Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,043)

Search Parameters:
Keywords = thiols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6671 KiB  
Article
Copper Catalysts Anchored on Cysteine-Functionalized Polydopamine-Coated Magnetite Particles: A Versatile Platform for Enhanced Coupling Reactions
by Yu-Jeong Jo, Seung-Woo Park, Ueon Sang Shin and Seung-Hoi Kim
Molecules 2024, 29(21), 5121; https://doi.org/10.3390/molecules29215121 - 30 Oct 2024
Viewed by 199
Abstract
Cysteine plays a crucial role in the development of an efficient copper-catalyst system, where its thiol group serves as a strong anchoring site for metal coordination. By immobilizing copper onto cysteine-modified, polydopamine-coated magnetite particles, this advanced catalytic platform exhibits exceptional stability and catalytic [...] Read more.
Cysteine plays a crucial role in the development of an efficient copper-catalyst system, where its thiol group serves as a strong anchoring site for metal coordination. By immobilizing copper onto cysteine-modified, polydopamine-coated magnetite particles, this advanced catalytic platform exhibits exceptional stability and catalytic activity. Chemical modification of the polydopamine (PDA) surface with cysteine enhances copper salt immobilization, leading to the formation of the Fe3O4@PDA-Cys@Cu platform. This system was evaluated in palladium-free, copper-catalyzed Sonogashira coupling reactions, effectively catalyzing the coupling of terminal acetylenes with aryl halides. Additionally, the Fe3O4@PDA-Cys@Cu platform was employed in click reactions, confirming the enhanced catalytic efficiency due to increased copper content. The reusability of the platform was further investigated, demonstrating improved performance, especially in recyclability tests in click reaction, making it a promising candidate for sustainable heterogeneous catalysis. Full article
Show Figures

Figure 1

20 pages, 3017 KiB  
Article
A Novel PCR-Free Ultrasensitive GQD-Based Label-Free Electrochemical DNA Sensor for Sensitive and Rapid Detection of Francisella tularensis 
by Sumeyra Savas and Melike Sarıçam
Micromachines 2024, 15(11), 1308; https://doi.org/10.3390/mi15111308 - 28 Oct 2024
Viewed by 351
Abstract
Biological warfare agents are infectious microorganisms or toxins capable of harming or killing humans. Francisella tularensis is a potential bioterrorism agent that is highly infectious, even at very low doses. Biosensors for biological warfare agents are simple yet reliable point-of-care analytical tools. Developing [...] Read more.
Biological warfare agents are infectious microorganisms or toxins capable of harming or killing humans. Francisella tularensis is a potential bioterrorism agent that is highly infectious, even at very low doses. Biosensors for biological warfare agents are simple yet reliable point-of-care analytical tools. Developing highly sensitive, reliable, and cost-effective label-free DNA biosensors poses significant challenges, particularly when utilizing traditional techniques such as fluorescence, electrochemical methods, and others. These challenges arise primarily due to the need for labeling, enzymes, or complex modifications, which can complicate the design and implementation of biosensors. In this study, we fabricated Graphene Quantum dot (GQD)-functionalized biosensors for highly sensitive label-free DNA detection. GQDs were immobilized on the surface of screen-printed gold electrodes via mercaptoacetic acid with a thiol group. The single-stranded DNA (ssDNA) probe was also immobilized on GQDs through strong π−π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, leading to a decrease in the effect of GQD but a positive shift associated with the increase in DNA concentration. The specificity of the developed system was observed with different microorganism target DNAs and up to three-base mismatches in the target DNA, effectively distinguishing the target DNA. The response time for the target DNA molecule is approximately 1010 s (17 min). Experimental steps were monitored using UV/Vis spectroscopy, Atomic Force Microscopy (AFM), and electrochemical techniques to confirm the successful fabrication of the biosensor. The detection limit can reach 0.1 nM, which is two–five orders of magnitude lower than previously reported methods. The biosensor also exhibits a good linear range from 105 to 0.01 nM and has good specificity. The biosensor’s detection limit (LOD) was evaluated as 0.1 nM from the standard calibration curve, with a correlation coefficient of R2 = 0.9712, showing a good linear range and specificity. Here, we demonstrate a cost-effective, GQD-based SPGE/F. tularensis DNA test suitable for portable electrochemical devices. This application provides good perspectives for point-of-care portable electrochemical devices that integrate sample processing and detection into a single cartridge without requiring a PCR before detection. Based on these results, it can be concluded that this is the first enzyme-free electrochemical DNA biosensor developed for the rapid and sensitive detection of F. tularensis, leveraging the nanoenzyme and catalytic properties of GQDs. Full article
(This article belongs to the Special Issue Biosensors for Pathogen Detection 2024)
Show Figures

Figure 1

20 pages, 11125 KiB  
Article
QSOX1 Modulates Glioblastoma Cell Proliferation and Migration In Vitro and Invasion In Vivo
by Reetika Dutt, Colin Thorpe and Deni S. Galileo
Cancers 2024, 16(21), 3620; https://doi.org/10.3390/cancers16213620 - 26 Oct 2024
Viewed by 587
Abstract
Background: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number [...] Read more.
Background: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number of cancers, and the overexpression of QSOX1 has been correlated with aggressive cancers and poor patient prognosis. Glioblastoma (GBM) brain cancer has been practically impossible to treat effectively, with cells that rapidly invade normal brain tissue and escape surgery and other treatment. Thus, there is a crucial need to understand the multiple mechanisms that facilitate GBM cell invasion and to determine if QSOX1 is involved. Methods and Results: Here, we investigated the function of QSOX1 in human glioblastoma cells using two cell lines derived from T98G cells, whose proliferation, motility, and invasiveness has been shown by us to be dependent on disulfide bond-containing adhesion and receptor proteins, such as L1CAM and the FGFR. We lentivirally introduced shRNA to attenuate the QSOX1 protein expression in one cell line, and a Western blot analysis confirmed the decreased QSOX1 expression. A DNA content/cell cycle analysis using flow cytometry revealed 27% fewer knockdown cells in the S-phase of the cell cycle, indicating a reduced proliferation. A cell motility analysis utilizing our highly quantitative SuperScratch time-lapse microscopy assay revealed that knockdown cells migrated more slowly, with a 45% decrease in migration velocity. Motility was partly rescued by the co-culture of knockdown cells with control cells, indicating a paracrine effect. Surprisingly, knockdown cells exhibited increased motility when assayed using a Transwell migration assay. Our novel chick embryo orthotopic xenograft model was used to assess the in vivo invasiveness of knockdown vs. control cells, and tumors developed from both cell types. However, fewer invasive knockdown cells were observed after about a week. Conclusions: Our results indicate that an experimental reduction in QSOX1 expression in GBM cells leads to decreased cell proliferation, altered in vitro migration, and decreased in vivo invasion. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

17 pages, 5213 KiB  
Article
A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis
by Ying-Rui Li, Wei Cai, Ya-Xuan Zhang, Ning-Xin Zhang, Qiao-Ling Huang, Ying-Tang Lu and Ting-Ting Yuan
Int. J. Mol. Sci. 2024, 25(21), 11455; https://doi.org/10.3390/ijms252111455 - 25 Oct 2024
Viewed by 367
Abstract
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, [...] Read more.
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics)
Show Figures

Figure 1

13 pages, 1150 KiB  
Article
The Synergistic Effect of Intradialytic Concurrent Training and Melatonin Supplementation on Oxidative Stress and Inflammation in Hemodialysis Patients: A Double-Blind Randomized Controlled Trial
by Houssem Marzougui, Imen Ben Dhia, Ines Mezghani, Rami Maaloul, Salma Toumi, Khawla Kammoun, Mohamed Nejib Chaabouni, Fatma Ayadi, Mohamed Ben Hmida, Mouna Turki and Omar Hammouda
Antioxidants 2024, 13(11), 1290; https://doi.org/10.3390/antiox13111290 - 25 Oct 2024
Viewed by 435
Abstract
Background: This study aimed to investigate the effects of intradialytic concurrent (resistance–endurance) training combined with melatonin (MEL) supplementation on oxidative stress, inflammation, and cellular damage in hemodialysis (HD) patients. Methods: Thirty-two HD patients were randomly assigned to three groups: Exercise (EX)-MEL, EX-Placebo (PLA), [...] Read more.
Background: This study aimed to investigate the effects of intradialytic concurrent (resistance–endurance) training combined with melatonin (MEL) supplementation on oxidative stress, inflammation, and cellular damage in hemodialysis (HD) patients. Methods: Thirty-two HD patients were randomly assigned to three groups: Exercise (EX)-MEL, EX-Placebo (PLA), and Control (C)-PLA. Participants in the EX-MEL and EX-PLA groups underwent 12 weeks of concurrent training. Before nocturnal sleep, they ingested either 3 mg of MEL (EX-MEL) or a placebo (EX-PLA and C-PLA). Blood samples were collected at baseline and after 12 weeks of intervention to assess lipid peroxidation [malondialdehyde (MDA)], antioxidant biomarkers [ferric-reducing antioxidant power (FRAP), reduced glutathione (GSH), total thiol (THIOL)], total bilirubin (TBIL), uric acid (UA), biomarkers of muscle and liver damage [aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), creatine kinase (CK), lactate dehydrogenase (LDH), and Gamma-glutamyltransferase (Gamma-GT)], and inflammation [C-reactive protein (CRP)]. Results: EX-MEL demonstrated a decrease in MDA (p < 0.05) and CRP (p < 0.05), and an increase in FRAP (p < 0.05) pre- and post-training. Both EX-MEL and EX-PLA showed an increase in GSH (p < 0.001, and p < 0.05, respectively) and THIOL (p < 0.01, and p < 0.05, respectively) pre- and post-training. No significant changes were observed in TBIL, UA, ASAT, ALAT, CK, LDH, or Gamma-GT pre- and post-training across all groups. Conclusion: Concurrent training combined with MEL supplementation enhances oxidant–antioxidant balance and reduces inflammation in HD patients more effectively than intradialytic concurrent training alone. Full article
Show Figures

Figure 1

13 pages, 1253 KiB  
Article
α4 Nicotinic Acetylcholine Receptors in Lipopolysaccharide-Related Lung Inflammation
by Jeffrey D. Ritzenthaler, Walter H. Watson and Jesse Roman
Int. J. Mol. Sci. 2024, 25(20), 11305; https://doi.org/10.3390/ijms252011305 - 21 Oct 2024
Viewed by 450
Abstract
Sepsis remains an important healthcare challenge. The lungs are often affected in sepsis, resulting in acute lung injury characterized by inflammation. Mechanisms involving lipopolysaccharide (LPS) stimulation of toll-like receptor (TLR) signaling with induction of proinflammatory pathways have been implicated in this process. To [...] Read more.
Sepsis remains an important healthcare challenge. The lungs are often affected in sepsis, resulting in acute lung injury characterized by inflammation. Mechanisms involving lipopolysaccharide (LPS) stimulation of toll-like receptor (TLR) signaling with induction of proinflammatory pathways have been implicated in this process. To date, however, studies targeting these pathways have failed to improve outcomes. We have found that LPS may also promote lung injury through the activation of α4 nicotinic acetylcholine receptors (α4 nAChRs) in immune cells. We observed increased expression of α4 nAChRs in human THP-1 monocytic cells exposed to LPS (100 ng/mL, 24 h). We also observed that LPS stimulated the expression of other relevant genes, including tumor necrosis factor-α, interleukin-1β, plasminogen activator inhibitor-1, the solute carrier family 7 member 11, extracellular superoxide dismutase, and transforming growth factor-β1. Of interest, dihydro-β-erythroidine hydrobromide (DHβE), a specific chemical inhibitor of α4 nAChRs, inhibited the LPS-induced expression of these genes. We generated mice with a global knockout mutation of the α4 nAChR subunit in the C57BL/6 background using CRISPR/Cas9 technology. The lungs of these LPS-treated animals demonstrated a reduction in the expression of the above-mentioned genes when compared with the lungs of wild-type animals. In support of the role of oxidative stress, we observed that LPS induced expression of the cystine transporter Slc7a11 in both THP-1 cells and in wild-type mouse lungs. The effects of LPS on THP-1 cells were blocked by the thiol antioxidant N-acetylcysteine and mimicked by redox stress. Importantly, the induction of IL-1β by redox stress was inhibited by the α4 nAChR inhibitor DHβE. Finally, we showed that LPS stimulated calcium influx in THP-1 cells, which was blocked by the α4 nAChR inhibitor. Our observations suggest that LPS promotes lung injury by stimulating redox stress, which activates α4 nAChR signaling and drives proinflammatory cytokine expression. Full article
(This article belongs to the Special Issue Signaling in Respiratory Diseases)
Show Figures

Figure 1

12 pages, 3020 KiB  
Article
One-Pot Syntheses of [c2]Daisy-Chain Rotaxane Networks via Thiol-Ene Reaction and Its Application to Gel Electrolyte for Secondary Battery
by Risako Kamoto, Kenjiro Onimura and Kazuhiro Yamabuki
Reactions 2024, 5(4), 800-811; https://doi.org/10.3390/reactions5040041 - 16 Oct 2024
Viewed by 519
Abstract
A new topological material, the [c2]daisy-chain rotaxane network, was successfully synthesized via a thiol-ene reaction between a [c2]daisy-chain rotaxane, which consists of a host–guest compound (H–G compound) where a crown ether and a secondary ammonium salt are linked, and a multi-branched thiol compound. [...] Read more.
A new topological material, the [c2]daisy-chain rotaxane network, was successfully synthesized via a thiol-ene reaction between a [c2]daisy-chain rotaxane, which consists of a host–guest compound (H–G compound) where a crown ether and a secondary ammonium salt are linked, and a multi-branched thiol compound. The resulting network polymer exhibited higher compressive strength compared to one without the [c2]daisy-chain rotaxane. Additionally, the neutralized [c2]daisy-chain rotaxane network, in which the ammonium salt was neutralized and there was no interaction with the crown ether, showed increased rigidity compared to its state before neutralization. Furthermore, a gel electrolyte was prepared by impregnating the [c2]daisy-chain rotaxane network with an organic electrolyte containing dissolved lithium salts, and its ionic conductivity was investigated. As a result, high ionic conductivity was achieved despite the high polymer content. Full article
Show Figures

Graphical abstract

16 pages, 4478 KiB  
Article
Gold Nanoparticle-Embedded Thiol-Functionalized Ti3C2Tx MXene for Sensitive Electrochemical Sensing of Ciprofloxacin
by Mari Elancheziyan, Manisha Singh and Keehoon Won
Nanomaterials 2024, 14(20), 1655; https://doi.org/10.3390/nano14201655 - 15 Oct 2024
Viewed by 640
Abstract
The unregulated use of ciprofloxacin (CIPF) has led to increased resistance in patients and has threatened human health with issues such as digestive disorders, kidney disorders, and liver complications. In order to overcome these concerns, this work introduces a portable electrochemical sensor based [...] Read more.
The unregulated use of ciprofloxacin (CIPF) has led to increased resistance in patients and has threatened human health with issues such as digestive disorders, kidney disorders, and liver complications. In order to overcome these concerns, this work introduces a portable electrochemical sensor based on a disposable integrated screen-printed carbon electrode (SPCE) coated with gold nanoparticle-embedded thiol-functionalized Ti3C2Tx MXene (AuNPs-S-Ti3C2Tx MXene) for simple, rapid, precise, and sensitive quantification of CIPF in milk and water samples. The high surface area and electrical conductivity of AuNPs are maximized thanks to the strong interaction between AuNPs and SH-Ti3C2Tx MXene, which can prevent the aggregation of AuNPs and endow larger electroactive areas. Ti3C2Tx MXene was synthesized from Ti3AlC2 MAX phases, and its thiol functionalization was achieved using 3-mercaptopropyl trimethoxysilane. The prepared AuNPs-S-Ti3C2Tx MXene nanocomposite was characterized using FESEM, EDS, XRD, XPS, FTIR, and UV–visible spectroscopy. The electrochemical behavior of the nanocomposite was examined using CV, EIS, DPV, and LSV. The AuNPs-S-Ti3C2Tx MXene/SPCE showed higher electrochemical performances towards CIPF oxidation than a conventional AuNPs-Ti3C2Tx MXene/SPCE. Under the optimized DPV and LSV conditions, the developed nonenzymatic CIPF sensor displayed a wide range of detection concentrations from 0.50 to 143 μM (DPV) and from 0.99 to 206 μM (LSV) with low detection limits of 0.124 μM (DPV) and 0.171 μM (LSV), and high sensitivities of 0.0863 μA/μM (DPV) and 0.2182 μA/μM (LSV). Full article
Show Figures

Graphical abstract

21 pages, 4599 KiB  
Article
Gradient Functionalization of Poly(lactic acid)-Based Materials with Polylysine for Spatially Controlled Cell Adhesion
by Viktor Korzhikov-Vlakh, Aleksandra Mikhailova, Ekaterina Sinitsyna, Evgenia Korzhikova-Vlakh and Tatiana Tennikova
Polymers 2024, 16(20), 2888; https://doi.org/10.3390/polym16202888 - 14 Oct 2024
Viewed by 726
Abstract
The development of biomaterials with gradient surface modification capable of spatially controlled cell adhesion and migration is of great importance for tissue engineering and regeneration. In this study, we proposed a method for the covalent modification of PLA-based materials with a cationic polypeptide [...] Read more.
The development of biomaterials with gradient surface modification capable of spatially controlled cell adhesion and migration is of great importance for tissue engineering and regeneration. In this study, we proposed a method for the covalent modification of PLA-based materials with a cationic polypeptide (polylysine, PLys) via a thiol-ene click reaction carried out under a light gradient. With this aim, PLA-based films were fabricated and modified with 2–aminoethyl methacrylate (AEMA) as a double bond source. The latter was introduced by reacting pre-formed and activated surface carboxyl groups with the amino group of AEMA. The success of the modification was confirmed by 1H NMR, Raman and X-ray photoelectron spectroscopy data. A further photoinduced thiol-ene click reaction in the presence of a photosensitive initiator as a radical source was further optimized using cysteine. For grafting of PLys via the thiol-ene click reaction, PLys with a terminal thiol group was synthesized by ring-opening polymerization using Cys(Acm) as an amine initiator. Deprotection of the polypeptide resulted in the formation of free thiol groups of Cys-PLys. Successful gradient grafting of Cys-PLys was evidenced by covalent staining with the fluorescent dye Cy3-NHS. In addition, PLys gradient-dependent adhesion and migration of HEK 293 cells on PLys-PLA-based surfaces was confirmed. Full article
Show Figures

Figure 1

11 pages, 5162 KiB  
Article
Thiol-SAM Concentration Effect on the Performance of Interdigitated Electrode-Based Redox-Free Biosensors
by Abdulaziz K. Assaifan
Micromachines 2024, 15(10), 1254; https://doi.org/10.3390/mi15101254 - 12 Oct 2024
Viewed by 554
Abstract
Despite the direct, redox-free and simple detection non-faradaic impedimetric biosensors offer, considerable optimizations are required to enhance their performance for the detection of various biomarkers. Non-faradaic EIS sensors’ performance depends on the interfacial capacitance between a polarized biosensor surface and the tested sample [...] Read more.
Despite the direct, redox-free and simple detection non-faradaic impedimetric biosensors offer, considerable optimizations are required to enhance their performance for the detection of various biomarkers. Non-faradaic EIS sensors’ performance depends on the interfacial capacitance between a polarized biosensor surface and the tested sample solution. Careful engineering and design of the interfacial capacitance is encouraged to magnify the redout signal upon bioreceptor–antigen interactions. One of the methods to achieve this goal is by optimizing the self-assembled monolayer concentration, which has not been reported for non-faradaic impedimetric sensors. Here, the impact of alkanethiolate (cysteamine) concentration on the performance of gold (Au) interdigitated electrode (Au-IDE) biosensors is reported. Six sets of biosensors were prepared, each with a different cysteamine concentration: 100 nM, 1 μM, 10 μM, 100 μM, 1 mM, and 10 mM. The biosensors were prepared for the direct detection of LDL cholesterol by attaching LDL antibodies on top of the cysteamine via a glutaraldehyde cross-linker. As the concentration of cysteamine increased from 100 nM to 100 μM, the sensitivity of the biosensor increased from 6.7 to 16.2 nF/ln (ng/mL). As the cysteamine concentration increased from 100 μM to 10 mM, the sensitivity deteriorated. The limit of detection (LoD) of the biosensor improved as the cysteamine increased from 100 nM to 100 μM (i.e., 400 ng/mL to 59 pg/mL). However, the LoD started to increase to 67 pg/mL and 16 ng/mL for 1 mM and 10 mM cysteamine concentrations, respectively. This shows that the cysteamine concentration has a detrimental effect on redox-free biosensors. The cysteamine layer has to be as thin as possible and uniformly cover the electrode surfaces to maximize positive readout signals and reduce negative signals, significantly improving both sensitivity and LoD. Full article
Show Figures

Figure 1

13 pages, 2364 KiB  
Article
Investigating the Hepatic Response to Orlistat and White Tea in Rats on a High-Fat Diet
by Serpil Ciftel, Aleksandra Klisic, Enver Ciftel, Tolga Mercantepe, Adnan Yilmaz, Sedat Ciftel, Esra Pinarbas, Merve Nur Toraman and Filiz Mercantepe
Life 2024, 14(10), 1283; https://doi.org/10.3390/life14101283 - 10 Oct 2024
Viewed by 578
Abstract
High-fat diets have detrimental health impacts that increase the likelihood of developing obesity and metabolic syndrome. This study aimed to examine the potential antioxidant and anti-inflammatory effects of orlistat and white tea in rats fed a high-fat diet. Thirty-two rats were randomized into [...] Read more.
High-fat diets have detrimental health impacts that increase the likelihood of developing obesity and metabolic syndrome. This study aimed to examine the potential antioxidant and anti-inflammatory effects of orlistat and white tea in rats fed a high-fat diet. Thirty-two rats were randomized into four groups: control (standard diet), HFD (high-fat diet), HFD+Orlistat (high-fat diet+orlistat), and HFD+WT (high-fat diet+white tea extract). A significant increase in malondialdehyde (MDA) levels and a decrease in total thiol (TT) levels were detected in the HFD group (p < 0.001). On the other hand, a decrease in the MDA level (p < 0.001) and an increase in the TT level were observed in the orlistat and white tea groups compared with those in the HFD group (p < 0.001). Histopathological examinations revealed that, compared with the HFD alone, orlistat and white tea reduced fat accumulation, prevented degenerative changes in hepatocytes, and decreased the histopathological damage score (p = 0.001). Immunohistochemical examinations of nuclear factor-kappa B (NF-kB/p65) revealed that compared with the HFD, orlistat and white tea reduced immunopositivity (p = 0.001). White tea decreases lipid peroxidation and oxidative stress. Both white tea and orlistat decreased fat formation and inflammation in the liver and regulated inflammation by reducing Nf-kB positivity. Nevertheless, further research is needed to assess their impact on human subjects. Full article
Show Figures

Figure 1

18 pages, 22851 KiB  
Article
Protective Effects of Trimetazidine and Dexmedetomidine on Liver Injury in a Mesenteric Artery Ischemia–Reperfusion Rat Model via Endoplasmic Reticulum Stress
by Sedat Ciftel, Tolga Mercantepe, Riza Aktepe, Esra Pinarbas, Zulkar Ozden, Adnan Yilmaz and Filiz Mercantepe
Biomedicines 2024, 12(10), 2299; https://doi.org/10.3390/biomedicines12102299 - 10 Oct 2024
Viewed by 556
Abstract
Background/Objectives: Acute mesenteric ischemia can lead to severe liver damage due to ischemia–reperfusion (I/R) injury. This study investigated the protective effects of trimetazidine (TMZ) and dexmedetomidine (DEX) against liver damage induced by mesenteric artery I/R via endoplasmic reticulum stress (ERS) mechanisms. Methods: Twenty-four [...] Read more.
Background/Objectives: Acute mesenteric ischemia can lead to severe liver damage due to ischemia–reperfusion (I/R) injury. This study investigated the protective effects of trimetazidine (TMZ) and dexmedetomidine (DEX) against liver damage induced by mesenteric artery I/R via endoplasmic reticulum stress (ERS) mechanisms. Methods: Twenty-four rats were divided into four groups: control, I/R, I/R+TMZ, and I/R+DEX. TMZ (20 mg/kg) was administered orally for seven days, and DEX (100 µg/kg) was given intraper-itoneally 30 min before I/R induction. Liver tissues were analyzed for creatinine, alanine ami-notransferase (ALT), aspartate aminotransferase (AST), thiobarbituric acid reactive substances (TBARS), and total thiol (TT) levels. Results: Compared with the control group, the I/R group presented significantly increased AST, ALT, TBARS, and TT levels. TMZ notably reduced creatinine levels. I/R caused significant liver necrosis, inflammation, and congestion. TMZ and DEX treatments reduced this histopathological damage, with DEX resulting in a more significant reduction in infiltrative areas and vascular congestion. The increase in the expression of caspase-3, Bax, 8-OHdG, C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) decreased with the TMZ and DEX treatments. In addition, Bcl-2 positivity decreased both in the TMZ and DEX treatments. Conclusions: Both TMZ and DEX have protective effects against liver damage. These effects are likely mediated through the reduction in ERS and apoptosis, with DEX showing slightly superior protective effects compared with TMZ. Full article
(This article belongs to the Special Issue Hepatotoxicity: From Pathology to Novel Therapeutic Approaches)
Show Figures

Figure 1

13 pages, 2542 KiB  
Article
Controllable Synthesis of Thioacetals/Thioketals and β-Sulfanyl Ketones Mediated by Methanesulfonic Anhydride and Sulfuric Acid Sulfuric Acid from Aldehyde/Acetone and Thiols
by Hexia Ye, Xinyao Zhao, Yajie Fu, Haibo Liu, Junchen Li and Xiaojing Bi
Molecules 2024, 29(20), 4785; https://doi.org/10.3390/molecules29204785 - 10 Oct 2024
Viewed by 509
Abstract
A novel and controllable synthesis of thioacetals/thioketals and β-sulfanyl ketones mediated by the reaction of aldehyde/acetone with thiols has been developed. In this protocol, β-sulfanyl ketones can be generated without the prior preparation of α, β-unsaturated carbonyl compounds. A variety of thiols reacted [...] Read more.
A novel and controllable synthesis of thioacetals/thioketals and β-sulfanyl ketones mediated by the reaction of aldehyde/acetone with thiols has been developed. In this protocol, β-sulfanyl ketones can be generated without the prior preparation of α, β-unsaturated carbonyl compounds. A variety of thiols reacted with aldehyde/acetone and provided the corresponding thioacetals/thioketals and β-sulfanyl ketones in good to excellent yields, respectively. This protocol is operationally simple, mild, and atom-economical, providing controllable access to thioacetals/thioketals and thia-Michael addition products under mild conditions. Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry)
Show Figures

Figure 1

14 pages, 1061 KiB  
Article
OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair—A Randomized Clinical Trial
by Alba Burgos-Santamaría, Pilar Rodríguez-Rodríguez, Ana Arnalich-Montiel, Silvia M. Arribas, Carmen Fernández-Riveira, I. María Barrio-Pérez, Javier Río, José Manuel Ligero and Begoña Quintana-Villamandos
Int. J. Mol. Sci. 2024, 25(19), 10770; https://doi.org/10.3390/ijms251910770 - 7 Oct 2024
Viewed by 597
Abstract
An aortic aneurysm (AA) is a life-threatening condition. Oxidative stress may be a common pathway linking multiple mechanisms of an AA, including vascular inflammation and metalloproteinase activity. Endovascular aneurysm repair (EVAR) is the preferred surgical approach for AA treatment. During surgery, inflammation and [...] Read more.
An aortic aneurysm (AA) is a life-threatening condition. Oxidative stress may be a common pathway linking multiple mechanisms of an AA, including vascular inflammation and metalloproteinase activity. Endovascular aneurysm repair (EVAR) is the preferred surgical approach for AA treatment. During surgery, inflammation and ischemia–reperfusion injury occur, and reactive oxygen species (ROS) play a key role in their modulation. Increased perioperative oxidative stress is associated with higher postoperative complications. The use of volatile anesthetics during surgery has been shown to reduce oxidative stress. Individual biomarkers only partially reflect the oxidative status of the patients. A global indicator of oxidative stress (OXY-SCORE) has been validated in various pathologies. This study aimed to compare the effects of the main volatile anesthetics, sevoflurane and desflurane, on oxidative status during EVAR. Eighty consecutive patients undergoing EVAR were randomized into two groups: sevoflurane and desflurane. Plasma biomarkers of oxidative damage (protein carbonylation and malondialdehyde) and antioxidant defense (total thiols, glutathione, nitrates, superoxide dismutase, and catalase activity) were measured before surgery and 24 h after EVAR. The analysis of individual biomarkers showed no significant differences between the groups. However, the OXY-SCORE was positive in the desflurane group (indicating a shift towards antioxidants) and negative in the sevoflurane group (favoring oxidants) (p < 0.044). Compared to sevoflurane, desflurane had a positive effect on oxidative stress during EVAR. The OXY-SCORE could provide a more comprehensive perspective on oxidative stress in this patient population. Full article
(This article belongs to the Special Issue Cellular and Molecular Progression of Cardiovascular Diseases)
Show Figures

Figure 1

20 pages, 5597 KiB  
Article
Isorhamnetin Alleviates Renal Fibrosis by Inducing Endogenous Hydrogen Sulfide and Regulating Thiol-Based Redox State in Obstructed Kidneys
by Zhen Zhang, Haiyan Zhang, Jianyu Shi, Zheng Wang, Yanni Liang, Jingao Yu, Hongbo Wang, Zhongxing Song, Zhishu Tang, Dongbo Zhang and Jian Yao
Biomolecules 2024, 14(10), 1233; https://doi.org/10.3390/biom14101233 - 29 Sep 2024
Viewed by 647
Abstract
Isorhamnetin (ISO) is an active flavonoid compound mainly isolated from the fruits of Hippophae rhamnoides L. and the leaves of Ginkgo biloba L. Previous studies have revealed the antifibrotic action of ISO in the liver and lungs, although its potential protective effects against [...] Read more.
Isorhamnetin (ISO) is an active flavonoid compound mainly isolated from the fruits of Hippophae rhamnoides L. and the leaves of Ginkgo biloba L. Previous studies have revealed the antifibrotic action of ISO in the liver and lungs, although its potential protective effects against renal fibrosis and the underlying mechanisms are still poorly understood. Given that many actions of ISO could be similarly attained by hydrogen sulfide (H2S), we speculated that ISO may work through the induction of endogenous H2S. To test the hypothesis, we established the unilateral ureteral obstruction (UUO) renal fibrosis rat model and transforming growth factor-β1(TGF-β1)-induced fibrosis in cultured renal tubular cells. ISO treatment inhibited epithelial–mesenchymal transition (EMT) formation, decreased extracellular matrix (ECM) deposition, and relieved renal fibrosis. Further analysis revealed that ISO stimulated the expression of the H2S-synthesizing enzyme cystathionine lyase (CSE) and cystathionine beta-synthase (CBS), and promoted H2S production in vivo and in vitro. The elevated H2S attenuated oxidative stress and elevated the thiol level. It induced Keap1 sulfhydration, disrupted Keap1-Nrf2 interaction, and promoted the entry of Nrf2 into the nucleus. Finally, we found that circulating H2S mainly derived from the liver, and not the kidney. Collectively, our study revealed that ISO alleviated renal fibrosis by inducing endogenous H2S and regulating Keap1-Nrf2 interaction through sulfhydration of Keap1. Endogenous H2S could be an important mediator underlying the pharmacological actions of ISO. Due to the multifunctional properties of H2S, the H2S-inducing nature of ISO could be exploited to treat various diseases. Full article
Show Figures

Graphical abstract

Back to TopTop