Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,282)

Search Parameters:
Keywords = texture feature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1023 KiB  
Article
The Role of Fermentation and Drying on the Changes in Bioactive Properties, Seconder Metabolites, Fatty Acids and Sensory Properties of Green Jalapeño Peppers
by Isam A. Mohamed Ahmed, Fahad AlJuhaimi, Mehmet Musa Özcan, Nurhan Uslu and Noman Walayat
Processes 2024, 12(10), 2291; https://doi.org/10.3390/pr12102291 (registering DOI) - 19 Oct 2024
Abstract
In this study, the influence of fermentation and different drying techniques on the bioactive components, antioxidant activity, phenolic components, fatty acids, nutrients and sensory characteristics of fresh and processed jalapeño peppers was investigated. At the end of the fermentation, the pH, acidity and [...] Read more.
In this study, the influence of fermentation and different drying techniques on the bioactive components, antioxidant activity, phenolic components, fatty acids, nutrients and sensory characteristics of fresh and processed jalapeño peppers was investigated. At the end of the fermentation, the pH, acidity and salt values of the brine were determined as 3.38, 0.09% and 6.02 g/100 mL, respectively. The oil results of pepper samples were found between 2.0% (microwave and air) and 2.60% (oven). Total carotenoid and total phenolic amounts of fresh (control) and processed peppers (air, conventional, microwave and fermentation) were characterized to be between 3.38 (fermented) and 65.68 µg/g (air) to 45.81 (fermented) and 350.69 mg GAE/100 g (microwave), respectively. Total flavonoid quantities of fresh and processed pepper samples were defined to be between 14.17 (fresh) and 482.74 mg/100 g (microwave). 3,4-dihydroxybenzoic acid and catechin amounts in fresh and processed jalapeño peppers were defined to be between 0.43 (fermented) and 11.0 mg/100 g (microwave) to 1.36 (fermented) and 44.87 mg/100 g (microwave), respectively. The predominant fatty acids of pepper oils were palmitic, oleic and linoleic acid. The oleic acid amounts of fresh and processed jalapeño pepper oils were specified to be between 9.52% (air drying) and 29.77% (fermented), while the linoleic acid values of pepper oils vary between 10.84% (fermented) and 68.38% (air drying). The major elements of fresh and processed peppers were K, P, S, Ca, Mg, Fe and Zn in decreasing order. Protein amounts in fresh and processed jalapeño peppers were characterized to be between 8.59 (fermented) and 12.22% (oven). As a result of panelist evaluations, the most appreciated features (4.83 score) were the flavor, color and texture feature. Full article
Show Figures

Figure 1

12 pages, 1532 KiB  
Article
Predicting Invasiveness in Lepidic Pattern Adenocarcinoma of Lung: Analysis of Visual Semantic and Radiomic Features
by Sean F. Johnson, Seyed Mohammad Hossein Tabatabaei, Grace Hyun J. Kim, Bianca E. Villegas, Matthew Brown, Scott Genshaft, Robert D. Suh, Igor Barjaktarevic, William Dean Wallace and Fereidoun Abtin
Med. Sci. 2024, 12(4), 57; https://doi.org/10.3390/medsci12040057 (registering DOI) - 18 Oct 2024
Viewed by 220
Abstract
Objectives: To differentiate invasive lepidic predominant adenocarcinoma (iLPA) from adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) of lung utilizing visual semantic and computer-aided detection (CAD)-based texture features on subjects initially diagnosed as AIS or MIA with CT-guided biopsy. Materials and Methods: From 2011 [...] Read more.
Objectives: To differentiate invasive lepidic predominant adenocarcinoma (iLPA) from adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) of lung utilizing visual semantic and computer-aided detection (CAD)-based texture features on subjects initially diagnosed as AIS or MIA with CT-guided biopsy. Materials and Methods: From 2011 to 2017, all patients with CT-guided biopsy results of AIS or MIA who subsequently underwent resection were identified. CT scan before the biopsy was used to assess visual semantic and CAD texture features, totaling 23 semantic and 95 CAD-based quantitative texture variables. The least absolute shrinkage and selection operator (LASSO) method or forward selection was used to select the most predictive feature and combination of semantic and texture features for detection of invasive lung adenocarcinoma. Results: Among the 33 core needle-biopsied patients with AIS/MIA pathology, 24 (72.7%) had invasive LPA and 9 (27.3%) had AIS/MIA on resection. On CT, visual semantic features included 21 (63.6%) part-solid, 5 (15.2%) pure ground glass, and 7 (21.2%) solid nodules. LASSO selected seven variables for the model, but all were not statistically significant. “Volume” was found to be statistically significant when assessing the correlation between independent variables using the backward selection technique. The LASSO selected “tumor_Perc95”, “nodule surround”, “small cyst-like spaces”, and “volume” when assessing the correlation between independent variables. Conclusions: Lung biopsy results showing noninvasive LPA underestimate invasiveness. Although statistically non-significant, some semantic features showed potential for predicting invasiveness, with septal stretching absent in all noninvasive cases, and solid consistency present in a significant portion of invasive cases. Full article
(This article belongs to the Section Cancer and Cancer-Related Research)
18 pages, 2901 KiB  
Article
Comparative Study of Back-Propagation Artificial Neural Network Models for Predicting Salinity Parameters Based on Spectroscopy Under Different Surface Conditions of Soda Saline–Alkali Soils
by Yating Jing, Xuelin You, Mingxuan Lu, Zhuopeng Zhang, Xiaozhen Liu and Jianhua Ren
Agronomy 2024, 14(10), 2407; https://doi.org/10.3390/agronomy14102407 - 17 Oct 2024
Viewed by 312
Abstract
Soil salinization typically exerts a highly negative influence on soil productivity, crop yields, and ecosystem balance. As a typical region afflicted by soil salinization, the soda saline–alkali soils in the Songnen Plain of China demonstrate a clear cracking phenomena. Nevertheless, the overall spectral [...] Read more.
Soil salinization typically exerts a highly negative influence on soil productivity, crop yields, and ecosystem balance. As a typical region afflicted by soil salinization, the soda saline–alkali soils in the Songnen Plain of China demonstrate a clear cracking phenomena. Nevertheless, the overall spectral response to the cracked soil surface has scarcely been studied. This study intends to study the impact of salt parameters on the soil cracking process and enhance the spectral measurement method used for cracked salt-affected soil. To accomplish this goal, a controlled desiccation cracking experiment was carried out on saline soil samples. A gray-level co-occurrence matrix (GLCM) was calculated for the contrast (CON) texture feature to measure the extent of cracking in the dried soil samples. Additionally, spectroscopy measurements were conducted under different surface conditions. Principal component analysis (PCA) was subsequently performed to downscale the spectral data for band integration. Subsequently, the prediction accuracy of back-propagation artificial neural network (BP-ANN) models developed from the principal components of spectral reflectance was compared for different salt parameters. The results reveal that salt content is the dominant factor determining the cracking process in salt-affected soils, and that cracked soil samples had the highest model prediction accuracy for different salt parameters rather than uncracked blocks and 2 mm comparison soil samples. Furthermore, BP-ANN prediction models combining spectral response and CON were further developed, which can significantly enhance the prediction accuracy of different salt parameters with R2 values of 0.93, 0.91, and 0.74 and a ratio of prediction deviation (RPD) of 3.68, 3.26, and 1.72 for soil salinity, electrical conductivity (EC), and pH, respectively. These findings provide valuable insights into the cracking mechanism in salt-affected soils, thereby advancing the field of hyperspectral remote sensing for monitoring soil salinization. Furthermore, this study also aids in enhancing the design of spectral measurements for saline–alkali soils and is also helpful for local soil remediation with supporting data. Full article
(This article belongs to the Special Issue Crop Improvement and Cultivation in Saline-Alkali Soils)
Show Figures

Figure 1

21 pages, 10968 KiB  
Article
Multi-Scale Expression of Coastal Landform in Remote Sensing Images Considering Texture Features
by Ruojie Zhang and Yilang Shen
Remote Sens. 2024, 16(20), 3862; https://doi.org/10.3390/rs16203862 - 17 Oct 2024
Viewed by 244
Abstract
The multi-scale representation of remote sensing images is crucial for information extraction, data analysis, and image processing. However, traditional methods such as image pyramid and image filtering often result in the loss of image details, particularly edge information, during the simplification and merging [...] Read more.
The multi-scale representation of remote sensing images is crucial for information extraction, data analysis, and image processing. However, traditional methods such as image pyramid and image filtering often result in the loss of image details, particularly edge information, during the simplification and merging processes at different scales and resolutions. Furthermore, when applied to coastal landforms with rich texture features, such as biologically diverse areas covered with vegetation, these methods struggle to preserve the original texture characteristics. In this study, we propose a new method, multi-scale expression of coastal landforms considering texture features (METF-C), based on computer vision techniques. This method combines superpixel segmentation and texture transfer technology to improve the multi-scale representation of coastal landforms in remote sensing images. First, coastal landform elements are segmented using superpixel technology. Then, global merging is performed by selecting different classes of superpixels, with boundaries smoothed using median filtering and morphological operators. Finally, texture transfer is applied to create a fusion image that maintains both scale and level consistency. Experimental results demonstrate that METF-C outperforms traditional methods by effectively simplifying images while preserving important geomorphic features and maintaining global texture information across multiple scales. This approach offers significant improvements in edge preservation and texture retention, making it a valuable tool for analyzing coastal landforms in remote sensing imagery. Full article
Show Figures

Figure 1

15 pages, 70999 KiB  
Article
Lightweight Infrared Image Denoising Method Based on Adversarial Transfer Learning
by Wen Guo, Yugang Fan and Guanghui Zhang
Sensors 2024, 24(20), 6677; https://doi.org/10.3390/s24206677 - 17 Oct 2024
Viewed by 216
Abstract
A lightweight infrared image denoising method based on adversarial transfer learning is proposed. The method adopts a generative adversarial network (GAN) framework and optimizes the model through a phased transfer learning strategy. In the initial stage, the generator is pre-trained using a large-scale [...] Read more.
A lightweight infrared image denoising method based on adversarial transfer learning is proposed. The method adopts a generative adversarial network (GAN) framework and optimizes the model through a phased transfer learning strategy. In the initial stage, the generator is pre-trained using a large-scale grayscale visible light image dataset. Subsequently, the generator is fine-tuned on an infrared image dataset using feature transfer techniques. This phased transfer strategy helps address the problem of insufficient sample quantity and variety in infrared images. Through the adversarial process of the GAN, the generator is continuously optimized to enhance its feature extraction capabilities in environments with limited data. Moreover, the generator structure incorporates structural reparameterization technology, edge convolution modules, and progressive multi-scale attention block (PMAB), significantly improving the model’s ability to recognize edge and texture features. During the inference stage, structural reparameterization further optimizes the network architecture, significantly reducing model parameters and complexity and thereby improving denoising efficiency. The experimental results of public and real-world datasets demonstrate that this method effectively removes additive white Gaussian noise from infrared images, showing outstanding denoising performance. Full article
Show Figures

Figure 1

42 pages, 113259 KiB  
Article
Hypogene Alteration of Base–Metal Mineralization at the Václav Vein (Březové Hory Deposit, Příbram, Czech Republic): The Result of Recurrent Infiltration of Oxidized Fluids
by Zdeněk Dolníček, Jiří Sejkora and Pavel Škácha
Minerals 2024, 14(10), 1038; https://doi.org/10.3390/min14101038 - 17 Oct 2024
Viewed by 249
Abstract
The Václav vein (Březové Hory deposit, Příbram ore area, Czech Republic) is a base–metal vein containing minor Cu-Zn-Pb-Ag-Sb sulfidic mineralization in a usually hematitized gangue. A detailed mineralogical study using an electron microprobe revealed a complicated multistage evolution of the vein. Early siderite [...] Read more.
The Václav vein (Březové Hory deposit, Příbram ore area, Czech Republic) is a base–metal vein containing minor Cu-Zn-Pb-Ag-Sb sulfidic mineralization in a usually hematitized gangue. A detailed mineralogical study using an electron microprobe revealed a complicated multistage evolution of the vein. Early siderite and Fe-rich dolomite were strongly replaced by assemblages of hematite+rhodochrosite and hematite+kutnohorite/Mn-rich dolomite, respectively. In addition, siderite also experienced strong silicification. These changes were associated with the dissolution of associated sulfides (sphalerite, galena). The following portion of the vein contains low-Mn dolomite and calcite gangue with Zn-rich chlorite, wittichenite, tetrahedrite-group minerals, chalcopyrite, bornite, and djurleite, again showing common replacement textures in case of sulfides. The latest stage was characterized by the input of Ag and Hg, giving rise to Ag-Cu sulfides, native silver (partly Hg-rich), balkanite, and (meta)cinnabar. We explain the formation of hematite-bearing oxidized assemblages at the expense of pre-existing “normal” Příbram mineralization due to repeated episodic infiltration of oxygenated surface waters during the vein evolution. Episodic mixing of ore fluids with surface waters was suggested from previous stable isotope and fluid inclusion studies in the Příbram ore area. Our mineralogical study thus strengthens this genetic scenario, illustrates the dynamics of fluid movement during the evolution of a distinct ore vein structure, and shows that the low content of ore minerals cannot be necessarily a primary feature of a vein. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Polymetallic Ore Deposits)
Show Figures

Figure 1

26 pages, 1960 KiB  
Article
Fast CU Partition Decision Algorithm Based on Bayesian and Texture Features
by Erlin Tian, Yifan Yang and Qiuwen Zhang
Electronics 2024, 13(20), 4082; https://doi.org/10.3390/electronics13204082 - 17 Oct 2024
Viewed by 302
Abstract
As internet speeds increase and user demands for video quality grow, video coding standards continue to evolve. H.266/Versatile Video Coding (VVC), as the new generation of video coding standards, further improves compression efficiency but also brings higher computational complexity. Despite the significant advancements [...] Read more.
As internet speeds increase and user demands for video quality grow, video coding standards continue to evolve. H.266/Versatile Video Coding (VVC), as the new generation of video coding standards, further improves compression efficiency but also brings higher computational complexity. Despite the significant advancements VVC has made in compression ratio and video quality, the introduction of new coding techniques and complex coding unit (CU) partitioning methods have also led to increased encoding complexity. This complexity not only extends encoding time but also increases hardware resource consumption, limiting the application of VVC in real-time video processing and low-power devices.To alleviate the encoding complexity of VVC, this paper puts forward a Bayesian and texture-feature-based fast splitting algorithm for coding intraframe bloc of VVC, which aims to reduce unnecessary computational steps, enhance encoding efficiency, and maintain video quality as much as possible. In the stage of rapid coding, the video frames are coded by the original VVC test model (VTM), and Joint Rough Mode Decision (JRMD) evaluation cost is used to update the parameter in the Bayesian algorithm to come and set the two thresholds to judge whether the current coding block continues to be split or not. Then, for coding blocks larger than those satisfying the above threshold conditions, the predominant direction of the texture within the coding block is ascertained by calculating the standard deviations along both the horizontal and vertical axes so as to skip some unnecessary splits in the current coding block patterns. The findings from our experiments demonstrate that our proposed approach improves the encoding rate by 1.40% on average, and the execution time of the encoder has been reduced by 49.50%. The overall algorithm has optimized the VVC intraframe coding technology and reduced the coding complexity of VVC. Full article
Show Figures

Figure 1

19 pages, 4803 KiB  
Article
Rural Road Extraction in Xiong’an New Area of China Based on the RC-MSFNet Network Model
by Nanjie Yang, Weimeng Di, Qingyu Wang, Wansi Liu, Teng Feng and Xiaomin Tian
Sensors 2024, 24(20), 6672; https://doi.org/10.3390/s24206672 - 16 Oct 2024
Viewed by 375
Abstract
High-resolution remote sensing imagery, reaching meter or sub-meter levels, provides essential data for extracting and identifying road information. However, rural roads are often narrow, elongated, and have blurred boundaries, with textures that resemble surrounding environments such as construction sites, vegetation, and farmland. These [...] Read more.
High-resolution remote sensing imagery, reaching meter or sub-meter levels, provides essential data for extracting and identifying road information. However, rural roads are often narrow, elongated, and have blurred boundaries, with textures that resemble surrounding environments such as construction sites, vegetation, and farmland. These features often lead to incomplete extraction and low extraction accuracy of rural roads. To address these challenges, this study introduces the RC-MSFNet model, based on the U-Net architecture, to enhance rural road extraction performance. The RC-MSFNet model mitigates the vanishing gradient problem in deep networks by incorporating residual neural networks in the downsampling stage. In the upsampling stage, a connectivity attention mechanism is added after dual convolution layers to improve the model’s ability to capture road completeness and connectivity. Additionally, the bottleneck section replaces the traditional dual convolution layers with a multi-scale fusion atrous convolution module to capture features at various scales. The study focuses on rural roads in the Xiong’an New Area, China, using high-resolution imagery from China’s Gaofen-2 satellite to construct the XARoads rural road dataset. Roads were extracted from the XARoads dataset and DeepGlobe public dataset using the RC-MSFNet model and compared with some models such as U-Net, FCN, SegNet, DeeplabV3+, R-Net, and RC-Net. Experimental results showed that: (1) The proposed method achieved precision (P), intersection over union (IOU), and completeness (COM) scores of 0.8350, 0.6523, and 0.7489, respectively, for rural road extraction in Xiong’an New Area, representing precision improvements of 3.8%, 6.78%, 7.85%, 2.14%, 0.58%, and 2.53% over U-Net, FCN, SegNet, DeeplabV3+, R-Net, and RC-Net. (2) The method excelled at extracting narrow roads and muddy roads with unclear boundaries, with fewer instances of omission or false extraction, demonstrating advantages in complex rural terrain and areas with indistinct road boundaries. Accurate rural road extraction can provide valuable reference data for urban development and planning in the Xiong’an New Area. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

14 pages, 2710 KiB  
Article
SPDepth: Enhancing Self-Supervised Indoor Monocular Depth Estimation via Self-Propagation
by Xiaotong Guo, Huijie Zhao, Shuwei Shao, Xudong Li, Baochang Zhang and Na Li
Future Internet 2024, 16(10), 375; https://doi.org/10.3390/fi16100375 - 16 Oct 2024
Viewed by 207
Abstract
Due to the existence of low-textured areas in indoor scenes, some self-supervised depth estimation methods have specifically designed sparse photometric consistency losses and geometry-based losses. However, some of the loss terms cannot supervise all the pixels, which limits the performance of these methods. [...] Read more.
Due to the existence of low-textured areas in indoor scenes, some self-supervised depth estimation methods have specifically designed sparse photometric consistency losses and geometry-based losses. However, some of the loss terms cannot supervise all the pixels, which limits the performance of these methods. Some approaches introduce an additional optical flow network to provide dense correspondences supervision, but overload the loss function. In this paper, we propose to perform depth self-propagation based on feature self-similarities, where high-accuracy depths are propagated from supervised pixels to unsupervised ones. The enhanced self-supervised indoor monocular depth estimation network is called SPDepth. Since depth self-similarities are significant in a local range, a local window self-attention module is embedded at the end of the network to propagate depths in a window. The depth of a pixel is weighted using the feature correlation scores with other pixels in the same window. The effectiveness of self-propagation mechanism is demonstrated in the experiments on the NYU Depth V2 dataset. The root-mean-squared error of SPDepth is 0.585 and the δ1 accuracy is 77.6%. Zero-shot generalization studies are also conducted on the 7-Scenes dataset and provide a more comprehensive analysis about the application characteristics of SPDepth. Full article
(This article belongs to the Special Issue Machine Learning Techniques for Computer Vision)
Show Figures

Figure 1

21 pages, 8602 KiB  
Review
From Outside to Inside: The Subtle Probing of Globular Fruits and Solanaceous Vegetables Using Machine Vision and Near-Infrared Methods
by Junhua Lu, Mei Zhang, Yongsong Hu, Wei Ma, Zhiwei Tian, Hongsen Liao, Jiawei Chen and Yuxin Yang
Agronomy 2024, 14(10), 2395; https://doi.org/10.3390/agronomy14102395 - 16 Oct 2024
Viewed by 381
Abstract
Machine vision and near-infrared light technology are widely used in fruits and vegetable grading, as an important means of agricultural non-destructive testing. The characteristics of fruits and vegetables can easily be automatically distinguished by these two technologies, such as appearance, shape, color and [...] Read more.
Machine vision and near-infrared light technology are widely used in fruits and vegetable grading, as an important means of agricultural non-destructive testing. The characteristics of fruits and vegetables can easily be automatically distinguished by these two technologies, such as appearance, shape, color and texture. Nondestructive testing is reasonably used for image processing and pattern recognition, and can meet the identification and grading of single features and fusion features in production. Through the summary and analysis of the fruits and vegetable grading technology in the past five years, the results show that the accuracy of machine vision for fruits and vegetable size grading is 70–99.8%, the accuracy of external defect grading is 88–95%, and the accuracy of NIR and hyperspectral internal detection grading is 80.56–100%. Comprehensive research on multi-feature fusion technology in the future can provide comprehensive guidance for the construction of automatic integrated grading of fruits and vegetables, which is the main research direction of fruits and vegetable grading in the future. Full article
Show Figures

Figure 1

21 pages, 2380 KiB  
Article
Crack Detection, Classification, and Segmentation on Road Pavement Material Using Multi-Scale Feature Aggregation and Transformer-Based Attention Mechanisms
by Arselan Ashraf, Ali Sophian and Ali Aryo Bawono
Constr. Mater. 2024, 4(4), 655-675; https://doi.org/10.3390/constrmater4040036 - 16 Oct 2024
Viewed by 242
Abstract
This paper introduces a novel approach to pavement material crack detection, classification, and segmentation using advanced deep learning techniques, including multi-scale feature aggregation and transformer-based attention mechanisms. The proposed methodology significantly enhances the model’s ability to handle varying crack sizes, shapes, and complex [...] Read more.
This paper introduces a novel approach to pavement material crack detection, classification, and segmentation using advanced deep learning techniques, including multi-scale feature aggregation and transformer-based attention mechanisms. The proposed methodology significantly enhances the model’s ability to handle varying crack sizes, shapes, and complex pavement textures. Trained on a dataset of 10,000 images, the model achieved substantial performance improvements across all tasks after integrating transformer-based attention. Detection precision increased from 88.7% to 94.3%, and IoU improved from 78.8% to 93.2%. In classification, precision rose from 88.3% to 94.8%, and recall improved from 86.8% to 94.2%. For segmentation, the Dice Coefficient increased from 80.3% to 94.7%, and IoU for segmentation advanced from 74.2% to 92.3%. These results underscore the model’s robustness and accuracy in identifying pavement cracks in challenging real-world scenarios. This framework not only advances automated pavement maintenance but also provides a foundation for future research focused on optimizing real-time processing and extending the model’s applicability to more diverse pavement conditions. Full article
Show Figures

Figure 1

25 pages, 39533 KiB  
Article
Identification of High-Photosynthetic-Efficiency Wheat Varieties Based on Multi-Source Remote Sensing from UAVs
by Weiyi Feng, Yubin Lan, Hongjian Zhao, Zhicheng Tang, Wenyu Peng, Hailong Che and Junke Zhu
Agronomy 2024, 14(10), 2389; https://doi.org/10.3390/agronomy14102389 (registering DOI) - 16 Oct 2024
Viewed by 269
Abstract
Breeding high-photosynthetic-efficiency wheat varieties is a crucial link in safeguarding national food security. Traditional identification methods necessitate laborious on-site observation and measurement, consuming time and effort. Leveraging unmanned aerial vehicle (UAV) remote sensing technology to forecast photosynthetic indices opens up the potential for [...] Read more.
Breeding high-photosynthetic-efficiency wheat varieties is a crucial link in safeguarding national food security. Traditional identification methods necessitate laborious on-site observation and measurement, consuming time and effort. Leveraging unmanned aerial vehicle (UAV) remote sensing technology to forecast photosynthetic indices opens up the potential for swiftly discerning high-photosynthetic-efficiency wheat varieties. The objective of this research is to develop a multi-stage predictive model encompassing nine photosynthetic indicators at the field scale for wheat breeding. These indices include soil and plant analyzer development (SPAD), leaf area index (LAI), net photosynthetic rate (Pn), transpiration rate (Tr), intercellular CO2 concentration (Ci), stomatal conductance (Gsw), photochemical quantum efficiency (PhiPS2), PSII reaction center excitation energy capture efficiency (Fv’/Fm’), and photochemical quenching coefficient (qP). The ultimate goal is to differentiate high-photosynthetic-efficiency wheat varieties through model-based predictions. This research gathered red, green, and blue spectrum (RGB) and multispectral (MS) images of eleven wheat varieties at the stages of jointing, heading, flowering, and filling. Vegetation indices (VIs) and texture features (TFs) were extracted as input variables. Three machine learning regression models (Support Vector Machine Regression (SVR), Random Forest (RF), and BP Neural Network (BPNN)) were employed to construct predictive models for nine photosynthetic indices across multiple growth stages. Furthermore, the research conducted principal component analysis (PCA) and membership function analysis on the predicted values of the optimal models for each indicator, established a comprehensive evaluation index for high photosynthetic efficiency, and employed cluster analysis to screen the test materials. The cluster analysis categorized the eleven varieties into three groups, with SH06144 and Yannong 188 demonstrating higher photosynthetic efficiency. The moderately efficient group comprises Liangxing 19, SH05604, SH06085, Chaomai 777, SH05292, Jimai 22, and Guigu 820, totaling seven varieties. Xinmai 916 and Jinong 114 fall into the category of lower photosynthetic efficiency, aligning closely with the results of the clustering analysis based on actual measurements. The findings suggest that employing UAV-based multi-source remote sensing technology to identify wheat varieties with high photosynthetic efficiency is feasible. The study results provide a theoretical basis for winter wheat phenotypic monitoring at the breeding field scale using UAV-based multi-source remote sensing, offering valuable insights for the advancement of smart breeding practices for high-photosynthetic-efficiency wheat varieties. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 4549 KiB  
Article
A Transfer Learning-Based Framework for Classifying Lymph Node Metastasis in Prostate Cancer Patients
by Suryadipto Sarkar, Teresa Wu, Matthew Harwood and Alvin C. Silva
Biomedicines 2024, 12(10), 2345; https://doi.org/10.3390/biomedicines12102345 (registering DOI) - 15 Oct 2024
Viewed by 465
Abstract
Background: Prostate cancer is the second most common new cancer diagnosis in the United States. It is usually slow-growing, and when it is low-grade and confined to the prostate gland, it can be treated either conservatively (through active surveillance) or with surgery. However, [...] Read more.
Background: Prostate cancer is the second most common new cancer diagnosis in the United States. It is usually slow-growing, and when it is low-grade and confined to the prostate gland, it can be treated either conservatively (through active surveillance) or with surgery. However, if the cancer has spread beyond the prostate, such as to the lymph nodes, then that indicates a more aggressive cancer, and surgery may not be adequate. Methods: The challenge is that it is often difficult for radiologists reading prostate-specific imaging such as magnetic resonance images (MRIs) to differentiate malignant lymph nodes from non-malignant ones. An emerging field is the development of artificial intelligence (AI) models, including machine learning and deep learning, for medical imaging to assist in diagnostic tasks. Earlier research focused on implementing texture algorithms to extract imaging features used in classification models. More recently, researchers began studying the use of deep learning for both stand-alone feature extraction and end-to-end classification tasks. In order to tackle the challenges inherent in small datasets, this study was designed as a scalable hybrid framework utilizing pre-trained ResNet-18, a deep learning model, to extract features that were subsequently fed into a machine learning classifier to automatically identify malignant lymph nodes in patients with prostate cancer. For comparison, two texture algorithms were implemented, namely the gray-level co-occurrence matrix (GLCM) and Gabor. Results: Using an institutional prostate lymph node dataset (42 positives, 84 negatives), the proposed framework achieved an accuracy of 76.19%, a sensitivity of 79.76%, and a specificity of 69.05%. Using GLCM features, the classification achieved an accuracy of 61.90%, a sensitivity of 74.07%, and a specificity of 42.86%. Using Gabor features, the classification achieved an accuracy of 65.08%, a sensitivity of 73.47%, and a specificity of 52.50%. Conclusions: Our results demonstrate that a hybrid approach, i.e., using a pre-trainined deep learning model for feature extraction, followed by a machine learning classifier, is a viable solution. This hybrid approach is especially useful in medical-imaging-based applications with small datasets. Full article
(This article belongs to the Special Issue Advanced Cancer Diagnosis and Treatment: Second Edition)
Show Figures

Figure 1

20 pages, 6585 KiB  
Article
Remote Sensing Image Denoising Based on Feature Interaction Complementary Learning
by Shaobo Zhao, Youqiang Dong, Xi Cheng, Yu Huo, Min Zhang and Hai Wang
Remote Sens. 2024, 16(20), 3820; https://doi.org/10.3390/rs16203820 - 14 Oct 2024
Viewed by 445
Abstract
Optical remote sensing images are of considerable significance in a plethora of applications, including feature recognition and scene semantic segmentation. However, the quality of remote sensing images is compromised by the influence of various types of noise, which has a detrimental impact on [...] Read more.
Optical remote sensing images are of considerable significance in a plethora of applications, including feature recognition and scene semantic segmentation. However, the quality of remote sensing images is compromised by the influence of various types of noise, which has a detrimental impact on their practical applications in the aforementioned fields. Furthermore, the intricate texture characteristics inherent to remote sensing images present a significant hurdle in the removal of noise and the restoration of image texture details. In order to address these challenges, we propose a feature interaction complementary learning (FICL) strategy for remote sensing image denoising. In practical terms, the network is comprised of four main components: noise predictor (NP), reconstructed image predictor (RIP), feature interaction module (FIM), and fusion module. The combination of these modules serves to not only complete the fusion of the prediction results of NP and RIP, but also to achieve a deep coupling of the characteristics of the two predictors. Consequently, the advantages of noise prediction and reconstructed image prediction can be combined, thereby enhancing the denoising capability of the model. Furthermore, comprehensive experimentation on both synthetic Gaussian noise datasets and real-world denoising datasets has demonstrated that FICL has achieved favorable outcomes, emphasizing the efficacy and robustness of the proposed framework. Full article
Show Figures

Figure 1

16 pages, 1307 KiB  
Article
Analysis of the Impact of Reformulation of the Recipe Composition on the Quality of Instant Noodles
by Katarzyna Marciniak-Lukasiak, Ewelina Durajczyk, Aleksandra Lukasiak, Katarzyna Zbikowska, Piotr Lukasiak and Anna Zbikowska
Appl. Sci. 2024, 14(20), 9362; https://doi.org/10.3390/app14209362 - 14 Oct 2024
Viewed by 457
Abstract
This study aimed to evaluate how adding whey protein and transglutaminase impacts the quality of fried instant noodles. This research focused on analyzing various quality characteristics of the noodles based on the type and quantity of additives used. In the study, the following [...] Read more.
This study aimed to evaluate how adding whey protein and transglutaminase impacts the quality of fried instant noodles. This research focused on analyzing various quality characteristics of the noodles based on the type and quantity of additives used. In the study, the following samples were produced: a control sample without additives and samples with 1, 2, 3, 4 and 5% of whey protein added, and 1 and 2% of transglutaminase were applied to each sample with whey protein addition. The following features were determined: fat content, water content, hydration time, hardness, adhesiveness, firmness, colour, browning index and a sensory evaluation of the macarons. The addition of whey protein, either alone or in combination with transglutaminase, reduced the fat content and increased the water content. The lowest fat content was obtained for the sample containing 5% whey protein and 2% transglutaminase (15.13%). The water content was observed in the range 2.53–3.72%. The hydration time of the instant noodles obtained increased with the use of more additives, but did not exceed 5 min in any of the samples tested. The use of additives affected the colour parameters and improved the textural properties of the noodles. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Food Quality)
Show Figures

Figure 1

Back to TopTop