Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = swing arc narrow gap welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6477 KiB  
Article
Passive Vision Detection of Torch Pose in Swing Arc Narrow Gap Welding
by Na Su, Haojin Jia, Liyu Chen, Jiayou Wang, Jie Wang and Youmin Song
Sensors 2024, 24(15), 4996; https://doi.org/10.3390/s24154996 - 2 Aug 2024
Viewed by 628
Abstract
To enhance the synchronous detection of the horizontal and vertical positions of the torch in swing arc narrow gap welding, a torch pose detection (TPD) method is proposed. This approach utilizes passive visual sensing to capture images of the arc on the groove [...] Read more.
To enhance the synchronous detection of the horizontal and vertical positions of the torch in swing arc narrow gap welding, a torch pose detection (TPD) method is proposed. This approach utilizes passive visual sensing to capture images of the arc on the groove sidewall, using advanced image processing methods to extract and fit the arc contour. The coordinates of the arc contour center point and the highest point are determined through the arc contour fitting line. The torch center position is calculated from the average horizontal coordinates of the arc contour centers in adjacent welding images, while the height position is determined from the vertical coordinate of the arc’s highest point. Experimental validation in both variable and constant groove welding conditions demonstrated the TPD method’s accuracy within 0.32 mm for detecting the torch center position. This method eliminates the need to construct the wire centerline, which was a requirement in previous approaches, thereby reducing the impact of wire straightness on detection accuracy. The proposed TPD method successfully achieves simultaneous detection of the torch center and height positions, laying the foundation for intelligent detection and adaptive control in swing arc narrow gap welding. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 8212 KiB  
Article
The Different Welding Layers and Heat Source Energy on Residual Stresses in Swing Arc Narrow Gap MAG Welding
by Yuan Fang, Chunwei Ma, Guangkai Zhang, Yuli Qin and Wentao Cao
Materials 2023, 16(11), 4067; https://doi.org/10.3390/ma16114067 - 30 May 2023
Cited by 1 | Viewed by 1308
Abstract
In this paper, in order to reduce the time cost of prediction experiments in industry, a new narrow gap oscillation calculation method is developed in ABAQUS thermomechanical coupling analysis to study the distribution trend of residual weld stresses in comparison with conventional multi-layer [...] Read more.
In this paper, in order to reduce the time cost of prediction experiments in industry, a new narrow gap oscillation calculation method is developed in ABAQUS thermomechanical coupling analysis to study the distribution trend of residual weld stresses in comparison with conventional multi-layer welding processes. The blind hole detection technique and thermocouple measurement method verify the reliability of the prediction experiment. The results show that the experimental and simulation results have a high degree of agreement. In the prediction experiments, the calculation time of the high-energy single-layer welding experiments is 1/4 of the traditional multi-layer welding. Two welding processes of longitudinal residual stress and transverse residual stress distribution trends are the same. The high-energy single-layer welding experiment stress distribution range and transverse residual stress peak are smaller, but the longitudinal residual stress peak is slightly higher, which can be effectively reduced by increasing the preheating temperature of the welded parts. This implies that in the specific case of increasing the initial temperature of the workpiece, the use of high-energy single-layer welding instead of multi-layer welding to study the residual stress distribution trend not only optimizes the weld quality but also reduces the time cost to a large extent. Full article
Show Figures

Figure 1

14 pages, 5738 KiB  
Article
Overlapping Features and Microstructures of Coarse Grain Heat-Affected Zones in Swing Arc Narrow Gap GMA Welded EH40 Grade Steels
by Zhida Ni, Fengya Hu, Bolun Dong, Xiaoyu Cai and Sanbao Lin
Crystals 2023, 13(1), 33; https://doi.org/10.3390/cryst13010033 - 25 Dec 2022
Cited by 1 | Viewed by 1449
Abstract
Swing arc narrow gap GMA welding experiments were carried out with a Box–Behnken response surface design. Weld metal and heat-affected sizes were measured from the joints obtained, and an ANOVA was performed to obtain well-fitting models for definition of the heat-affected length. Overlapping [...] Read more.
Swing arc narrow gap GMA welding experiments were carried out with a Box–Behnken response surface design. Weld metal and heat-affected sizes were measured from the joints obtained, and an ANOVA was performed to obtain well-fitting models for definition of the heat-affected length. Overlapping patterns and microstructures were analyzed and observed in zones within the heat-affected length through the thickness direction. In addition, thermal processes in typical zones of HAZs were calculated by FEM and analyzed to explain the patterns in the typical coarse grain heat-affected zones (CG-HAZs) with thermal simulated microstructures attached. It was realized that a single pass could only be confused with an austenitized process by two passes. The coarse grain heat-affected zone of a single pass could be divided into an unaltered coarse grain heat-affected zone (UACG-HAZ), a supercritically reheated coarse grain heat-affected zone (SCRCG-HAZ) and an intercritically reheated heat-affected zone (IRCG-HAZ). It is likely that there would be an intercritically reheated UACG-HAZ upon the UACG-HAZ. The microstructures in the CG-HAZs and the UACG-HAZ were mainly lath bainite and a little acicular ferrite; the microstructures in the SCRCG-HAZ were short lath bainite, granular bainite and acicular ferrite and the microstructures in the IRCG-HAZ were massive textures and secondary austenite decomposition products. The cooling times in the typical bainite transformation procedures were similar to one another in a secondary austenitized process and significantly longer than those in a single austenitized thermal cycle, which caused similar patterns in reheated CG-HAZs and an increase in acicular ferrite compared to CG-HAZs. The prior austenite grain sizes caused differences among the reheated CG-HAZs. Full article
(This article belongs to the Special Issue Physical Mechanism of Welding of Metallic Materials)
Show Figures

Figure 1

21 pages, 4489 KiB  
Article
Infrared Visual Sensing Detection of Groove Width for Swing Arc Narrow Gap Welding
by Na Su, Jiayou Wang, Guoxiang Xu, Jie Zhu and Yuqing Jiang
Sensors 2022, 22(7), 2555; https://doi.org/10.3390/s22072555 - 26 Mar 2022
Cited by 8 | Viewed by 2199
Abstract
To solve the current problem of poor weld formation due to groove width variation in swing arc narrow gap welding, an infrared passive visual sensing detection approach was developed in this work to measure groove width under intense welding interferences. This approach, called [...] Read more.
To solve the current problem of poor weld formation due to groove width variation in swing arc narrow gap welding, an infrared passive visual sensing detection approach was developed in this work to measure groove width under intense welding interferences. This approach, called global pattern recognition, includes self-adaptive positioning of the ROI window, equal division thresholding and in situ dynamic clustering algorithms. Accordingly, the self-adaptive positioning method filters several of the nearest values of the arc’s highest point of the vertical coordinate and groove’s same-side edge position to determine the origin coordinates of the ROI window; the equal division thresholding algorithm then divides and processes the ROI window image to extract the groove edge and forms a raw data distribution of groove width in the data window. The in situ dynamic clustering algorithm dynamically classifies the preprocessed data in situ and finally detects the value of the groove width from the remaining true data. Experimental results show that the equal division thresholding algorithm can effectively reduce the influences of arc light and welding fume on the extraction of the groove edge. The in situ dynamic clustering algorithm can avoid disturbances from simulated welding spatters with diameters less than 2.19 mm, thus realizing the high-precision detection of the actual groove width and demonstrating stronger environmental adaptability of the proposed global pattern recognition approach. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop