Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,199)

Search Parameters:
Keywords = structural engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4535 KiB  
Article
Study on Leakage Assessment and Stability Analysis of Water Level Changes in Tunnels near Reservoirs
by Yu Liu, Zhixuan Wang, Xiao Liu and Jianyong Han
Water 2024, 16(17), 2378; https://doi.org/10.3390/w16172378 (registering DOI) - 24 Aug 2024
Abstract
The geological and hydrological conditions of tunnels near reservoirs are complex, and the impact of water level changes on the stability and leakage assessment of the lining structure is not considered in the current leakage evaluation. In order to construct an evaluation model [...] Read more.
The geological and hydrological conditions of tunnels near reservoirs are complex, and the impact of water level changes on the stability and leakage assessment of the lining structure is not considered in the current leakage evaluation. In order to construct an evaluation model for leakage level of tunnels near reservoirs, the influences of water level changes on tunnel stability and changes in environmental conditions on the leakage of tunnels were researched. Based on the AHP and extensibility theory, a hierarchical system for leakage assessment was created, incorporating values from nine indexes representing three aspects: geological conditions, hydrological conditions, and tunnel engineering. Numerical simulation was used to analyze the influence of water level changes. It was found that the water level change index greatly influences the displacement and stress distribution inside the tunnel structure. The leakage evaluation model was applied to the Tiebeishan Tunnel, resulting in a rating of 3, indicating medium-level leakage. Attention should be paid to water leakage in tunnels with changes in reservoir water levels. The leakage evaluation model for tunnels near reservoirs can effectively assess leakage levels under various conditions, providing a reference for safety assessments of tunnel leakage near reservoirs. Full article
Show Figures

Figure 1

18 pages, 606 KiB  
Review
Polycaprolactone in Bone Tissue Engineering: A Comprehensive Review of Innovations in Scaffold Fabrication and Surface Modifications
by Hsin-Yu Liang, Wei-Keung Lee, Jui-Tsen Hsu, Jie-Yu Shih, Tien-Li Ma, Thi Thuy Tien Vo, Chiang-Wen Lee, Ming-Te Cheng and I-Ta Lee
J. Funct. Biomater. 2024, 15(9), 243; https://doi.org/10.3390/jfb15090243 (registering DOI) - 24 Aug 2024
Abstract
Bone tissue engineering has seen significant advancements with innovative scaffold fabrication techniques such as 3D printing. This review focuses on enhancing polycaprolactone (PCL) scaffold properties through structural modifications, including surface treatments, pore architecture adjustments, and the incorporation of biomaterials like hydroxyapatite (HA). These [...] Read more.
Bone tissue engineering has seen significant advancements with innovative scaffold fabrication techniques such as 3D printing. This review focuses on enhancing polycaprolactone (PCL) scaffold properties through structural modifications, including surface treatments, pore architecture adjustments, and the incorporation of biomaterials like hydroxyapatite (HA). These modifications aim to improve scaffold conformation, cellular behavior, and mechanical performance, with particular emphasis on the role of mesenchymal stem cells (MSCs) in bone regeneration. The review also explores the potential of integrating nanomaterials and graphene oxide (GO) to further enhance the mechanical and biological properties of PCL scaffolds. Future directions involve optimizing scaffold structures and compositions for improved bone tissue regeneration outcomes. Full article
Show Figures

Figure 1

24 pages, 890 KiB  
Article
D’Alembert–Lagrange Principle in Symmetry of Advanced Dynamics of Systems
by Iuliu Negrean, Adina Veronica Crisan, Sorin Vlase and Raluca Ioana Pascu
Symmetry 2024, 16(9), 1105; https://doi.org/10.3390/sym16091105 (registering DOI) - 24 Aug 2024
Abstract
The D’Alembert–Lagrange principle is a fundamental concept in analytical mechanics that simplifies the analysis of multi-degree-of-freedom mechanical systems, facilitates the dynamic response prediction of structures under various loads, and enhances the control algorithms in robotics. It is essential for solving complex problems in [...] Read more.
The D’Alembert–Lagrange principle is a fundamental concept in analytical mechanics that simplifies the analysis of multi-degree-of-freedom mechanical systems, facilitates the dynamic response prediction of structures under various loads, and enhances the control algorithms in robotics. It is essential for solving complex problems in engineering and robotics. This theoretical study aims to highlight the advantages of using acceleration energy to obtain the differential equations of motion and the generalized driving forces, compared to the classical approach based on the Lagrange equations of the second kind. It was considered a mechanical structure with two degrees of freedom (DOF), namely, a planar robot consisting of two homogeneous rods connected by rotational joints. Both the classical Lagrange approach and the acceleration energy model were applied. It was noticed that while both approaches yielded the same results, using acceleration energy requires only a single differentiation operation, whereas the classical approach involves three such operations to achieve the same results. Thus, applying the acceleration energy method involves fewer mathematical steps and simplifies the calculations. This demonstrates the efficiency and effectiveness of using acceleration energy in dynamic system analysis. By incorporating acceleration energy into the model, enhanced robustness and accuracy in predicting system behavior are achieved. Full article
(This article belongs to the Special Issue Symmetry in the Advanced Mechanics of Systems)
27 pages, 981 KiB  
Review
Biomimetic Scaffolds of Calcium-Based Materials for Bone Regeneration
by Ki Ha Min, Dong Hyun Kim, Koung Hee Kim, Joo-Hyung Seo and Seung Pil Pack
Biomimetics 2024, 9(9), 511; https://doi.org/10.3390/biomimetics9090511 (registering DOI) - 24 Aug 2024
Abstract
Calcium-based materials, such as calcium carbonate, calcium phosphate, and calcium silicate, have attracted significant attention in biomedical research, owing to their unique physicochemical properties and versatile applications. The distinctive characteristics of these materials, including their inherent biocompatibility and tunable structures, hold significant promise [...] Read more.
Calcium-based materials, such as calcium carbonate, calcium phosphate, and calcium silicate, have attracted significant attention in biomedical research, owing to their unique physicochemical properties and versatile applications. The distinctive characteristics of these materials, including their inherent biocompatibility and tunable structures, hold significant promise for applications in bone regeneration and tissue engineering. This review explores the biomedical applications of calcium-containing materials, particularly for bone regeneration. Their remarkable biocompatibility, tunable nanostructures, and multifaceted functionalities make them pivotal for advancing regenerative medicine, drug delivery system, and biomimetic scaffold applications. The evolving landscape of biomedical research continues to uncover new possibilities, positioning calcium-based materials as key contributors to the next generation of innovative biomaterial scaffolds. Full article
(This article belongs to the Special Issue Biomimetic Scaffolds for Hard Tissue Surgery: 2nd Edition)
16 pages, 5285 KiB  
Article
Bio-Inspired Curved-Elliptical Lattice Structures for Enhanced Mechanical Performance and Deformation Stability
by Zhengmiao Guo, Fan Yang, Lingbo Li and Jiacheng Wu
Materials 2024, 17(17), 4191; https://doi.org/10.3390/ma17174191 (registering DOI) - 24 Aug 2024
Abstract
Lattice structures, characterized by their lightweight nature, high specific mechanical properties, and high design flexibility, have found widespread applications in fields such as aerospace and automotive engineering. However, the lightweight design of lattice structures often presents a trade-off between strength and stiffness. To [...] Read more.
Lattice structures, characterized by their lightweight nature, high specific mechanical properties, and high design flexibility, have found widespread applications in fields such as aerospace and automotive engineering. However, the lightweight design of lattice structures often presents a trade-off between strength and stiffness. To tackle this issue, a bio-inspired curved-elliptical (BCE) lattice is proposed to enhance the mechanical performance and deformation stability of three-dimensional lattice structures. BCE lattice specimens with different parameters were fabricated using selective laser melting (SLM) technology, followed by quasi-static compression tests. Finite element (FE) numerical simulations were also carried out for validation. The results demonstrate that the proposed BCE lattice structures exhibit stronger mechanical performance and more stable deformation modes that can be adjusted through parameter tuning. Specifically, by adjusting the design parameters, the BCE lattice structure can exhibit a bending-dominated delocalized deformation mode, avoiding catastrophic collapse during deformation. The specific energy absorption (SEA) can reach 24.6 J/g at a relative density of only 8%, with enhancements of 48.5% and 297.6% compared with the traditional energy-absorbing lattices Octet and body-center cubic (BCC), respectively. Moreover, the crushing force efficiency (CFE) of the BCE lattice structure surpasses those of Octet and BCC by 34.9% and 15.8%, respectively. Through a parametric study of the influence of the number of peaks N and the curve amplitude A on the compression performance of the BCE lattice structure, the compression deformation mechanism is further analyzed. The results indicate that the curve amplitude A and the number of peaks N have significant impacts on the deformation mode of the BCE lattice. By adjusting the parameters N and A, a structure with a combination of high energy absorption, high stiffness, and strong fracture resistance can be obtained, integrating the advantages of tensile-dominated and bending-dominated lattice structures. Full article
12 pages, 4796 KiB  
Article
Numerical Investigation of the Influence of Foundation Pit Excavation on the Deformation of Underlying Tunnels Based on a Multi-Factor Orthogonal Test
by Qingshan Wang, Minmin Jiang, Dakuo Feng, Hailu Lu, Mengcheng Yao, Anlun Yang, Meng Cao and Zhongyang Ma
Buildings 2024, 14(9), 2618; https://doi.org/10.3390/buildings14092618 (registering DOI) - 24 Aug 2024
Abstract
The excavation of pits will induce the vertical displacement of tunnels and lead to engineering problems. The shape as well as size of a pit, and the complex spatial position relationship between the pit and tunnel will induce different deformation responses of tunnel [...] Read more.
The excavation of pits will induce the vertical displacement of tunnels and lead to engineering problems. The shape as well as size of a pit, and the complex spatial position relationship between the pit and tunnel will induce different deformation responses of tunnel structures; however, the degree to which each factor influences tunnel structure deformation is still unclear. This paper studied the impact of excavation on the deformation of tunnels via a combination of numerical simulation and orthogonal tests. The deformation of tunnels induced by excavation was studied using a numerical method, after which the sensitivity of influencing factors to tunnel deformation was studied by means of range and variance analyses through a four-factor and three-level orthogonal test. The results show that, for a foundation pit with a long side perpendicular to the tunnel longitude, the excavation has the least influence on tunnel deformation. Tunnel deformation increased with an increase in the excavation depth and decreased with an increase in tunnel–pit vertical and horizontal distance. As the plane shape of the foundation pit is 20 m × 45 m, the depth of excavation is 4 m, the pit tunnel vertical distance is 13 m, and the pit tunnel horizontal distance is 28 m, the tunnel has the least deformation. Based on the results of this study, the position relationship between the pit and the tunnel can be optimized in terms of design and construction, and the aim of controlling tunnel deformation can be achieved. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 22954 KiB  
Article
Localized Structural and Electronic Perturbations Induced by Mono-Vacancy in MgH2: A Comprehensive First-Principles Investigation
by Lei Bao, Jun Shi and Qichi Le
Crystals 2024, 14(9), 750; https://doi.org/10.3390/cryst14090750 (registering DOI) - 24 Aug 2024
Abstract
In the pursuit of sustainable energy, magnesium hydride (MgH2) stands out as a promising candidate for hydrogen storage due to its high capacity. Nevertheless, its high thermodynamic stability necessitates elevated operating temperatures, thereby hindering practical applications. To mitigate this limitation, our [...] Read more.
In the pursuit of sustainable energy, magnesium hydride (MgH2) stands out as a promising candidate for hydrogen storage due to its high capacity. Nevertheless, its high thermodynamic stability necessitates elevated operating temperatures, thereby hindering practical applications. To mitigate this limitation, our study employs a defect engineering approach by introducing a mono-vacancy to decrease its thermodynamic stability. Utilizing first-principles density functional theory calculations, we investigate the influence of a mono-vacancy on the structural and electronic properties of MgH2 crystal. Introducing the defect results in a 0.57% contraction of the a/b lattice parameters and a 1.03% expansion along the c-axis, causing lattice distortion. Electronically, the band gap narrows by 0.67 eV, indicating an increase in metallic character. We observe a distinct vacancy-affected zone, characterized by substantial alterations in electron density within a 26.505 Å3 volume and modifications to the potential energy distribution encompassing a 19.514 Å3 volume. The mono-vacancy enhances the polarity of the Mg-H bonds and maximally decreases the bond energy by 0.065 eV. A localized high-energy region of 0.354 eV emerges, functioning as an energy barrier to atomic diffusion. This energy barrier is encompassed by low-energy pathways, potentially facilitating H atom migration within the MgH2 crystal. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

24 pages, 8477 KiB  
Article
Biomedical Composites of Polycaprolactone/Hydroxyapatite for Bioplotting: Comprehensive Interpretation of the Reinforcement Course
by Markos Petousis, Nikolaos Michailidis, Apostolos Korlos, Vassilis Papadakis, Constantine David, Dimitrios Sagris, Nikolaos Mountakis, Apostolos Argyros, John Valsamos and Nectarios Vidakis
Polymers 2024, 16(17), 2400; https://doi.org/10.3390/polym16172400 (registering DOI) - 24 Aug 2024
Viewed by 77
Abstract
Robust materials in medical applications are sought after and researched, especially for 3D printing in bone tissue engineering. Poly[ε-caprolactone] (PCL) is a commonly used polymer for scaffolding and other medical uses. Its strength is a drawback compared to other polymers. Herein, PCL was [...] Read more.
Robust materials in medical applications are sought after and researched, especially for 3D printing in bone tissue engineering. Poly[ε-caprolactone] (PCL) is a commonly used polymer for scaffolding and other medical uses. Its strength is a drawback compared to other polymers. Herein, PCL was mixed with hydroxyapatite (HAp). Composites were developed at various concentrations (0.0–8.0 wt. %, 2.0 step), aiming to enhance the strength of PCL with a biocompatible additive in bioplotting. Initially, pellets were derived from the shredding of filaments extruded after mixing PCL and HAp at predetermined quantities for each composite. Specimens were then manufactured by bioplotting 3D printing. The samples were tested for their thermal and rheological properties and were also mechanically, morphologically, and chemically examined. The mechanical properties included tensile and flexural investigations, while morphological and chemical examinations were carried out employing scanning electron microscopy and energy dispersive spectroscopy, respectively. The structure of the manufactured specimens was analyzed using micro-computed tomography with regard to both their dimensional deviations and voids. PCL/HAp 6.0 wt. % was the composite that showed the most enhanced mechanical (14.6% strength improvement) and structural properties, proving the efficiency of HAp as a reinforcement filler in medical applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 1446 KiB  
Article
Efficient Hydroxyapatite Extraction from Salmon Bone Waste: An Improved Lab-Scaled Physico-Chemico-Biological Process
by Francisco Muñoz, Ziyad S. Haidar, Andreu Puigdollers, Ignacio Guerra, María Cristina Padilla, Nicole Ortega, Mercedes Balcells and María José García
Molecules 2024, 29(17), 4002; https://doi.org/10.3390/molecules29174002 (registering DOI) - 24 Aug 2024
Viewed by 91
Abstract
The demand for novel tissue grafting and regenerative wound care biomaterials is growing as traditional options often fall short in biocompatibility, functional integration with human tissue, associated cost(s), and sustainability. Salmon aquaculture generates significant volumes of waste, offering a sustainable opportunity for biomaterial [...] Read more.
The demand for novel tissue grafting and regenerative wound care biomaterials is growing as traditional options often fall short in biocompatibility, functional integration with human tissue, associated cost(s), and sustainability. Salmon aquaculture generates significant volumes of waste, offering a sustainable opportunity for biomaterial production, particularly in osteo-conduction/-induction, and de novo clinical/surgical bone regeneration. Henceforth, this study explores re-purposing salmon waste through a standardized pre-treatment process that minimizes the biological waste content, followed by a treatment stage to remove proteins, lipids, and other compounds, resulting in a mineral-rich substrate. Herein, we examined various methods—alkaline hydrolysis, calcination, and NaOH hydrolysis—to better identify and determine the most efficient and effective process for producing bio-functional nano-sized hydroxyapatite. Through comprehensive chemical, physical, and biological assessments, including Raman spectroscopy and X-ray diffraction, we also optimized the extraction process. Our modified and innovative alkaline hydrolysis–calcination method yielded salmon-derived hydroxyapatite with a highly crystalline structure, an optimal Ca/P ratio, and excellent biocompatibility. The attractive nano-scale cellular/tissular properties and favorable molecular characteristics, particularly well-suited for bone repair, are comparable to or even surpass those of synthetic, human, bovine, and porcine hydroxyapatite, positioning it as a promising candidate for use in tissue engineering, wound healing, and regenerative medicine indications. Full article
(This article belongs to the Topic Injectable Hydrogels for Cell and Drug Delivery)
Show Figures

Figure 1

33 pages, 2707 KiB  
Review
Transforming Medicine with Nanobiotechnology: Nanocarriers and Their Biomedical Applications
by Arun Karnwal, Vikas Sharma, Gaurav Kumar, Amar Yasser Jassim, Aradhana Dohroo and Iyyakkannu Sivanesan
Pharmaceutics 2024, 16(9), 1114; https://doi.org/10.3390/pharmaceutics16091114 - 23 Aug 2024
Viewed by 194
Abstract
Nanobiotechnology, at the intersection of nanotechnology and biology, represents a burgeoning field poised to revolutionize medicine through the use of advanced nanocarriers. These nanocarriers, endowed with distinctive physiobiological attributes, are instrumental in diverse therapeutic domains including drug delivery for microbial infections, cancer treatment, [...] Read more.
Nanobiotechnology, at the intersection of nanotechnology and biology, represents a burgeoning field poised to revolutionize medicine through the use of advanced nanocarriers. These nanocarriers, endowed with distinctive physiobiological attributes, are instrumental in diverse therapeutic domains including drug delivery for microbial infections, cancer treatment, tissue engineering, immunotherapy, and gene therapy. Despite the transformative potential, several challenges hinder their efficacy, such as limited drug capacity, suboptimal targeting, and poor solubility. This review delves into the latest advancements in nanocarrier technologies, examining their properties, associated limitations, and the innovative solutions developed to address these issues. It highlights promising nanocarrier systems like nanocomposites, micelles, hydrogels, microneedles, and artificial cells that employ advanced conjugation techniques, sustained and stimulus-responsive release mechanisms, and enhanced solubility. By exploring these novel structures and their contributions to overcoming existing barriers, the article emphasizes the vital role of interdisciplinary research in advancing nanobiotechnology. This field offers unparalleled opportunities for precise and effective therapeutic delivery, underscoring its potential to reshape healthcare through personalized, targeted treatments and improved drug performance. Full article
15 pages, 552 KiB  
Article
An Efficient Algorithm for Sorting and Duplicate Elimination by Using Logarithmic Prime Numbers
by Wei-Chang Yeh and Majid Forghani-elahabad
Big Data Cogn. Comput. 2024, 8(9), 96; https://doi.org/10.3390/bdcc8090096 (registering DOI) - 23 Aug 2024
Viewed by 143
Abstract
Data structures such as sets, lists, and arrays are fundamental in mathematics and computer science, playing a crucial role in numerous real-life applications. These structures represent a variety of entities, including solutions, conditions, and objectives. In scenarios involving large datasets, eliminating duplicate elements [...] Read more.
Data structures such as sets, lists, and arrays are fundamental in mathematics and computer science, playing a crucial role in numerous real-life applications. These structures represent a variety of entities, including solutions, conditions, and objectives. In scenarios involving large datasets, eliminating duplicate elements is essential to reduce complexity and enhance performance. This paper introduces a novel algorithm that uses logarithmic prime numbers to efficiently sort data structures and remove duplicates. The algorithm is mathematically rigorous, ensuring correctness and providing a thorough analysis of its time complexity. To demonstrate its practicality and effectiveness, we compare our method with existing algorithms, highlighting its superior speed and accuracy. An extensive experimental analysis across one thousand random test problems shows that our approach significantly outperforms two alternative techniques from the literature. By discussing the potential applications of the proposed algorithm in various domains, including computer science, engineering, and data management, we illustrate its adaptability through two practical examples in which our algorithm solves the problem more than 3×104 and 7×104 times faster than the existing algorithms in the literature. The results of these examples demonstrate that the superiority of our algorithm becomes increasingly pronounced with larger problem sizes. Full article
Show Figures

Figure 1

23 pages, 25451 KiB  
Article
Impacts and Countermeasures of Present-Day Stress State and Geological Conditions on Coal Reservoir Development in Shizhuang South Block, Qinshui Basin
by Xinyang Men, Shu Tao, Shida Chen, Heng Wu and Bin Zhang
Energies 2024, 17(17), 4221; https://doi.org/10.3390/en17174221 - 23 Aug 2024
Viewed by 192
Abstract
This study investigates the reservoir physical properties, present-day stress, hydraulic fracturing, and production capacity of No. 3 coal in the Shizhuang south block, Qinshui Basin. It analyzes the control of in situ stress on permeability and hydraulic fracturing, as well as the influence [...] Read more.
This study investigates the reservoir physical properties, present-day stress, hydraulic fracturing, and production capacity of No. 3 coal in the Shizhuang south block, Qinshui Basin. It analyzes the control of in situ stress on permeability and hydraulic fracturing, as well as the influence of geo-engineering parameters on coalbed methane (CBM) production capacity. Presently, the direction of maximum horizontal stress is northeast–southwest, with local variations. The stress magnitude increases with burial depth, while the stress gradient decreases. The stress field of strike-slip faults is dominant and vertically continuous. The stress field of normal faults is mostly found at depths greater than 800 m, whereas the stress field of reverse faults is typically found at depths shallower than 700 m. Permeability, ranging from 0.003 to 1.08 mD, is controlled by in situ stress and coal texture, both of which vary significantly with tectonics. Hydraulic fracturing design should consider variations in stress conditions, pre-existing fractures, depth, structural trends, and coal texture, rather than employing generic schemes. At greater depths, higher pumping rates and treatment pressures are required to reduce fracture complexity and enhance proppant filling efficiency. The Shizhuang south block is divided into five zones based on in situ stress characteristics. Zones III and IV exhibit favorable geological conditions, including high porosity, permeability, and gas content. These zones also benefit from shorter gas breakthrough times, relatively higher gas breakthrough pressures, lower daily water production, and a higher ratio of critical desorption pressure to initial reservoir pressure. Tailored fracturing fluid and proppant programs are proposed for different zones to optimize subsequent CBM development. Full article
Show Figures

Figure 1

21 pages, 6177 KiB  
Article
Statistical Synthesis and Analysis of Functionally Deterministic Signal Processing Techniques for Multi-Antenna Direction Finder Operation
by Semen Zhyla, Eduard Tserne, Yevhenii Volkov, Sergey Shevchuk, Oleg Gribsky, Dmytro Vlasenko, Volodymyr Kosharskyi and Danyil Kovalchuk
Computation 2024, 12(9), 170; https://doi.org/10.3390/computation12090170 - 23 Aug 2024
Viewed by 165
Abstract
This manuscript focuses on the process of measuring the angular positions of radio sources using radio engineering systems. This study aims to improve the accuracy of measuring the angular positions of sources that radiate functionally determined signals and to expand the range of [...] Read more.
This manuscript focuses on the process of measuring the angular positions of radio sources using radio engineering systems. This study aims to improve the accuracy of measuring the angular positions of sources that radiate functionally determined signals and to expand the range of the unambiguous operation angles for multi-antenna radio direction finders. To achieve this goal, the following tasks were addressed: (1) defining the models of signals, noise, and their statistical characteristics, (2) developing the theoretical foundations of statistical optimization methods for measuring the angular positions of radio sources in multi-antenna radio direction finders, (3) optimizing the structures of radio direction finders with different configurations, (4) analyzing the accuracy and range of the unambiguous measurement angles in the developed methods, and (5) conducting experimental measurements to confirm the main results. The methods used are based on the statistical theory of optimization for remote sensing and radar systems. For the specified type of signals, given by functionally deterministic models, a likelihood function was constructed, and its maxima were determined for different multi-antenna direction finder configurations. The results of statistical synthesis were verified through simulation modeling and experiments. The primary approach to improving measurement accuracy and expanding the range of unambiguous angles involves combining antennas with different spatial characteristics and optimally integrating classical radio direction-finding methods. The following results were obtained: (1) theoretical studies and simulation modeling confirmed the existence of a contradiction between high resolution and the width of the range of the unambiguous measurements in two-antenna radio direction finders, (2) an improved signal processing method was developed for a four-antenna radio direction finder with a pair of high-gain and a pair of low-gain antennas, and (3) to achieve maximum direction-finding accuracy within the unambiguous measurement range, a new signal processing method was synthesized for a six-element radio receiver, combining processing in two amplitude direction finders and one phase direction finder. This work provides a foundation for further theoretical studies, highlights the specifics of combining engineering measurements in direction-finding systems, and offers examples of rapid verification of new methods through computer modeling and experimental measurements. Full article
Show Figures

Figure 1

18 pages, 6398 KiB  
Article
Application of an Improved Method Combining Machine Learning–Principal Component Analysis for the Fragility Analysis of Cross-Fault Hydraulic Tunnels
by Yan Xu, Benbo Sun, Mingjiang Deng, Jia Xu and Pengxiao Wang
Buildings 2024, 14(9), 2608; https://doi.org/10.3390/buildings14092608 - 23 Aug 2024
Viewed by 172
Abstract
Machine learning (ML) approaches, widely used in civil engineering, have the potential to reduce computing costs and enhance predictive capabilities. However, many ML methods have yet to be applied to develop models that accurately analyze the nonlinear dynamic response of cross-fault hydraulic tunnels [...] Read more.
Machine learning (ML) approaches, widely used in civil engineering, have the potential to reduce computing costs and enhance predictive capabilities. However, many ML methods have yet to be applied to develop models that accurately analyze the nonlinear dynamic response of cross-fault hydraulic tunnels (CFHTs). To predict CFHT models and fragility curves effectively, we identify the most effective ML techniques and improve prediction capacity and accuracy by initially creating an integrated multivariate earthquake intensity measure (IM) from nine univariate earthquake IMs using principal component analysis. Structural reactions are then performed using incremental dynamic analysis by a multimedium-coupled interaction system. Four techniques are used to test ML–principal component analysis (PCA) feasibility. Meanwhile, mathematical statistical parameters are compared to standard probabilistic seismic demand models of expected and computed values using ML-PCA. Eventually, multiple stripe analysis–maximum likelihood estimation (MSA-MLE) is applied to assess the seismic performance of CFHTs. This study highlights that the Gaussian process regression and integrated IM can improve reliable probability and reduce uncertainties in evaluating the structural response. Thorough numerical analysis, using the suggested methodology, one can efficiently assess the seismic fragilities of the tunnel by the predicted model. ML-PCA techniques can be viewed as an alternate strategy for seismic design and CFHT performance enhancement in real-world engineering. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 2618 KiB  
Article
Experimental Study on Infiltration of Seawater Bentonite Slurry
by Hongzhen Dong, Deming Wang, Zhipeng Li, Qingsong Zhang, Yirui Li, Jianguo Zhang, Lianzhen Zhang and Luchen Zhang
Buildings 2024, 14(9), 2609; https://doi.org/10.3390/buildings14092609 - 23 Aug 2024
Viewed by 129
Abstract
A bentonite slurry mixed with seawater is prone to sedimentation, which will reduce the quality of the filter cake and lower the stability of the excavation surface in undersea tunnels. It is necessary to study the performance and influencing factors of the bentonite [...] Read more.
A bentonite slurry mixed with seawater is prone to sedimentation, which will reduce the quality of the filter cake and lower the stability of the excavation surface in undersea tunnels. It is necessary to study the performance and influencing factors of the bentonite slurry mixed with seawater. This article simulates the process of undersea slurry shield tunnel construction, where the pressurized slurry penetrates into the sand layer and forms a filter cake when the shield stops pressurizing. We investigated the effects of bentonite, additives (CMC), fine sand, pressure, and formation permeability on the performance of the seawater slurry and filter cake. The sedimentation of mud caused by seawater interfered with the experiment, which manifested as the increase in bentonite, and delayed the formation of the filter cake. Fine sand with a particle size close to the average value of the formation can improve the speed and quality of filter cake formation. By conducting a sensitivity analysis on experimental data, the degree of influence of various factors on the formation rate, thickness, and porosity of the filter cake was determined. Fine sand and bentonite are the factors that have the greatest impact on the formation rate, thickness, and porosity of the filter cake. Full article
(This article belongs to the Special Issue Construction in Urban Underground Space)
Back to TopTop