Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,262)

Search Parameters:
Keywords = time cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1921 KiB  
Article
Curcumin- Based Molecularly Imprinted Polymer Electropolymerized on Single-Use Graphite Electrode for Dipyridamole Analysis
by Daniel Preda, Gabriel Lucian Radu, Emilia-Elena Iorgulescu, Mihaela-Carmen Cheregi and Iulia Gabriela David
Molecules 2024, 29(19), 4630; https://doi.org/10.3390/molecules29194630 (registering DOI) - 29 Sep 2024
Abstract
A new molecularly imprinted polymer (MIP)-based disposable electrochemical sensor for dipyridamole (DIP) determination was obtained. The sensor was rapidly prepared by potentiodynamic electrochemical polymerization on a pencil graphite electrode (PGE) using curcumin (CUR) as a functional monomer and DIP as a template molecule. [...] Read more.
A new molecularly imprinted polymer (MIP)-based disposable electrochemical sensor for dipyridamole (DIP) determination was obtained. The sensor was rapidly prepared by potentiodynamic electrochemical polymerization on a pencil graphite electrode (PGE) using curcumin (CUR) as a functional monomer and DIP as a template molecule. After the optimization of the conditions (pH, monomer–template ratio, scan rate, number of cyclic voltammetric cycles applied in the electro-polymerization process and extraction time of the template molecule) for MIP formation, DIP voltammetric behavior at the modified electrode (MIP_PGE) was investigated. DIP oxidation took place in a pH-dependent, irreversible mixed diffusion-adsorption controlled process. Differential pulse voltammetry (DPV) and adsorptive stripping differential pulse voltammetry (AdSDPV) were used to quantify DIP from pharmaceutical and tap water samples. Under optimized conditions (Britton–Robinson buffer at pH = 3.29), the obtained linear ranges were 5.00 × 108–1.00 × 105 mol/L and 5.00 × 109–1.00 × 107 mol/L DIP for DPV and AdSDPV, respectively. The limits of detection of the methods were 1.47 × 108 mol/L for DPV and 3.96 × 109 mol/L DIP for AdSDPV. Full article
(This article belongs to the Section Analytical Chemistry)
14 pages, 4522 KiB  
Article
Handrim Reaction Force and Moment Assessment Using a Minimal IMU Configuration and Non-Linear Modeling Approach during Manual Wheelchair Propulsion
by Rachid Aissaoui, Amaury De Lutiis, Aiman Feghoul and Félix Chénier
Sensors 2024, 24(19), 6307; https://doi.org/10.3390/s24196307 (registering DOI) - 29 Sep 2024
Abstract
Manual wheelchair propulsion represents a repetitive and constraining task, which leads mainly to the development of joint injury in spinal cord-injured people. One of the main reasons is the load sustained by the shoulder joint during the propulsion cycle. Moreover, the load at [...] Read more.
Manual wheelchair propulsion represents a repetitive and constraining task, which leads mainly to the development of joint injury in spinal cord-injured people. One of the main reasons is the load sustained by the shoulder joint during the propulsion cycle. Moreover, the load at the shoulder joint is highly correlated with the force and moment acting at the handrim level. The main objective of this study is related to the estimation of handrim reactions forces and moments during wheelchair propulsion using only a single inertial measurement unit per hand. Two approaches are proposed here: Firstly, a method of identification of a non-linear transfer function based on the Hammerstein–Wiener (HW) modeling approach was used. The latter represents a typical multi-input single output in a system engineering modeling approach. Secondly, a specific variant of recurrent neural network called BiLSTM is proposed to predict the time-series data of force and moments at the handrim level. Eleven subjects participated in this study in a linear propulsion protocol, while the forces and moments were measured by a dynamic platform. The two input signals were the linear acceleration as well the angular velocity of the wrist joint. The horizontal, vertical and sagittal moments were estimated by the two approaches. The mean average error (MAE) shows a value of 6.10 N and 4.30 N for the horizontal force for BiLSTM and HW, respectively. The results for the vertical direction show a MAE of 5.91 N and 7.59 N for BiLSTM and HW, respectively. Finally, the MAE for the sagittal moment varies from 0.96 Nm (BiLSTM) to 1.09 Nm for the HW model. The approaches seem similar with respect to the MAE and can be considered accurate knowing that the order of magnitude of the uncertainties of the dynamic platform was reported to be 2.2 N for the horizontal and vertical forces and 2.24 Nm for the sagittal moments. However, it should be noted that HW necessitates the knowledge of the average force and patterns of each subject, whereas the BiLSTM method do not involve the average patterns, which shows its superiority for time-series data prediction. The results provided in this study show the possibility of measuring dynamic forces acting at the handrim level during wheelchair manual propulsion in ecological environments. Full article
(This article belongs to the Special Issue Human Movement Monitoring Using Wearable Sensor Technology)
Show Figures

Figure 1

20 pages, 3840 KiB  
Article
Efficient Production of Some Bioactive Depsides and Simple Phenolic Acids by Microshoots of Aronia × Prunifolia (Purple Aronia) Agitated Cultures as the Result of Feeding Strategy with Four Different Biogenetic Precursors
by Paweł Kubica, Agnieszka Szopa, Adam Setkiewicz and Halina Ekiert
Molecules 2024, 29(19), 4622; https://doi.org/10.3390/molecules29194622 (registering DOI) - 29 Sep 2024
Abstract
A precursor feeding strategy was used for the first time in agitated microshoot cultures of Aronia × prunifolia. This strategy involved the addition of biogenetic precursors of simple phenolic acids (phenylalanine, cinnamic acid, and benzoic acid) and depsides (caffeic acid) into the [...] Read more.
A precursor feeding strategy was used for the first time in agitated microshoot cultures of Aronia × prunifolia. This strategy involved the addition of biogenetic precursors of simple phenolic acids (phenylalanine, cinnamic acid, and benzoic acid) and depsides (caffeic acid) into the culture media, with an assessment of its effect on the production of these bioactive compounds. The in vitro cultures were maintained in Murashige–Skoog medium (1 mg/L BAP and 1 mg/L NAA). Precursors at five concentrations (0.1, 0.5, 1.0, 5.0, and 10.0 mmol/L) were fed into the medium at the time of culture initiation (point “0”) and independently on the 10th day of growth cycles. The contents of 23 compounds were determined in methanolic extracts of biomass collected after 20 days of growth cycles using an HPLC method. All extracts contained the same four depsides (chlorogenic, neochlorogenic, rosmarinic, and cryptochlorogenic acids) and the same four simple phenolic acids (protocatechuic, vanillic, caffeic, and syringic acids). Chlorogenic and neochlorogenic acids were the predominant compounds in all extracts (max. 388.39 and 263.54 mg/100 g d.w.). The maximal total contents of all compounds were confirmed after feeding with cinnamic acid (5 mmol/L, point “0”) and caffeic acid (10 mmol/L, point “0”), which caused a 2.68-fold and 2.49-fold increase in the contents of the estimated compounds vs. control cultures (603.03 and 558.48 mg/100 g d.w., respectively). The obtained results documented the efficacy of the precursor feeding strategy in enhancing the production of bioactive compounds in agitated cultures of A. × prunifolia and suggest a potential practical application value. Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
19 pages, 11852 KiB  
Article
Thermal Monitoring of an Internal Combustion Engine for Lightweight Fixed-Wing UAV Integrating PSO-Based Modelling with Condition-Based Extended Kalman Filter
by Aleksander Suti, Gianpietro Di Rito and Giuseppe Mattei
Drones 2024, 8(10), 531; https://doi.org/10.3390/drones8100531 (registering DOI) - 29 Sep 2024
Abstract
The internal combustion engines of long-endurance UAVs are optimized for cruises, so they are prone to overheating during climbs, when power requests increase. To counteract the phenomenon, step-climb maneuvering is typically operated, but the intermittent high-power requests generate repeated heating–cooling cycles, which, over [...] Read more.
The internal combustion engines of long-endurance UAVs are optimized for cruises, so they are prone to overheating during climbs, when power requests increase. To counteract the phenomenon, step-climb maneuvering is typically operated, but the intermittent high-power requests generate repeated heating–cooling cycles, which, over multiple missions, may promote thermal fatigue, performance degradation, and failure. This paper deals with the development of a model-based monitoring of the cylinder head temperature of the two-stroke engine employed in a lightweight fixed-wing long-endurance UAV, which combines a 0D thermal model derived from physical first principles with an extended Kalman filter capable to estimate the head temperature under degraded conditions. The parameters of the dynamic model, referred to as nominal condition, are defined through a particle-swarm optimization, minimizing the mean square temperature error between simulated and experimental flight data (obtaining mean and peak errors lower than 3% and 10%, respectively). The validated model is used in a so-called condition-based extended Kalman filter, which differs from a conventional one for a correction term in section prediction, leveraged as degradation symptom, based on the deviation of the model-state derivative with respect to the actual measurement. The monitoring algorithm, being executable in real-time and capable of identifying incipient degradations of the thermal flow, demonstrates applicability for online diagnostics and predictive maintenance purposes. Full article
Show Figures

Figure 1

12 pages, 2879 KiB  
Article
Resistance Realized Heritability and Fitness Cost of Cyproflanilide in Rice Stem Borer, Chilo suppressalis (Lepidoptera: Pyralidae)
by Kexin Zhang, Enling Zhan, Xiaoli Chang, Eman Atef Fouad and Chunqing Zhao
Agronomy 2024, 14(10), 2249; https://doi.org/10.3390/agronomy14102249 (registering DOI) - 29 Sep 2024
Abstract
The rice stem borer (RSB) Chilo suppressalis is a devastating rice pest with resistance to a number of insecticides. Recently, the new meta-diamide insecticide cyproflanilide has been considered an effective insecticide to control RSB. However, its resistance risk has not been reported. In [...] Read more.
The rice stem borer (RSB) Chilo suppressalis is a devastating rice pest with resistance to a number of insecticides. Recently, the new meta-diamide insecticide cyproflanilide has been considered an effective insecticide to control RSB. However, its resistance risk has not been reported. In the present study, we aimed to assess the resistance risk and evaluate the fitness cost after the RSB was exposed to cyproflanilide. After five generations of selection, the resistance level of RSB increased by 1.5-fold. When h2 was 0.125, a 10-fold resistance increase in the LD50 values was expected in fourteen and thirty-one generations at the selection intensity of 90% and 50%, respectively. The selected population (RSB-SEL) had significant differences in the developmental duration of eggs, 1st, 2nd, 3rd, and 6th instar larvae, and female pupae compared to the unselected population (RSB-UNSEL). Besides, the adult longevity was shortened, and the average pupal weight of males, the emergence rate, the sex ratio, the oviposition, the mean fecundity, and the full life cycle rate were decreased in RSB-SEL. The intrinsic rate of increase (r), the net reproductive rate (R0), and the finite rate of increase (λ) of RSB-SEL were significantly lower than those of RSB-UNSEL, while the mean generation time (T) of RSB-SEL was significantly longer than that of RSB-UNSEL. Based on the results of the prediction of the generations required for a 10-fold resistance increase in the LD50, a potential risk of resistance development exists in RSB after continuous and excessive use of cyproflanilide. These results will be useful in designing the dose of cyproflanilide to control C. suppressalis in field. Full article
(This article belongs to the Special Issue Insecticide Resistance and Novel Insecticides)
Show Figures

Figure 1

14 pages, 8516 KiB  
Article
A Flexible Multifunctional Sensor Based on an AgNW@ZnONR Composite Material
by Hao Lv, Xue Qi, Yuxin Wang, Yang Ye, Peike Wang, Ao Yin, Jingjing Luo, Zhongqi Ren, Haipeng Liu, Suzhu Yu and Jun Wei
Materials 2024, 17(19), 4788; https://doi.org/10.3390/ma17194788 (registering DOI) - 29 Sep 2024
Abstract
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite [...] Read more.
A multifunctional sensor comprising flexible and transparent ultraviolet (UV) photodetectors (PDs) with strain gauges based on Ag nanowire (AgNW)@ZnO nanorods (ZnONRs) was fabricated using a cost-effective, simple, and efficient method. High-aspect ratio silver nanowires were synthesized using the polyol method. An AgNW@ZnONR composite was formed via the hydrothermal method to ensure the multifunctional capability of the flexible sensors. After refining the process parameters, the size of the ZnO nanorods was decreased to fabricate pliable multifunctional sensors using AgNW@ZnONRs. At a deposition of 0.207 g of AgNW@ZnONRs, the sensor achieves its maximum switching ratio and fastest response time under conditions of 2000 μW/cm2 UV optical power density. With a ton (rise time) of 2.7 s and a toff (fall time) of 2.3 s, the ratio of Ion to Ioff current is 1151. Additionally, the sensor’s maximum optical current value correlates linearly with UV light’s power density. The maximum response current increased from 222.5 pA to 588.1 pA, an increase of 164.3%, when the bending angle was increased from 15° to 90° for the sensor with a deposition of 0.276 g of AgNW@ZnONRs. There was no degradation in the response of the sensors after 10,000 bending cycles, as they have excellent stability and repeatability, which means they can meet the requirements of wearable sensor applications. Therefore, there is great potential for the practical application of multifunctional AgNW@ZnONRs in flexible sensors. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

25 pages, 5002 KiB  
Article
Methodology of Shipboard Spare Parts Requirements Based on Whole Part Repair Strategy
by Houxiang Wang, Haitao Liu, Songshi Shao and Zhihua Zhang
Mathematics 2024, 12(19), 3053; https://doi.org/10.3390/math12193053 (registering DOI) - 29 Sep 2024
Abstract
This paper introduces an assessment method for shipboard spare parts requirements based on a whole-part repair strategy, aimed at enhancing the availability and combat effectiveness of naval equipment. Addressing the shortcomings of traditional repair strategies, this study innovatively adopts a whole-part rotation repair [...] Read more.
This paper introduces an assessment method for shipboard spare parts requirements based on a whole-part repair strategy, aimed at enhancing the availability and combat effectiveness of naval equipment. Addressing the shortcomings of traditional repair strategies, this study innovatively adopts a whole-part rotation repair approach to reduce repair times and improve the rapid response capability of equipment. An evaluation model for support probability and fill rate is established, and Monte Carlo simulation techniques are applied to simulate the impact of different maintenance strategies on spare parts demand and equipment availability. This study also conducts a sensitivity analysis of key parameters, including Mean Time Between Failures (MTBF), repair demand probability, and faulty part repair cycle, to assess their influence on spare parts requirements and equipment availability. The results indicate that the whole-part repair strategy can effectively reduce spare parts demand and enhance equipment availability. In conclusion, the whole-part repair strategy demonstrates a distinct advantage in shipboard spare parts management, optimizing inventory management while ensuring combat readiness. This research provides a novel analytical approach for naval logistics and maintenance planning. Full article
Show Figures

Figure 1

21 pages, 12622 KiB  
Article
Application of Polymeric Tubular Ultrafiltration Membranes for Separation of Car Wash Wastewater
by Piotr Woźniak and Marek Gryta
Membranes 2024, 14(10), 210; https://doi.org/10.3390/membranes14100210 (registering DOI) - 28 Sep 2024
Abstract
The commercial ultrafiltration tubular polyvinylidene fluoride (PVDF) (100 and 200 kDa) and polyethersulfone (PES) (4 kDa) membranes were applied for filtration of car wash wastewater. Intensive fouling was noticed, which caused an over 50% flux reduction during 3–5 h of the filtration process. [...] Read more.
The commercial ultrafiltration tubular polyvinylidene fluoride (PVDF) (100 and 200 kDa) and polyethersulfone (PES) (4 kDa) membranes were applied for filtration of car wash wastewater. Intensive fouling was noticed, which caused an over 50% flux reduction during 3–5 h of the filtration process. This phenomenon was reduced by washing the membranes with an alkaline cleaning agent (pH = 11.5), which is used in car washes to remove insects. The filtration/membrane washing cycle was repeated many times to achieve stable operation of the membrane modules. It has been found that cyclic repeated washing did not deteriorate the performance of the membranes. Despite frequent cleaning of the membranes (every 5–7 h), irreversible fouling occurred, resulting in a 20% reduction in the initial permeate flux. However, the formation of a filter cake definitely improved the separation degree and, for the 200 kDa membranes, separation of the wastewater components was obtained as it was for the 4 kDa membranes, while, at the same time, the permeate flux was 5 times higher. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

21 pages, 7142 KiB  
Article
Economic and Environmental Aspects of Applying the Regeneration of Spent Moulding Sand
by Mariusz Łucarz
Sustainability 2024, 16(19), 8462; https://doi.org/10.3390/su16198462 (registering DOI) - 28 Sep 2024
Abstract
This article presents issues related to the rational management of foundry sand in the context of sustainable development. Attention was drawn to the need to take appropriate measures to protect available natural deposits of good foundry sands in terms of their depletion. The [...] Read more.
This article presents issues related to the rational management of foundry sand in the context of sustainable development. Attention was drawn to the need to take appropriate measures to protect available natural deposits of good foundry sands in terms of their depletion. The main objective of the analyses undertaken was to find out whether more expensive but more efficient thermal regeneration can compensate for the higher energy consumption in relation to mechanical regeneration of spent moulding sand with an organic binder. This aspect was considered from the point of view of the multiple operations performed to clean the grain matrix from the spent binder, taking into account the direct and indirect costs of the process. This paper presents a comparative analysis of the mechanical and thermal regeneration of spent moulding sand on equipment offered by an exemplary manufacturer. Attention was drawn to the successively increasing price of the regeneration process. When analysing the grain matrix recovery process for sustainability reasons, attention was drawn to an important factor in grain matrix management related to its yield in different regeneration methods. Based on an analysis of the costs of regenerating 1 tonne of spent moulding sand, it was concluded that, in the long term, thermal regeneration, which is more expensive due to the cost of equipment and energy consumption, can offset the outlay incurred. Sand consumption was found to be 4.6 times higher by mechanical regeneration in the case studied. At the same time, the grain matrix after thermal regeneration was found to have significantly better and more stable technological parameters in subsequent sand mould preparation cycles. The reproducibility and stability of the technological process can also be an important component of economic growth as part of sustainable development. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

12 pages, 4066 KiB  
Article
Numerical Study on the Enhanced Oil Recovery by CO2 Huff-n-Puff in Shale Volatile Oil Formations
by Aiwei Zheng, Wentao Lu, Rupeng Zhang and Hai Sun
Energies 2024, 17(19), 4881; https://doi.org/10.3390/en17194881 (registering DOI) - 28 Sep 2024
Abstract
The Sichuan Basin’s Liangshan Formation shale is rich in oil and gas resources, yet the recovery rate of shale oil reservoirs typically falls below 10%. Currently, gas injection huff-n-puff (H-n-P) is considered one of the most promising methods for improving shale oil recovery. [...] Read more.
The Sichuan Basin’s Liangshan Formation shale is rich in oil and gas resources, yet the recovery rate of shale oil reservoirs typically falls below 10%. Currently, gas injection huff-n-puff (H-n-P) is considered one of the most promising methods for improving shale oil recovery. This study numerically investigates the application of the CO2 huff-n-puff process in enhancing oil recovery in shale volatile oil reservoirs. Using an actual geological model and fluid properties of shale oil reservoirs in the Sichuan Basin, the CO2 huff-n-puff process was simulated. The model takes into account the molecular diffusion of CO2, adsorption, stress sensitivity effects, and nanopore confinement. After history matching, through sensitivity analysis, the optimal injection rate of 400 tons/day, soaking time of 30 days, and three cycles of huff-n-puff were determined to be the most effective. The simulation results show that, compared with other gases, CO2 has significant potential in improving the recovery rate and overall efficiency of shale oil reservoirs. This study is of great significance and can provide valuable references for the actual work of CO2 huff-n-puff processes in shale volatile oil reservoirs of the Sichuan Basin. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

17 pages, 9187 KiB  
Article
Ultrastructure of Immatures Stages and Life Cycle of Helicobia aurescens (Diptera: Sarcophagidae: Sarcophaginae)
by Lucas Barbosa Cortinhas, Paloma Martins Mendonça, Eliane Gomes Perrut, Rodrigo Rocha Barbosa, Jacenir Reis dos Santos-Mallet and Margareth Maria de Carvalho Queiroz
Insects 2024, 15(10), 753; https://doi.org/10.3390/insects15100753 (registering DOI) - 28 Sep 2024
Abstract
Helicobia aurescens is a flesh fly associated with pig and rat carcasses. This study aims to describe the life cycle at two temperatures (27 ± 1 °C and 29 ± 1 °C) and analyze the morphological characteristics of the eggs, larvae, and puparia [...] Read more.
Helicobia aurescens is a flesh fly associated with pig and rat carcasses. This study aims to describe the life cycle at two temperatures (27 ± 1 °C and 29 ± 1 °C) and analyze the morphological characteristics of the eggs, larvae, and puparia of H. aurescens using scanning electron microscopy (SEM). Temperature is an abiotic factor that greatly influences the development of insects. The larval development of H. aurescens lasts longer at 27 ± 1 °C than it does at 29 ± 1 °C, affecting the growth of newly hatched larvae into adults. The females larviposited three times more at 27 °C than they did at 29 °C, and the number of days laying larvae was also greater. At 27 °C, they laid larvae for 38 days, whereas, at 29 °C, the females larviposited for 21 days. No hatching lines or median areas were detected on the exochorion with SEM, as in the other sarcophagid species. The first-instar larva is very similar to those of the other species. The second instar has anterior spiracles present on the first thoracic segment, with six or seven ramifications aligned regularly. On the third instar, these structures have eight ramifications in a regular row and are located dorsolaterally. The puparium morphology is similar to that of the third-instar larvae. Full article
(This article belongs to the Collection Advances in Diptera Biology)
Show Figures

Figure 1

19 pages, 2915 KiB  
Article
Isolation and Characterization of Two Novel Lytic Bacteriophages against Salmonella typhimurium and Their Biocontrol Potential in Food Products
by Yaxiong Song, Wentao Gu, Yaozhong Hu, Bowei Zhang, Jin Wang, Yi Sun, Wenhui Fu, Xinyang Li, Xiaolong Xing and Shuo Wang
Foods 2024, 13(19), 3103; https://doi.org/10.3390/foods13193103 (registering DOI) - 28 Sep 2024
Abstract
Foodborne pathogens, such as Salmonella, are major factors that pose significant threats to global food safety and public health. Salmonella typhimurium is a prominent serotype contributing to non-typhoidal salmonellosis, which is a prevalent foodborne illness affecting humans and animals. Bacteriophages are considered [...] Read more.
Foodborne pathogens, such as Salmonella, are major factors that pose significant threats to global food safety and public health. Salmonella typhimurium is a prominent serotype contributing to non-typhoidal salmonellosis, which is a prevalent foodborne illness affecting humans and animals. Bacteriophages are considered one of the most environmentally friendly biocontrol agents, particularly in the food industry, owing to their high specificity and high safety. However, the emergency of phage-resistant mutants limits the biocontrol effect of phage treatment, leading to the requirement for a high diversity of lytic phages. Therefore, the study isolated and characterized two novel lytic Salmonella bacteriophages (SPYS_1 and SPYS_2) targeting S. typhimurium ATCC14028 and evaluated their effectiveness in reducing the contamination rates for milk and chicken tenders. Morphological and genomic analyses indicated that Salmonella phages SPYS_1 and SPYS_2 are novel species classified under the genus Skatevirus and the genus Berlinvirus, respectively. Both phages exhibited high stability across a broad range of thermal and pH conditions. The one-step growth curve result suggested that both phages had a short adsorption time and a large burst size in a single lytic cycle. The phage SPYS_1 demonstrated a noteworthy inhibition effect on the growth of S. typhimurium ATCC14028 in milk, resulting in a ~2-log reduction within the 2 to 4 h range. Overall, both phages have shown significant potential for application in food safety in the future. Full article
Show Figures

Figure 1

24 pages, 13719 KiB  
Article
Monte Carlo Modeling of Isotopic Changes of Actinides in Nuclear Fuel of APR1400 Pressurized Water Reactor
by Mikołaj Oettingen and Juyoul Kim
Energies 2024, 17(19), 4864; https://doi.org/10.3390/en17194864 - 27 Sep 2024
Abstract
The aim of this paper is to present the isotopic changes in nuclear fuel during the first reactor cycle of the Korean Advanced Power Reactor 1400 (APR1400). The neutron transport and burnup calculations were performed using the Monte Carlo continuous energy burnup code—MCB. [...] Read more.
The aim of this paper is to present the isotopic changes in nuclear fuel during the first reactor cycle of the Korean Advanced Power Reactor 1400 (APR1400). The neutron transport and burnup calculations were performed using the Monte Carlo continuous energy burnup code—MCB. The three-dimensional numerical model consisting of the reactor pressure vessel with core internals was developed using available geometrical and material data as well as the reactor’s operating conditions. The reactor core was divided into 11 axial and 22 radial burnup zones in order to recreate the spatial distribution of the fuel burnup. The isotopic changes due to the nuclear transmutations and decays were calculated in each burnup zone until the desired average burnup of 17.571 GWd/tHMint was reached. The calculations include changes in the boric acid concentration at defined time steps and the burnout of the gadolinia burnable absorber embedded in the nuclear fuel. This study shows the spatial distribution of minor and major actinides at the end of the reactor cycle as well as the depletion of uranium, the build-up of plutonium, and the formation of neptunium, americium, and curium during the reactor’s operation. Full article
(This article belongs to the Special Issue Advanced Technologies in Nuclear Engineering)
Show Figures

Figure 1

14 pages, 7762 KiB  
Article
Mechanical Properties, Durability Performance, and Microstructure of CaO-Fly Ash Solidified Sludge from Northeast, China
by Chen Chen, Kai Zhang, Chunyu Ma, Zhigang Yin, Liang Wang, Yao Chen, Ziqi Lin and Yi Liu
Materials 2024, 17(19), 4757; https://doi.org/10.3390/ma17194757 - 27 Sep 2024
Abstract
In order to investigate the influence of the CaO and fly ash (FA) dosage and proportion on the mechanical properties, durability, and microstructure of solidified sludge, freeze–thaw (F-T) cycles and dry–wet (D-W) cycles are conducted to study the change in appearance and the [...] Read more.
In order to investigate the influence of the CaO and fly ash (FA) dosage and proportion on the mechanical properties, durability, and microstructure of solidified sludge, freeze–thaw (F-T) cycles and dry–wet (D-W) cycles are conducted to study the change in appearance and the strength attenuation of CaO-FA solidified sludge. Low-field nuclear magnetic resonance (LF-NMR) is used to analyze the microstructure of the solidified sludge with various dosages and ratios of CaO-FA. The results demonstrate that the unconfined compressive strength (UCS) and direct shear strength of solidified sludge increase with the prolongation of the curing age. Furthermore, the mechanical properties of solidified sludge are improved as the ratio of CaO-FA increases. As the curing age increases, the distribution of transverse relaxation time (T2) becomes narrow, the spectral area decreases, and the amplitude of the LF-NMR signal shows a downward and leftward tendency. Additionally, with the increase in the number of F-T cycles and D-W cycles, the UCS of solidified sludge declines and the degree of pore deterioration increased gradually. This study offers a theoretical foundation and empirical data for the dredging and treatment of sludge in cold regions. Full article
Show Figures

Figure 1

11 pages, 263 KiB  
Article
Circadian Rhythm Genes and Their Association with Sleep and Sleep Restriction
by Marcin Sochal, Marta Ditmer, Aleksandra Tarasiuk-Zawadzka, Agata Binienda, Szymon Turkiewicz, Adam Wysokiński, Filip Franciszek Karuga, Piotr Białasiewicz, Jakub Fichna and Agata Gabryelska
Int. J. Mol. Sci. 2024, 25(19), 10445; https://doi.org/10.3390/ijms251910445 - 27 Sep 2024
Abstract
Deprivation of sleep (DS) and its effects on circadian rhythm gene expression are not well understood despite their influence on various physiological and psychological processes. This study aimed to elucidate the changes in the expression of circadian rhythm genes following a night of [...] Read more.
Deprivation of sleep (DS) and its effects on circadian rhythm gene expression are not well understood despite their influence on various physiological and psychological processes. This study aimed to elucidate the changes in the expression of circadian rhythm genes following a night of sleep and DS. Their correlation with sleep architecture and physical activity was also examined. The study included 81 participants who underwent polysomnography (PSG) and DS with actigraphy. Blood samples were collected after PSG and DS. Expression levels of brain and muscle ARNT-like 1 (BMAL1), circadian locomotor output cycles kaput (CLOCK), neuronal PAS domain protein 2 (NPAS2), period 1 (PER1), cryptochrome 1 (CRY1) and nuclear receptor subfamily 1 group D member 1 (NR1D1) were analyzed using qRT-PCR. DS decreased the expression of CLOCK and BMAL1 while increasing PER1. PER1 expression correlated positively with total sleep time and non-rapid-eye-movement (NREM) sleep duration and negatively with sleep latency, alpha, beta and delta waves in the O1A2 lead. Physical activity during DS showed positive correlations with CLOCK, BMAL1, and CRY1. The findings highlight the role of PER1 in modulating sleep patterns, suggesting potential targets for managing sleep-related disorders. Further research is essential to deepen the understanding of these relationships and their implications. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Back to TopTop