Daghero
Nanomaterials 2024, 14(15), 1319; https://doi.org/10.3390/nano14151319 - 5 Aug 2024
Viewed by 460
Abstract
The iron-based superconductors (IBSs) of the recently discovered 1144 class, unlike many other IBSs, display superconductivity in their stoichiometric form and are intrinsically hole doped. The effects of chemical substitutions with electron donors are thus particularly interesting to investigate. Here, we study the [...] Read more.
The iron-based superconductors (IBSs) of the recently discovered 1144 class, unlike many other IBSs, display superconductivity in their stoichiometric form and are intrinsically hole doped. The effects of chemical substitutions with electron donors are thus particularly interesting to investigate. Here, we study the effect of Co substitution in the Fe site of CaKFe4As4 single crystals on the critical temperature, on the energy gaps, and on the superfluid density by using transport, point-contact Andreev-reflection spectroscopy (PCARS), and London penetration depth measurements. The pristine compound (Tc36 K) shows two isotropic gaps whose amplitudes (Δ1 = 1.4–3.9 meV and Δ2 = 5.2–8.5 meV) are perfectly compatible with those reported in the literature. Upon Co doping (up to ≈7% Co), Tc decreases down to ≃20 K, the spin-vortex-crystal order appears, and the low-temperature superfluid density is gradually suppressed. PCARS and London penetration depth measurements perfectly agree in demonstrating that the nodeless multigap structure is robust upon Co doping, while the gap amplitudes decrease as a function of Tc in a linear way with almost constant values of the gap ratios 2Δi/kBTc. Full article
Show Figures

Figure 1

13 pages, 4580 KiB  
Article
Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics
by Daniel Joch, Thomas Lang, Shawn Sanctis and Michael P. M. Jank
Materials 2024, 17(15), 3849; https://doi.org/10.3390/ma17153849 - 3 Aug 2024
Viewed by 395
Abstract
In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively [...] Read more.
In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current–voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array. Full article
Show Figures

Figure 1

12 pages, 2880 KiB  
Article
LaMnO3-Type Perovskite Nanofibers as Effective Catalysts for On-Cell CH4 Reforming via Solid Oxide Fuel Cells
by Yangbo Jia, Tong Wei, Zhufeng Shao, Yunpeng Song, Xue Huang, Beila Huang, Chen Cao and Yufan Zhi
Molecules 2024, 29(15), 3654; https://doi.org/10.3390/molecules29153654 - 1 Aug 2024
Viewed by 441
Abstract
CH4 has become the most attractive fuel for solid oxide fuel cells due to its wide availability, narrow explosion limit range, low price, and easy storage. Thus, we present the concept of on-cell reforming via SOFC power generation, in which CH4 [...] Read more.
CH4 has become the most attractive fuel for solid oxide fuel cells due to its wide availability, narrow explosion limit range, low price, and easy storage. Thus, we present the concept of on-cell reforming via SOFC power generation, in which CH4 and CO2 can be converted into H2 and the formed H2 is electrochemically oxidized on a Ni-BZCYYb anode. We modified the porosity and specific surface area of a perovskite reforming catalyst via an optimized electrostatic spinning method, and the prepared LCMN nanofibers, which displayed an ideal LaMnO3-type perovskite structure with a high specific surface area, were imposed on a conventional Ni-BZCYYb anode for on-cell CH4 reforming. Compared to LCMN nanoparticles used as on-cell reforming catalysts, the NF-SOFC showed lower ohmic and polarization resistances, indicating that the porous nanofibers could reduce the resistances of fuel gas transport and charge transport in the anode. Accordingly, the NF-SOFC displayed a maximum power density (MPD) of 781 mW cm−2 and a stable discharge voltage of around 0.62 V for 72 h without coking in the Ni-BZCYYb anode. The present LCMN NF materials and on-cell reforming system demonstrated stability and potential for highly efficient power generation with hydrocarbon fuels. Full article
(This article belongs to the Special Issue Transition Metal Compounds: Challenges and Breakthrough)
Show Figures

Figure 1

15 pages, 5014 KiB  
Article
A Stereolithography-Based Modified Spin-Casting Method for Faster Laboratory-Scale Production of Dexamethasone-Containing Dissolving Microneedle Arrays
by Martin Cseh, Gábor Katona, Szilvia Berkó, Mária Budai-Szűcs and Ildikó Csóka
Pharmaceutics 2024, 16(8), 1005; https://doi.org/10.3390/pharmaceutics16081005 - 29 Jul 2024
Viewed by 458
Abstract
Microneedle arrays (MNAs) consist of a few dozens of submillimeter needles, which tend to penetrate through the stratum corneum layer of the skin and deliver hardly penetrating drugs to the systemic circulation. The application of this smart dosage form shows several advantages, such [...] Read more.
Microneedle arrays (MNAs) consist of a few dozens of submillimeter needles, which tend to penetrate through the stratum corneum layer of the skin and deliver hardly penetrating drugs to the systemic circulation. The application of this smart dosage form shows several advantages, such as simple use and negligible pain caused by needle punctures compared to conventional subcutaneous injections. Dissolving MNAs (DMNAs) represent a promising form of cutaneous drug delivery due to their high drug content, biocompatibility, and ease of use. Although different technologies are suitable to produce microneedle arrays (e.g., micromilling, chemical etching, laser ablation etc.), many of these are expensive or hardly accessible. Following the exponential growth of the 3D-printing industry in the last decade, high-resolution desktop printers became accessible for researchers to easily and cost-effectively design and produce microstructures, including MNAs. In this work, a low force stereolithography (LFS) 3D-printer was used to develop the dimensionally correct MNA masters for the spin-casting method. The present study aimed to develop and characterize drug-loaded DMNAs using a two-level, full factorial design for three factors focusing on the optimization of DMNA production and adequate drug content. For the preparation of DMNAs, carboxymethylcellulose and trehalose were used in certain amounts as matrices for dexamethasone sodium phosphate (DEX). Investigation of the produced DexDMNAs included mechanical analysis via texture analyzer and optical microscopy, determination of drug content and distribution with HPLC and Raman microscopy, dissolution studies via HPLC, and ex vivo qualitative permeation studies by Raman mapping. It can be concluded that a DEX-containing, mechanically stable, biodegradable DexDMNA system was successfully developed in two dosage strengths, of which both efficiently delivered the drug to the lower layers (dermis) of human skin. Moreover, the ex vivo skin penetration results support that the application of DMNAs for cutaneous drug delivery can be more effective than that of a conventional dermal gel. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of 3D Printing)
Show Figures

Figure 1

13 pages, 3224 KiB  
Article
Investigating the Formation of Different (NH4)2[M(H2O)5(NH3CH2CH2COO)]2[V10O28nH2O (M = CoII, NiII, ZnII, n = 4; M = CdII, MnII, n = 2) Crystallohydrates
by Jana Chrappová, Yogeswara Rao Pateda, Lenka Bartošová and Erik Rakovský
Crystals 2024, 14(8), 685; https://doi.org/10.3390/cryst14080685 - 27 Jul 2024
Viewed by 522
Abstract
Three hybrid compounds based on decavanadates, i.e., (NH4)2[Co(H2O)5(β-HAla)]2[V10O28]·4H2O (1), (NH4)2[Ni(H2O)5(β-HAla)]2[V10O28]·4H2 [...] Read more.
Three hybrid compounds based on decavanadates, i.e., (NH4)2[Co(H2O)5(β-HAla)]2[V10O28]·4H2O (1), (NH4)2[Ni(H2O)5(β-HAla)]2[V10O28]·4H2O (2), and (NH4)2[Cd(H2O)5(β-HAla)]2[V10O28]·2H2O (3), (where β-Hala = zwitterionic form of β-alanine) were prepared by reactions in mildly acidic conditions (pH ~ 4) at room temperature. These compounds crystallise in two structure types, both crystallising in monoclinic P21/n space group but with dissimilar cell packing, i.e., as tetrahydrates (1 and 2) and as a dihydrate (3). An influence of crystal radii and spin state of the central atom in [M(H2O)5(β-HAla)]2+ complex cations on the crystal packing leading to the formation of different crystallohydrate forms was investigated together with previously prepared (NH4)2[Zn(H2O)5(β-HAla)]2[V10O28]·4H2O (4) and (NH4)2[Mn(H2O)5(β-HAla)]2[V10O28]·2H2O (5) and spin states of [M(H2O)5(β-HAla)]2+ (M = Co2+, Ni2+, and Mn2+) cations in solution were confirmed by 1H-NMR paramagnetic effects. FT-IR and FT-Raman spectra for 15 are in agreement with the X-ray structure analysis results. Full article
Show Figures

Figure 1

9 pages, 2083 KiB  
Article
A Hybrid Metadetector for Measuring Bell States of Optical Angular Momentum Entanglement
by Yang Ming
Sensors 2024, 24(15), 4817; https://doi.org/10.3390/s24154817 - 25 Jul 2024
Viewed by 365
Abstract
High-dimensional entanglement of optical angular momentum has shown its enormous potential for increasing robustness and data capacity in quantum communication and information multiplexing, thus offering promising perspectives for quantum information science. To make better use of optical angular momentum entangled states, it is [...] Read more.
High-dimensional entanglement of optical angular momentum has shown its enormous potential for increasing robustness and data capacity in quantum communication and information multiplexing, thus offering promising perspectives for quantum information science. To make better use of optical angular momentum entangled states, it is necessary to develop a reliable platform for measuring and analyzing them. Here, we propose a hybrid metadetector of monolayer transition metal dichalcogenide (TMD) integrated with spin Hall nanoantenna arrays for identifying Bell states of optical angular momentum. The corresponding states are converted into path-entangled states of propagative polaritonic modes for detection. Several Bell states in different forms are shown to be identified effectively. TMDs have emerged as an attractive platform for the next generation of on-chip optoelectronic devices. Our work may open up a new horizon for devising integrated quantum circuits based on these two-dimensional van der Waals materials. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 2394 KiB  
Article
Pulsed Dipolar EPR for Self-Limited Complexes of Oligonucleotides Studies
by Alexey S. Chubarov, Burkhard Endeward, Maria A. Kanarskaya, Yuliya F. Polienko, Thomas F. Prisner and Alexander A. Lomzov
Biomolecules 2024, 14(8), 887; https://doi.org/10.3390/biom14080887 - 23 Jul 2024
Viewed by 480
Abstract
Pulsed electron–electron double resonance (PELDOR) spectroscopy is a powerful method for determining nucleic acid (NA) structure and conformational dynamics. PELDOR with molecular dynamics (MD) simulations opens up unique possibilities for defining the conformational ensembles of flexible, three-dimensional, self-assembled complexes of NA. Understanding the [...] Read more.
Pulsed electron–electron double resonance (PELDOR) spectroscopy is a powerful method for determining nucleic acid (NA) structure and conformational dynamics. PELDOR with molecular dynamics (MD) simulations opens up unique possibilities for defining the conformational ensembles of flexible, three-dimensional, self-assembled complexes of NA. Understanding the diversity and structure of these complexes is vital for uncovering matrix and regulative biological processes in the human body and artificially influencing them for therapeutic purposes. To explore the reliability of PELDOR and MD simulations, we site-specifically attached nitroxide spin labels to oligonucleotides, which form self-assembled complexes between NA chains and exhibit significant conformational flexibility. The DNA complexes assembled from a pair of oligonucleotides with different linker sizes showed excellent agreement between the distance distributions obtained from PELDOR and calculated from MD simulations, both for the mean inter-spin distance and the distance distribution width. These results prove that PELDOR with MD simulations has significant potential for studying the structure and dynamics of conformational flexible complexes of NA. Full article
(This article belongs to the Section Molecular Structure and Dynamics)
Show Figures

Graphical abstract

17 pages, 6994 KiB  
Article
Tailoring the Lithium Concentration in Thin Lithium Ferrite Films Obtained by Dual Ion Beam Sputtering
by Pilar Prieto, Cayetano Hernández-Gómez, Sara Román-Sánchez, Marina París-Ogáyar, Giulio Gorni, José Emilio Prieto and Aida Serrano
Nanomaterials 2024, 14(14), 1220; https://doi.org/10.3390/nano14141220 - 18 Jul 2024
Viewed by 508
Abstract
Thin films of lithium spinel ferrite, LiFe5O8, have attracted much scientific attention because of their potential for efficient excitation, the manipulation and propagation of spin currents due to their insulating character, high-saturation magnetization, and Curie temperature, as well as [...] Read more.
Thin films of lithium spinel ferrite, LiFe5O8, have attracted much scientific attention because of their potential for efficient excitation, the manipulation and propagation of spin currents due to their insulating character, high-saturation magnetization, and Curie temperature, as well as their ultra-low damping value. In addition, LiFe5O8 is currently one of the most interesting materials in terms of developing spintronic devices based on the ionic control of magnetism, for which it is crucial to control the lithium’s atomic content. In this work, we demonstrate that dual ion beam sputtering is a suitable technique to tailor the lithium content of thin films of lithium ferrite (LFO) by using the different energies of the assisting ion beam formed by Ar+ and O2+ ions during the growth process. Without assistance, a disordered rock-salt LFO phase (i.e., LiFeO2) can be identified as the principal phase. Under beam assistance, highly out-of-plane-oriented (111) thin LFO films have been obtained on (0001) Al2O3 substrates with a disordered spinel structure as the main phase and with lithium concentrations higher and lower than the stoichiometric spinel phase, i.e., LiFe5O8. After post-annealing of the films at 1025 K, a highly ordered ferromagnetic spinel LFO phase was found when the lithium concentration was higher than the stoichiometric value. With lower lithium contents, the antiferromagnetic hematite (α-Fe2O3) phase emerged and coexisted in films with the ferromagnetic LixFe6-xO8. These results open up the possibility of controlling the properties of thin lithium ferrite-based films to enable their use in advanced spintronic devices. Full article
Show Figures

Figure 1

20 pages, 8218 KiB  
Perspective
Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective
by Maarten Houlleberghs, Sambhu Radhakrishnan, C. Vinod Chandran, Alysson F. Morais, Johan A. Martens and Eric Breynaert
Molecules 2024, 29(14), 3369; https://doi.org/10.3390/molecules29143369 - 18 Jul 2024
Viewed by 639
Abstract
This perspective outlines recent developments in the field of NMR spectroscopy, enabling new opportunities for in situ studies on bulk and confined clathrate hydrates. These hydrates are crystalline ice-like materials, built up from hydrogen-bonded water molecules, forming cages occluding non-polar gaseous guest molecules, [...] Read more.
This perspective outlines recent developments in the field of NMR spectroscopy, enabling new opportunities for in situ studies on bulk and confined clathrate hydrates. These hydrates are crystalline ice-like materials, built up from hydrogen-bonded water molecules, forming cages occluding non-polar gaseous guest molecules, including CH4, CO2 and even H2 and He gas. In nature, they are found in low-temperature and high-pressure conditions. Synthetic confined versions hold immense potential for energy storage and transportation, as well as for carbon capture and storage. Using previous studies, this report highlights static and magic angle spinning NMR hardware and strategies enabling the study of clathrate hydrate formation in situ, in bulk and in nano-confinement. The information obtained from such studies includes phase identification, dynamics, gas exchange processes, mechanistic studies and the molecular-level elucidation of the interactions between water, guest molecules and confining interfaces. Full article
(This article belongs to the Special Issue Advanced Magnetic Resonance Methods in Materials Chemistry Analysis)
Show Figures

Figure 1

11 pages, 2166 KiB  
Article
Peculiarities of Electric and Dielectric Behavior of Ni- or Fe-Doped ZnO Thin Films Deposited by Atomic Layer Deposition
by Albena Paskaleva, Dencho Spassov, Blagoy Blagoev and Penka Terziyska
Materials 2024, 17(14), 3546; https://doi.org/10.3390/ma17143546 - 18 Jul 2024
Viewed by 465
Abstract
The physical properties of ZnO can be tuned efficiently and controllably by doping with the proper element. Doping of ZnO thin films with 3D transition metals that have unpaired electron spins (e.g., Fe, Co, Ni, etc.) is of particular interest as it may [...] Read more.
The physical properties of ZnO can be tuned efficiently and controllably by doping with the proper element. Doping of ZnO thin films with 3D transition metals that have unpaired electron spins (e.g., Fe, Co, Ni, etc.) is of particular interest as it may enable magnetic phenomena in the layers. Atomic layer deposition (ALD) is the most advanced technique, which ensures high accuracy throughout the deposition process, producing uniform films with controllable composition and thickness, forming smooth and sharp interfaces. In this work, ALD was used to prepare Ni- or Fe-doped ZnO thin films. The dielectric and electrical properties of the films were studied by measuring the standard current–voltage (I–V), capacitance–voltage (C–V), and capacitance–frequency (C–f) characteristics at different temperatures. Spectral ellipsometry was used to assess the optical bandgap of the layers. We established that the dopant strongly affects the electric and dielectric behavior of the layers. The results provide evidence that different polarization mechanisms dominate the dielectric response of Ni- and Fe-doped films. Full article
(This article belongs to the Special Issue Atomic Layer Deposition: From Thin Films to Nanostructured Materials)
Show Figures

Figure 1

Back to TopTop