Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,240)

Search Parameters:
Keywords = testis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7702 KiB  
Article
Lactiplantibacillus plantarum 1008 Enhances Testicular Function and Spermatogenesis via the Modulation of Gut Microbiota in Male Mice with High-Fat-Diet-Induced Obesity
by Chin-Yu Liu, Yi-Wen Chen, Tsung-Yu Tsai, Te-Hua Liu, Ting-Chia Chang and Chih-Wei Tsao
Biology 2024, 13(11), 890; https://doi.org/10.3390/biology13110890 - 31 Oct 2024
Viewed by 352
Abstract
Our study was designed to investigate the Lactiplantibacillus plantarum 1008 (LP1008) on testicular antioxidant capacity, spermatogenesis, apoptosis, autophagy, and metabolic function in male mice with high-fat-diet-induced obesity. A total of thirty-six male C57BL/6 mice were fed a normal diet (denoted as the NC [...] Read more.
Our study was designed to investigate the Lactiplantibacillus plantarum 1008 (LP1008) on testicular antioxidant capacity, spermatogenesis, apoptosis, autophagy, and metabolic function in male mice with high-fat-diet-induced obesity. A total of thirty-six male C57BL/6 mice were fed a normal diet (denoted as the NC group) or a high-fat control diet (denoted as the HFC group) for 16 weeks, then half of the HFC group was randomly chosen and subsequently fed with LP1008 for the final 8 weeks (high-fat diet + LP1008; denoted as the HFP group). The HFP group expressed improved blood cholesterol, insulin resistance, hepatic function, and lipopolysaccharide (LPS) levels compared to the HFC group. Meanwhile, the HFC group displayed decreased testicular testosterone levels, sperm quality, and 17β-HSD protein expression, which were rescued after LP1008 treatment. Moreover, the HFC group had lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activities. After LP1008 treatment, enhanced antioxidative activities and decreased lipid peroxidation were observed. The HFC group also exhibited aggravated apoptosis, inflammation, and autophagy proteins in the testis, which were ameliorated by LP1008 supplementation. Furthermore, the gut microbiota analysis results revealed that the Firmicutes/Bacteroidetes ratio was significantly elevated in the HFC and HFP groups compared to the NC group and that LP1008 treatment diminished Ruminococcaceae and enhanced Bifidobacteriaceae diversity. In summary, LP1008 treatment strengthened antioxidative enzyme levels and regulated microbiota-ameliorated HFC-induced oxidative stress, apoptosis, inflammation, and autophagy, and thus improved testicular function and semen quality. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
Show Figures

Figure 1

22 pages, 8105 KiB  
Article
Twenty-Week Dietary Supplementation with Beeswax Alcohol (BWA; Raydel®) Ameliorates High-Cholesterol-Induced Long-Term Dyslipidemia and Organ Damage in Hyperlipidemic Zebrafish in a Dose-Dependent Manner: A Comparative Analysis Between BWA and Coenzyme Q10
by Kyung-Hyun Cho, Ashutosh Bahuguna, Yunki Lee, Sang Hyuk Lee and Ji-Eun Kim
Pharmaceuticals 2024, 17(11), 1434; https://doi.org/10.3390/ph17111434 - 26 Oct 2024
Viewed by 659
Abstract
Background/Objectives: Beeswax alcohol (BWA; Raydel®) is a blend of six long-chain aliphatic alcohols extracted from honeybee wax and is well known for its diverse functionality and health benefits. Herein, the efficacy of a BWA dietary intervention for 20 weeks was assessed [...] Read more.
Background/Objectives: Beeswax alcohol (BWA; Raydel®) is a blend of six long-chain aliphatic alcohols extracted from honeybee wax and is well known for its diverse functionality and health benefits. Herein, the efficacy of a BWA dietary intervention for 20 weeks was assessed to ameliorate high-cholesterol diet (HCD)-induced dyslipidemia and adverse effects on the vital organs of adult zebrafish. Methods: Adult zebrafish were fed different high-cholesterol diets (HCDs; final concentration of 4%, w/w) supplemented with BWA (final concentrations of 0.1%, 0.5% and 1.0%, w/w) or CoQ10 (final concentration of 1.0%). Following 20 weeks of supplementation, blood and different organs (liver, kidney, testes and ovaries) were collected, and biochemical, histological and immunohistochemical analyses were performed. Results: The results demonstrate a dose-dependent effect of BWA of mitigating HCD-induced mortality in zebrafish over the 20-week supplementation period, which was noticeably better than the effect exerted by coenzyme Q10 (CoQ10). Consistently, a dose-dependent effect of BWA consumption of curtailing HCD-induced total cholesterol (TC) and triglyceride (TG) levels and increasing high-density-lipoprotein cholesterol (HDL-C) levels was noticed. Compared with CoQ10 (final concentration of 1.0%, w/w), BWA (final concentration of 1.0%, w/w) displayed a significantly better effect of mitigating HCD-induced dyslipidemia, as evidenced by 1.2-fold (p < 0.05) and 2.0-fold (p < 0.05) lower TC and TG levels and 2.4-fold (p < 0.01) higher HDL-C levels. The histological analysis revealed substantial prevention of fatty liver changes, reactive oxygen species (ROS) generation, cellular senescence and interleukin (IL)-6 production in the hepatic tissue of BWA zebrafish, which was significantly better than the effect exerted by CoQ10. Consistently, compared with CoQ10, significant 25% (p < 0.05) and 35% (p < 0.01) reductions in the HCD-induced elevated levels of the hepatic function biomarkers aspartate aminotransferase and alanine aminotransferase was observed in the BWA group. Likewise, BWA consumption efficiently ameliorated HCD-induced kidney, ovary and testis damage by inhibiting ROS generation, cellular senescence and lipid accumulation. Conclusion: Supplementation with BWA demonstrated higher therapeutic potential than that with CoQ10 to prevent dyslipidemia and organ damage associated with long-term consumption of HCDs. Full article
Show Figures

Graphical abstract

10 pages, 3472 KiB  
Article
ZIP8 Is Upregulated in the Testis of Zip14-/- Mice
by Varalakshmi Vungutur, Shannon M. McCabe and Ningning Zhao
Nutrients 2024, 16(21), 3575; https://doi.org/10.3390/nu16213575 - 22 Oct 2024
Viewed by 462
Abstract
Background/Objectives: Manganese is an essential nutrient involved in various biological processes, including reproductive health, yet the mechanisms regulating its homeostasis in the testis remain poorly understood. Methods and Results: In this study, we investigated the expression and regulation of key manganese transporters—ZIP8, ZIP14, [...] Read more.
Background/Objectives: Manganese is an essential nutrient involved in various biological processes, including reproductive health, yet the mechanisms regulating its homeostasis in the testis remain poorly understood. Methods and Results: In this study, we investigated the expression and regulation of key manganese transporters—ZIP8, ZIP14, and ZnT10—in mouse testes. Immunoblotting analyses revealed that ZIP8 is expressed in the testes, while ZIP14 and ZnT10 were undetectable. Using Zip14 knockout (Zip14-/-) mice, which exhibit systemic manganese overload, we discovered a significant increase in manganese levels in the testis, accompanied by an upregulation of ZIP8. Importantly, the levels of other essential metals, such as iron, zinc, and copper, remained unchanged. Conclusions: Our findings suggest that ZIP8 plays a critical role in manganese transport in the testis, and its increased expression may contribute to manganese accumulation in the absence of ZIP14. This study advances our understanding of manganese homeostasis in the testis and its potential impact on male reproductive health. Full article
(This article belongs to the Special Issue Trace Minerals in Human Health: Hot Topics and Information Update)
Show Figures

Figure 1

19 pages, 1531 KiB  
Review
The Utilization of PRAME in the Diagnosis, Prognosis, and Treatment of Melanoma
by Samuel L. Blount, Xiaochen Liu and Jeffrey D. McBride
Cells 2024, 13(20), 1740; https://doi.org/10.3390/cells13201740 - 20 Oct 2024
Viewed by 795
Abstract
Melanoma, a deadly form of skin cancer, has seen improved survival rates due to advances in diagnosis and treatment, yet the need for further improvement remains critical. Tumor-associated antigens, such as PRAME (Preferentially Expressed Antigen in Melanoma), offer promising avenues for enhanced diagnostic [...] Read more.
Melanoma, a deadly form of skin cancer, has seen improved survival rates due to advances in diagnosis and treatment, yet the need for further improvement remains critical. Tumor-associated antigens, such as PRAME (Preferentially Expressed Antigen in Melanoma), offer promising avenues for enhanced diagnostic precision, prognostic assessment, and targeted immunotherapy. PRAME, a cancer testis antigen, is selectively expressed in various cancers, including melanoma, and plays a key role in promoting tumorigenesis through inhibition of retinoic acid signaling, epithelial-to-mesenchymal transition, and immune evasion. This review explores the diagnostic utility of PRAME in distinguishing melanoma from benign nevi, its prognostic value in aggressive melanoma subtypes, and its potential as a therapeutic target in cancer vaccines and adoptive T-cell therapies. While PRAME-targeted therapies face challenges such as tumor heterogeneity and immune suppression, ongoing research aims to overcome these barriers, offering hope for more effective melanoma treatments. Full article
(This article belongs to the Special Issue Advances in Melanoma Immunotherapy)
Show Figures

Figure 1

22 pages, 8453 KiB  
Article
Efficacy of Quercetin and Quercetin Loaded Chitosan Nanoparticles Against Cisplatin-Induced Renal and Testicular Toxicity via Attenuation of Oxidative Stress, Inflammation, and Apoptosis
by Alaa F. Bakr, Riham A. El-Shiekh, Mohamed Y. Mahmoud, Heba M. A. Khalil, Mohammad H. Alyami, Hamad S. Alyami, Omneya Galal and Dina F. Mansour
Pharmaceuticals 2024, 17(10), 1384; https://doi.org/10.3390/ph17101384 - 17 Oct 2024
Viewed by 743
Abstract
Background/Objectives: Flavonoids, including quercetin, have attracted much attention due to their potential health-promoting effects. Methods: The current experiment aims to see whether quercetin (QUE) in nanoparticle form could mitigate testicular and renal toxicity caused by cisplatin (CIS) more effectively than normally formulated QUE. [...] Read more.
Background/Objectives: Flavonoids, including quercetin, have attracted much attention due to their potential health-promoting effects. Methods: The current experiment aims to see whether quercetin (QUE) in nanoparticle form could mitigate testicular and renal toxicity caused by cisplatin (CIS) more effectively than normally formulated QUE. Rats were randomly treated with CIS alone or in combination with QUE or QUE.NPs (Quercetin-loaded chitosan nanoparticles) for 4 weeks. QUE and QUE.NPs were given orally (10 mg/kg, three times a week), while CIS was given intraperitoneally (2 mg/kg, twice a week). Results: Compared to QUE- and CIS + QUE.NP-treated rats, CIS exposure induced anxiety and emotional stress as well as promoted oxidative stress in both testicular and renal tissues. Moreover, CIS reduced serum testosterone levels and diminished testicular IL-10, as well as CIS-induced renal failure, as indicated by hypokalemia, and increased levels of creatinine, urea, sodium, IL-18, and KIM-1. Further, severe histological changes were observed in the testis and kidney of CIS-intoxicated rats. Regarding immunohistochemical staining, CIS significantly upregulated Bax, downregulated Bcl-2, and moderately enhanced PCNA expression. Conclusions: Our findings suggest that both QUE and QUE.NPs modulated emotional disturbance and improved testicular and renal functions via modulation of oxidation, inflammation, and apoptosis. However, QUE.NPs performed better than QUE-treated rats. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 3720 KiB  
Article
Interleukin-1 Beta (IL1B) and Nerve Growth Factor (NGF): Key Players in Rabbit Reproductive Regulation
by Gabriella Guelfi, Cecilia Dall’Aglio, Antonello Bufalari, Francesca Mercati, Polina Anipchenko, Camilla Capaccia, Paolo Cocci, Francesco Alessandro Palermo, Gabriele Acuti, Alessandro Troisi, Daniele Tomassoni, Cristiano Boiti, Massimo Zerani and Margherita Maranesi
Int. J. Mol. Sci. 2024, 25(20), 10986; https://doi.org/10.3390/ijms252010986 - 12 Oct 2024
Viewed by 598
Abstract
Several seminal plasma components, besides NGF, are implicated as ovulation-inducing factors in mammals. This study investigated the IL1B and its receptor IL1R1 in the testis (T), male accessory glands, prostate (P) and seminal vesicles (SV), and uterus (U) of adult rabbits using immunohistochemistry [...] Read more.
Several seminal plasma components, besides NGF, are implicated as ovulation-inducing factors in mammals. This study investigated the IL1B and its receptor IL1R1 in the testis (T), male accessory glands, prostate (P) and seminal vesicles (SV), and uterus (U) of adult rabbits using immunohistochemistry (IHC) and quantitative reverse transcription PCR (RT-qPCR). We also assessed the presence of IL1B in seminal plasma through Western blotting (WB) and examined the interaction between IL1B and NGF in vitro by measuring their production with enzyme-linked immunosorbent assay (ELISA) in the presence of NGF and IL1B alone or with their respective receptor antagonists. IHC revealed IL1B system expression in all reproductive organs studied, with IL1B and IL1R1 localized to the germinative epithelium of the T and the epithelial cells of the accessory glands and U. IL1B gene transcript levels were significantly higher (p < 0.01) in the P and SV compared to the T, while IL1R1 levels were significantly higher (p < 0.001) in the P compared to the other tissues, while IL1R1 levels were three times higher (p < 0.001) in the P. WB confirmed the presence of IL1B in seminal plasma with a 30–35 kDa band. The in vitro study demonstrated that IL1B increased (p < 0.05) basal NGF production in the U, whereas NGF had no effect on IL1B production. These findings provide evidence of the expression of the IL1B/IL1R1 system in both male and female rabbit reproductive tracts and suggest that IL1B in seminal plasma may influence uterine endocrine activity. The results propose a potential role for IL1B in ovulation, in conjunction with NGF, supporting that ovulation may involve inflammatory-like processes. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 10825 KiB  
Article
Role of ACSBG1 in Brain Lipid Metabolism and X-Linked Adrenoleukodystrophy Pathogenesis: Insights from a Knockout Mouse Model
by Xiaoli Ye, Yuanyuan Li, Domingo González-Lamuño, Zhengtong Pei, Ann B. Moser, Kirby D. Smith and Paul A. Watkins
Cells 2024, 13(20), 1687; https://doi.org/10.3390/cells13201687 - 12 Oct 2024
Viewed by 631
Abstract
“Bubblegum” acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during mouse brain development, facilitating the activation of long-chain fatty acids (LCFA) and their incorporation into lipid species that are crucial for brain function. ACSBG1 converts LCFA into acyl-CoA derivatives, supporting vital [...] Read more.
“Bubblegum” acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during mouse brain development, facilitating the activation of long-chain fatty acids (LCFA) and their incorporation into lipid species that are crucial for brain function. ACSBG1 converts LCFA into acyl-CoA derivatives, supporting vital metabolic processes. Fruit fly mutants lacking ACSBG1 exhibited neurodegeneration and had elevated levels of very long-chain fatty acids (VLCFA), characteristics of human X-linked adrenoleukodystrophy (XALD). To explore ACSBG1’s function and potential as a therapeutic target in XALD, we created an ACSBG1 knockout (Acsbg1−/−) mouse and examined the effects on brain FA metabolism during development. Phenotypically, Acsbg1−/− mice resembled wild type (w.t.) mice. ACSBG1 expression was found mainly in tissue affected pathologically in XALD, namely the brain, adrenal gland and testis. ACSBG1 depletion did not significantly reduce the total ACS enzyme activity in these tissue types. In adult mouse brain, ACSBG1 expression was highest in the cerebellum; the low levels detected during the first week of life dramatically increased thereafter. Unexpectedly, lower, rather than higher, saturated VLCFA levels were found in cerebella from Acsbg1−/− vs. w.t. mice, especially after one week of age. Developmental changes in monounsaturated ω9 FA and polyunsaturated ω3 FA levels also differed between w.t. and Acsbg1−/− mice. ACSBG1 deficiency impacted the developmental expression of several cerebellar FA metabolism enzymes, including those required for the synthesis of ω3 polyunsaturated FA, precursors of bioactive signaling molecules like eicosanoids and docosanoids. These changes in membrane lipid FA composition likely affect membrane fluidity and may thus influence the body’s response to inflammation. We conclude that, despite compelling circumstantial evidence, it is unlikely that ACSBG1 directly contributes to the pathology of XALD, decreasing its potential as a therapeutic target. Instead, the effects of ACSBG1 knockout on processes regulated by eicosanoids and/or docosanoids should be further investigated. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

13 pages, 1119 KiB  
Review
Disparities in Testicular Cancer: A Review of the Literature
by Domenique Escobar and Siamak Daneshmand
Cancers 2024, 16(20), 3433; https://doi.org/10.3390/cancers16203433 - 10 Oct 2024
Viewed by 687
Abstract
Background: Testicular cancer is the most common malignancy diagnosed in adolescents and young adults, and evidence has emerged regarding disparities that affect different groups of patients. Methods: In this article, we conducted a thorough review of this area and summarized the [...] Read more.
Background: Testicular cancer is the most common malignancy diagnosed in adolescents and young adults, and evidence has emerged regarding disparities that affect different groups of patients. Methods: In this article, we conducted a thorough review of this area and summarized the existing literature. Results: Some of the pertinent findings from our review include poorer outcomes for various groups including the native Māori population of New Zealand, those who live in the United States–Mexico border region, those who live in Eastern Europe, those who are uninsured and those with poorer socioeconomic status, amongst others. In the United States specifically, there is significant evidence showing that racial/ethnic minorities, compared to white patients, tend to fare worse with later presentation at higher stages and worse survival rates. Hispanic patients in particular appear to have the potential for more aggressive tumor biology than other groups and are projected to have the highest incidence rates in the US by 2026. Conclusions: Overall, disparities exist in many aspects of testicular cancer and are striking in some instances, and further research is needed in this arena and in potential solutions. Full article
Show Figures

Figure 1

14 pages, 26431 KiB  
Article
Establishment and Characterization of Testis Organoids with Proliferation and Differentiation of Spermatogonial Stem Cells into Spermatocytes and Spermatids
by Dong Zhang, Wencong Jin, Yinghong Cui and Zuping He
Cells 2024, 13(19), 1642; https://doi.org/10.3390/cells13191642 - 2 Oct 2024
Viewed by 905
Abstract
Organoids play pivotal roles in uncovering the molecular mechanisms underlying organogenesis, intercellular communication, and high-throughput drug screening. Testicular organoids are essential for exploring the genetic and epigenetic regulation of spermatogenesis in vivo and the treatment of male infertility. However, the formation of testicular [...] Read more.
Organoids play pivotal roles in uncovering the molecular mechanisms underlying organogenesis, intercellular communication, and high-throughput drug screening. Testicular organoids are essential for exploring the genetic and epigenetic regulation of spermatogenesis in vivo and the treatment of male infertility. However, the formation of testicular organoids with full spermatogenesis has not yet been achieved. In this study, neonatal mouse testicular cells were isolated by two-step enzymatic digestion, and they were combined with Matrigel and transplanted subcutaneously into nude mice. Histological examination (H&E) staining and immunohistochemistry revealed that cell grafts assembled to form seminiferous tubules that contained spermatogonial stem cells (SSCs) and Sertoli cells, as illustrated by the co-expression of PLZF (a hallmark for SSCs) and SOX9 (a marker for Sertoli cells) as well as the co-expression of UCHL1 (a hallmark for SSCs) and SOX9, after 8 weeks of transplantation. At 10 weeks of transplantation, SSCs could proliferate and differentiate into spermatocytes as evidenced by the expression of PCNA, Ki67, c-Kit, SYCP3, γ-HA2X, and MLH1. Notably, testicular organoids were seen, and spermatids were observed within the lumen of testicular organoids after 16 weeks of transplantation, as shown by the presence of TNP1 and ACROSIN (hallmarks for spermatids). Collectively, these results implicate that we successfully established testicular organoids with spermatogenesis in vivo. This study thus provides an excellent platform for unveiling the mechanisms underlying mammalian spermatogenesis, and it might offer valuable male gametes for treating male infertility. Full article
(This article belongs to the Special Issue Advance in Spermatogenesis)
Show Figures

Figure 1

28 pages, 1582 KiB  
Review
Mechanisms of Germline Stem Cell Competition across Species
by Rachel A. Hodge and Erika A. Bach
Life 2024, 14(10), 1251; https://doi.org/10.3390/life14101251 - 1 Oct 2024
Viewed by 818
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become “winners” that outcompete cells of lower relative fitness (“losers”). We discuss the idea of super-competitors, mutant cells that expand at [...] Read more.
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become “winners” that outcompete cells of lower relative fitness (“losers”). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers. Full article
Show Figures

Figure 1

12 pages, 2597 KiB  
Article
Identification and Characterization of Germ Cell Genes Vasa and Nanos-2 in the Ovary and Testis of White Crappie (Pomoxis annularis) and the Ovary of Black Crappie (P. nigromaculatus)
by Sujan Bhattarai, Nilima N. Renukdas, Anita M. Kelly, Amit Kumar Sinha, Sanjay Joshi and Dayan A. Perera
Fishes 2024, 9(10), 394; https://doi.org/10.3390/fishes9100394 - 30 Sep 2024
Viewed by 582
Abstract
The vasa gene, encoding an ATP-dependent RNA helicase, and the nanos-2 gene, an RNA-binding protein, are essential for germ cell origination, migration, maintenance, and development in vertebrates and invertebrates. The expression levels of the vasa and nanos-2 genes have not yet been investigated [...] Read more.
The vasa gene, encoding an ATP-dependent RNA helicase, and the nanos-2 gene, an RNA-binding protein, are essential for germ cell origination, migration, maintenance, and development in vertebrates and invertebrates. The expression levels of the vasa and nanos-2 genes have not yet been investigated or reported in crappie species. These two genes were partially sequenced and characterized, and their expression patterns were analyzed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) according to age and sex. The vasa sequences of white crappie (WC) females and males showed significant similarity with the vasa homologs of largemouth bass (Micropterus salmoides; 93.1–93.98%) and smallmouth bass (M. dolomieu; 91.95–92.77%), indicating its conserved nature within the Family Centrarchidae. The vasa sequence of black crappie (BC) females showed significant similarity with the vasa homologs of white crappie (91.67%), largemouth bass (96.10%), smallmouth bass (96.10%), spotted scat (Scatophagus argus; 97.37%), mandarin fish (Siniperca chutasi; 96.15%), Japanese sea bass (Lateolabrax japonicus; 94.87%), lumpfish (Cyclopterus lumpus; 91.95%), southern bluefin tuna (Thunnus maccoyii; 94.74%), large yellow croaker (Larimichthys crocea; 92.21%), and Nile tilapia (Oreochromis niloticus; 92.21%). The nanos-2 sequences of WC females, WC males, and BC females showed significant similarity with the nanos-2 of largemouth bass (92.92–96.36%), smallmouth bass (92.92–96.36%), and mandarin fish (92.66–94.34%). The expression of vasa in BC females was significantly higher at age-2 than at age-1, while WC males and females presented no significant age-related differences. Neither species had a significant difference in nanos-2 gene expression with age. The expression levels of vasa and nanos-2 were significantly higher in WC males than females. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

13 pages, 2543 KiB  
Article
Comprehensive Annotation and Expression Profiling of C2H2 Zinc Finger Transcription Factors across Chicken Tissues
by Shuai Chen, Jiayao Jiang, Wenxiu Liang, Yuchen Tang, Renzhe Lyu, Yun Hu, Demin Cai, Xugang Luo and Mingan Sun
Int. J. Mol. Sci. 2024, 25(19), 10525; https://doi.org/10.3390/ijms251910525 - 30 Sep 2024
Viewed by 555
Abstract
As the most abundant class of transcription factors in eukaryotes, C2H2-type zinc finger proteins (C2H2-ZFPs) play critical roles in various biological processes. Despite being extensively studied in mammals, C2H2-ZFPs remain poorly characterized in birds. Recent accumulation of multi-omics data for chicken enables the [...] Read more.
As the most abundant class of transcription factors in eukaryotes, C2H2-type zinc finger proteins (C2H2-ZFPs) play critical roles in various biological processes. Despite being extensively studied in mammals, C2H2-ZFPs remain poorly characterized in birds. Recent accumulation of multi-omics data for chicken enables the genome-wide investigation of C2H2-ZFPs in birds. The purpose of this study is to reveal the genomic occurrence and evolutionary signature of chicken C2H2-ZFPs, and further depict their expression profiles across diverse chicken tissues. Here, we annotated 301 C2H2-ZFPs in chicken genome, which are associated with different effector domains, including KRAB, BTB, HOMEO, PHD, SCAN, and SET. Among them, most KRAB-ZFPs lack orthologues in mammals and tend to form clusters by duplication, supporting their fast evolution in chicken. We also annotated a unique and previously unidentified SCAN-ZFP, which is lineage-specific and highly expressed in ovary and testis. By integrating 101 RNA-seq datasets for 32 tissues, we found that most C2H2-ZFPs have tissue-specific expression. Particularly, 74 C2H2-ZFPs—including 27 KRAB-ZFPs—show blastoderm-enriched expression, indicating their association with early embryo development. Overall, this study performs comprehensive annotation and expression profiling of C2H2 ZFPs in diverse chicken tissues, which gives new insights into the evolution and potential function of C2H2-ZFPs in avian species. Full article
(This article belongs to the Special Issue Molecular Research in Avian Genetics)
Show Figures

Figure 1

30 pages, 3887 KiB  
Article
Fish Health Altered by Contaminants and Low Water Temperatures Compounded by Prolonged Regional Drought in the Lower Colorado River Basin, USA
by Steven L. Goodbred, Reynaldo Patiño, David A. Alvarez, Darren Johnson, Deena Hannoun, Kathy R. Echols and Jill A. Jenkins
Toxics 2024, 12(10), 708; https://doi.org/10.3390/toxics12100708 - 28 Sep 2024
Viewed by 780
Abstract
The goal of this study was to assess health of male Common Carp (carp, Cyprinus carpio) at four sites with a wide range in environmental organic contaminant (EOC) concentrations and water temperatures in Lake Mead National Recreation Area NV/AZ, US, and the [...] Read more.
The goal of this study was to assess health of male Common Carp (carp, Cyprinus carpio) at four sites with a wide range in environmental organic contaminant (EOC) concentrations and water temperatures in Lake Mead National Recreation Area NV/AZ, US, and the potential influence of regional drought. Histological and reproductive biomarkers were measured in 17–30 carp at four sites and 130 EOCs in water per site were analyzed using passive samplers in 2010. Wide ranges among sites were noted in total EOC concentrations (>10Xs) and water temperature/degree days (10Xs). In 2007/08, total polychlorinated biphenyls (tPCBs) in fish whole bodies from Willow Beach (WB) in the free-flowing Colorado River below Hoover Dam were clearly higher than at the other sites. This was most likely due to longer exposures in colder water (12–14 °C) and fish there having the longest lifespan (up to 54 years) for carp reported in the Colorado River Basin. Calculated estrogenicity in water exceeded long-term, environmentally safe criteria of 0.1–0.4 ng/L by one to three orders of magnitude at all sites except the reference site. Low ecological screening values for four contaminants of emerging concern (CEC) in water were exceeded for one CEC in the reference site, two in WB and Las Vegas Bay and three in the most contaminated site LVW. Fish health biomarkers in WB carp had 25% lower liver glycogen, 10Xs higher testicular pigmented cell aggregates and higher sperm abnormalities than the reference site. Sperm from LVW fish also had significantly higher fragmentation of DNA, lower motility and testis had lower percent of spermatozoa, all of which can impair reproduction. Projections from a 3D water quality model performed for WB showed that EOC concentrations due to prolonged regional drought and reduced water levels could increase as high as 135%. Water temperatures by late 21st century are predicted to rise between 0.7 and 2.1 °C that could increase eutrophication, algal blooms, spread disease and decrease dissolved oxygen over 5%. Full article
Show Figures

Figure 1

21 pages, 7182 KiB  
Article
Busulfan Chemotherapy Downregulates TAF7/TNF-α Signaling in Male Germ Cell Dysfunction
by Daoyuan Huang, Zhenbo Tu, Antoine E. Karnoub, Wenyi Wei and Abdol-Hossein Rezaeian
Biomedicines 2024, 12(10), 2220; https://doi.org/10.3390/biomedicines12102220 - 28 Sep 2024
Viewed by 983
Abstract
Background: Busulfan is an FDA-approved alkylating drug used in the chemotherapy of advanced acute myeloid leukemia. The precise mechanisms by which Busulfan kills spermatogonia stem cells (SSCs) are not yet completely understood. Methods: Using a murine model, we evaluated Busulfan-induced apoptosis [...] Read more.
Background: Busulfan is an FDA-approved alkylating drug used in the chemotherapy of advanced acute myeloid leukemia. The precise mechanisms by which Busulfan kills spermatogonia stem cells (SSCs) are not yet completely understood. Methods: Using a murine model, we evaluated Busulfan-induced apoptosis and DNA damage signaling between testis and ovary tissues. We executed RT-qPCR, analyzed single-nuclei RNA sequencing data and performed in situ hybridization for the localization of the gene expression in the tissues. Results: The results indicate that, in contrast to female germ cells, haploid male germ cells undergo significant apoptosis following Busulfan chemotherapy. Moreover, a gene enrichment analysis revealed that reactive oxygen species may activate the inflammatory response in part through the TNF-α/NF-κB signaling pathway. Interestingly, in the testis, the mRNA levels of TNF-α and TAF7 (TATA box-binding protein-associated factor 7) are downregulated, and testosterone levels suppressed. Mechanistically, the promoter of TNF-α has a conserved motif for binding TAF7, which is necessary for its transcriptional activation and may require further in-depth study. We next analyzed the tumorigenic function of TAF7 and revealed that it is highly overexpressed in several types of human cancers, particularly testicular germ cell tumors, and associated with poor patient survival. Therefore, we executed in situ hybridization and single-nuclei RNA sequencing, finding that less TAF7 mRNA is present in SSCs after chemotherapy. Conclusions: Thus, our data indicate a possible function of TAF7 in the regulation of SSCs and spermatogenesis following downregulation by Busulfan. These findings may account for the therapeutic effects of Busulfan and underlie its potential impact on cancer chemotherapy prognosis. Full article
(This article belongs to the Special Issue Molecular Regulation of Spermatozoa)
Show Figures

Figure 1

15 pages, 6890 KiB  
Article
c-Jun N-terminal Kinase Supports Autophagy in Testicular Ischemia but Triggers Apoptosis in Ischemia-Reperfusion Injury
by Sarah R. Alotaibi, Waleed M. Renno and May Al-Maghrebi
Int. J. Mol. Sci. 2024, 25(19), 10446; https://doi.org/10.3390/ijms251910446 - 27 Sep 2024
Viewed by 568
Abstract
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of [...] Read more.
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of oxidative-stress-induced c-Jun N-terminal Kinase (JNK) as a cytoprotective mechanism. Sixty male Sprague-Dawley rats were divided into five groups: sham, ischemia only, ischemia+SP600125 (a JNK inhibitor), tIRI only, and tIRI+SP600125. The tIRI rats underwent an ischemic injury for 1 h followed by 4 h of reperfusion, while ischemic rats were subjected to 1 h of ischemia only without reperfusion. Testicular-ischemia-induced Beclin 1 and LC3B expression was associated with decreased p62/SQSTM1 expression, increased ATP and alkaline phosphatase (AP) activity, and slightly impaired spermatogenesis. SP600125 treatment improved p62 expression and reduced the levels of Beclin 1 and LC3B but did not affect ATP or AP levels. The tIRI-induced apoptosis lowered the expression of the three ATG proteins and AP activity, activated caspase 3, and caused spermatogenic arrest. SP600125-inhibited JNK during tIRI restored sham levels to all investigated parameters. This study emphasizes the regulatory role of JNK in balancing autophagy and apoptosis during testicular oxidative injuries. Full article
Show Figures

Figure 1

Back to TopTop