Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,157)

Search Parameters:
Keywords = time decay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 963 KiB  
Article
A Sub-Channel Spatial Homogeneity-Based Channel Estimation Method for Underwater Optical Densely Arrayed MIMO Systems
by Guojin Peng, Hongbin Qiu, Yanlong Li and Junru Wang
J. Mar. Sci. Eng. 2024, 12(11), 2030; https://doi.org/10.3390/jmse12112030 - 10 Nov 2024
Viewed by 272
Abstract
The limited surface area and structural constraints of small underwater communication devices necessitate a dense placement of transmitting and receiving array elements in optical multiple-input multiple-output (MIMO) systems. The compact layout leads to the formation of sub-channels that exhibit notable spatial correlation and [...] Read more.
The limited surface area and structural constraints of small underwater communication devices necessitate a dense placement of transmitting and receiving array elements in optical multiple-input multiple-output (MIMO) systems. The compact layout leads to the formation of sub-channels that exhibit notable spatial correlation and a tendency toward homogeneity. Although sub-channel spatial homogeneity (SSH) may diminish the communication capacity of MIMO systems, it provides a significant advantage by reducing the pilot overhead. In this study, we exploit the inherent SSH and the natural time-domain sparsity of channel impulse response (CIR) in the underwater optical densely arrayed MIMO (UODA-MIMO) system to propose an innovative SSH-based channel estimation (SSH-CE) method. We model the underwater optical CIR at Gbaud rates and integrate it with SSH characteristics. This approach transforms the reconstruction targets of compressive sensing (CS) from conventional CIR samples to prior CIR model parameters and the fitting residuals of the homogeneous sub-channels, reducing the pilot overhead. The simulation results of photon tracing for UODA-MIMO sub-channels in turbid harbor water indicate a monotonic, exponential decay in CIR at Gbaud rates, with transmission delays exceeding 5 nanoseconds for distances over 8 m. Moreover, the correlation coefficients among sub-channels reach a minimum of 0.975, confirming the presence of SSH in UODA-MIMO systems. In comparison to existing CS methods that rely on known sparsity, sparsity adaptation, and the structural sparsity of MIMO channels, the SSH-CE method achieves a lower degree of sparsity in reconstruction targets and a reduced lower bound for pilot requirements under the SPARK criterion. Specifically, the SSH-CE method achieves a reduction in the pilot overhead for reconstructing Nt sub-channels of K-sparse to 2Nt irrespective of CIR residual compensation. Full article
Show Figures

Figure 1

14 pages, 806 KiB  
Article
Monitoring Age-Related Changes in Gait Complexity in the Wild with a Smartphone Accelerometer System
by Vincenzo E. Di Bacco and William H. Gage
Sensors 2024, 24(22), 7175; https://doi.org/10.3390/s24227175 (registering DOI) - 8 Nov 2024
Viewed by 240
Abstract
Stride-to-stride fluctuations during walking reflect age-related changes in gait adaptability and are estimated with nonlinear measures that confine data collection to controlled settings. Smartphones, with their embedded accelerometers, may provide accessible gait analysis throughout the day. This study investigated age-related differences in linear [...] Read more.
Stride-to-stride fluctuations during walking reflect age-related changes in gait adaptability and are estimated with nonlinear measures that confine data collection to controlled settings. Smartphones, with their embedded accelerometers, may provide accessible gait analysis throughout the day. This study investigated age-related differences in linear and nonlinear gait measures estimated from a smartphone accelerometer (SPAcc) in an unconstrained, free-living environment. Thirteen young adults (YA) and 11 older adults (OA) walked within a shopping mall with a SPAcc placed in their front right pants pocket. The inter-stride interval, calculated as the time difference between ipsilateral heel contacts, was used for dependent measures calculations. One-way repeated-measures analysis of variance revealed significant (p < 0.05) age-related differences (mean: YA, OA) for stride-time standard deviation (0.04 s, 0.05 s) and coefficient of variation (3.47%, 4.16%), sample entropy (SaEn) scale 1 (1.70, 1.86) and scale 3 (2.12, 1.80), and statistical persistence decay (31 strides, 23 strides). The fractal scaling index was not different between groups (0.93, 0.95), but exceeded those typically found in controlled settings, suggesting an upregulation in adaptive behaviour likely to accommodate the increased challenge of free-living walking. These findings support the SPAcc as a viable telehealth instrument for remote monitoring of gait dynamics, with implications for unsupervised fall-risk assessment. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

21 pages, 26323 KiB  
Article
The Use of Phosphonates to Inhibit Salt Crystallization: A Laboratory Study for the Sustainable Conservation of Mural Paintings in the Hypogea Context
by Giulia Simonelli, Giancarlo Sidoti, Ludovica Ruggiero, Angela Calia, Giovanni Quarta, Fabio Aramini and Paola Mezzadri
Sustainability 2024, 16(22), 9745; https://doi.org/10.3390/su16229745 - 8 Nov 2024
Viewed by 420
Abstract
This research is focused on the laboratory study of salt crystallization inhibitor products as new materials for conservation treatments which can be applied to mortars and painted plasters; as is well known, salt crystallization is one of the most frequent causes of decay [...] Read more.
This research is focused on the laboratory study of salt crystallization inhibitor products as new materials for conservation treatments which can be applied to mortars and painted plasters; as is well known, salt crystallization is one of the most frequent causes of decay processes on decorated architectural surfaces in a wide range of environments. Specifically, the study targets the field of the preventive conservation of mural paintings within rupestrian heritage sites. For the first time, systematic investigations were performed on mock-ups made of plaster painted with two different pigments: yellow ochre and carbon black. Two types of phosphonate inhibitors, PBTC (2-phosphonobutane-1,2,4-tricarboxylic acid) and ATMP (aminotris (methylene phosphonic acid)), were chosen and applied at two different concentrations. Given the limited literature available, and the presence of pigments potentially sensitive to treatment with salt inhibitors, preliminary tests were required. Their effects on the chromatic features of the pigments were evaluated visually and using colorimetry. The changes in the behaviour of water circulation in the mortar resulting from the treatments were evaluated through water vapour permeability and absorption tests. Accelerated crystallization experiments were carried out to assess how inhibitors could influence the growth of salts and the resulting material damage. The latter was carried out by employing sodium sulphate and calcium sulphate solutions, quantifying the damage to the specimens through material loss in weight and the percentage of painted surface loss. Based on the overall results, the product with the best performance was identified was ATMP 0.1% (by volume) in deionized water. The obtained results show that salt inhibitor treatments are promising for in situ application and could represent an innovative approach to promote the sustainable conservation of mural painting, particularly those located in hypogeal contexts, where the salt supply cannot be removed and slowing the growth of salts and/or changing their crystalline habitus may be effective in limiting their damage. Full article
Show Figures

Figure 1

25 pages, 16485 KiB  
Article
Scan-to-BIM Process and Architectural Conservation: Towards an Effective Tool for the Thematic Mapping of Decay and Alteration Phenomena
by Manuela Aricò, Claudia Ferro, Marcello La Guardia, Mauro Lo Brutto, Germana Taranto and Gaspare Massimo Ventimiglia
Heritage 2024, 7(11), 6257-6281; https://doi.org/10.3390/heritage7110294 - 6 Nov 2024
Viewed by 562
Abstract
Ancient monumental complexes need continuous analysis and monitoring operations to preserve a good conservation status. For this reason, the analysis of decay and alteration phenomena represents one of the main activities for their preservation. At the same time, the diffusion of Heritage Building [...] Read more.
Ancient monumental complexes need continuous analysis and monitoring operations to preserve a good conservation status. For this reason, the analysis of decay and alteration phenomena represents one of the main activities for their preservation. At the same time, the diffusion of Heritage Building Information Modelling (HBIM) methodology opens new scenarios for the management of Architectural Heritage. The paper describes the workflow based on a Scan-to-BIM approach for the generation of a decay map in an HBIM model. The workflow was applied to a significant case study, the church of “Santa Maria della Grotta” in Marsala (Italy). This church, partially excavated in a sandstone bank, is part of a larger heritage site consisting of a series of hypogea and a Punic necropolis dating back more than a thousand years. The Scan-to-BIM process, relying on an integrated survey combining mobile laser scanning and photogrammetric technologies, enabled the achievement of a complete 3D parametric model of the monument and, altogether, a detailed decay map in a BIM environment. The mapping process focused on the production of thematic maps of perimetral walls according to an abacus of decays implemented in a BIM system, useful for the analysis and conservation of the church. The work demonstrates how the Scan-to-BIM process is an efficient approach for 3D data collection and how it could facilitate the identification and mapping of pathogenic phenomena. Furthermore, the inclusion of this kind of information in the BIM model represents an effective tool for the maintenance and restoration of built heritage. Full article
(This article belongs to the Section Digital Heritage)
Show Figures

Figure 1

18 pages, 14676 KiB  
Article
Study on the Fine Characterization of Spatial Distribution and Predictive Modeling of Remediation of Site Pollution
by Jun Yang and Caijie Wei
Water 2024, 16(21), 3154; https://doi.org/10.3390/w16213154 - 4 Nov 2024
Viewed by 431
Abstract
The present study focuses on a site contaminated with halogenated hydrocarbons, utilizing a detailed inventory of contamination data to achieve the precise characterization of groundwater pollution. Employing MOFLOW-2000 software, a groundwater flow model was established for the study area. In conjunction with MT3DMS, [...] Read more.
The present study focuses on a site contaminated with halogenated hydrocarbons, utilizing a detailed inventory of contamination data to achieve the precise characterization of groundwater pollution. Employing MOFLOW-2000 software, a groundwater flow model was established for the study area. In conjunction with MT3DMS, a predictive model was constructed to simulate and forecast the spatiotemporal distribution of contaminant migration and attenuation following site remediation. The simulation area was delineated based on geographical features, with the vertical simulation range of strata also determined. To establish a hydrogeological conceptual model for the target remediation site, comprehensive hydrogeological data were collected, encompassing geological structures, hydrological parameters, and rainfall information. Model calibration was based on the six layers of low-permeability aquifer intervals revealed by geological exploration wells MW1–5, as well as the distribution of groundwater-level contours and rainfall data. Based on data from September 2010, an initial three-dimensional model of tetrachloroethylene (PCE) distribution was generated. Subsequently, a solute transport model for PCE was established, incorporating various enhanced reductive dechlorination (ERD) remediation strategies applied at different times and locations. Calibration against actual monitoring data revealed the presence of unmonitored dense non-aqueous phase liquids (DNAPLs) at the site, contributing to the continuous release and elevation of PCE concentrations. By accounting for DNAPL release, the calibrated transport and attenuation model closely matched observed concentration decay patterns, effectively capturing the actual dynamics of contaminant transport and attenuation within the groundwater system. The modeling approach proposed in this study provides important support for contamination remediation and attenuation at the current site, and it is also applicable to simulating and predicting pollution scenarios at similar sites. Full article
(This article belongs to the Topic Organic Pollution in Soil and Groundwater)
Show Figures

Figure 1

19 pages, 9100 KiB  
Article
Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire
by Zhe Chuan Feng, Ming Tian, Xiong Zhang, Manika Tun Nafisa, Yao Liu, Jeffrey Yiin, Benjamin Klein and Ian Ferguson
Nanomaterials 2024, 14(21), 1769; https://doi.org/10.3390/nano14211769 - 4 Nov 2024
Viewed by 434
Abstract
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on [...] Read more.
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlxGa1−xN films with high Al fractions (60–87%) grown on sapphire substrates, including AlN nucleation and buffer layers, by metal–organic chemical vapor deposition (MOCVD). They were initially investigated by high-resolution X-ray diffraction (HR-XRD) and Raman scattering (RS). A set of formulas was deduced to precisely determine x(Al) from HR-XRD data. Screw dislocation densities in AlGaN and AlN layers were deduced. DUV (266 nm) excitation RS clearly exhibits AlGaN Raman features far superior to visible RS. The simulation on the AlGaN longitudinal optical (LO) phonon modes determined the carrier concentrations in the AlGaN layers. The spatial correlation model (SCM) analyses on E2(high) modes examined the AlGaN and AlN layer properties. These high-x(Al) AlxGa1−xN films possess large energy gaps Eg in the range of 5.0–5.6 eV and are excited by a DUV 213 nm (5.8 eV) laser for room temperature (RT) photoluminescence (PL) and temperature-dependent photoluminescence (TDPL) studies. The obtained RTPL bands were deconvoluted with two Gaussian bands, indicating cross-bandgap emission, phonon replicas, and variation with x(Al). TDPL spectra at 20–300 K of Al0.87Ga0.13N exhibit the T-dependences of the band-edge luminescence near 5.6 eV and the phonon replicas. According to the Arrhenius fitting diagram of the TDPL spectra, the activation energy (19.6 meV) associated with the luminescence process is acquired. In addition, the combined PL and time-resolved photoluminescence (TRPL) spectroscopic system with DUV 213 nm pulse excitation was applied to measure a typical AlGaN multiple-quantum well (MQW). The RT TRPL decay spectra were obtained at four wavelengths and fitted by two exponentials with fast and slow decay times of ~0.2 ns and 1–2 ns, respectively. Comprehensive studies on these Al-rich AlGaN epi-films and a typical AlGaN MQW are achieved with unique and significant results, which are useful to researchers in the field. Full article
Show Figures

Figure 1

17 pages, 2916 KiB  
Article
The Impact of Salvage Logging on Deadwood Decomposition and Forest Regeneration: A Case Study in Tatra National Park, Slovakia
by Vladimír Šebeň, Jozef Pajtík and Bohdan Konôpka
Forests 2024, 15(11), 1936; https://doi.org/10.3390/f15111936 - 3 Nov 2024
Viewed by 665
Abstract
In November 2004, a severe windstorm destroyed large portions of the spruce-dominated forests in the Tatra National Park (northern Slovakia). This study focused on the status of deadwood and its influence on post-disturbance forest regeneration 18 years after the destruction. Since some disturbed [...] Read more.
In November 2004, a severe windstorm destroyed large portions of the spruce-dominated forests in the Tatra National Park (northern Slovakia). This study focused on the status of deadwood and its influence on post-disturbance forest regeneration 18 years after the destruction. Since some disturbed areas were salvaged and others were not, we could compare the situations between these two management approaches. Therefore, 40 research sites (20 salvaged and 20 unsalvaged) were analyzed; each contained four satellite plots, i.e., circle-like areas with a radius of 3 m. We measured the diameter of deadwood and its decay status (classes 1–5) and recorded the sizes (stem base diameter and height) as well as species of young trees. Our results showed that while salvage conditions and contact with soil stimulated deadwood decomposition, the diameter of logs was not a significant factor. The highest decay class (3.83) was found in deadwood in salvaged areas and touching the soil, while the lowest decay class (3.10) was found in deadwood in unsalvaged areas and in the case of logs not touching the soil. Although carbon content (based on the percentage of wood mass) did not change with the decay class, wood density decreased sharply with decay, and deadwood moisture increased. We also found that the different post-disturbance management strategies influenced forest regeneration. Significantly higher tree diversity was observed in salvaged sites (5.40 species per plot) compared to unsalvaged sites (3.85 species per plot). At the same time, while sites with logging were predominantly covered by broadleaved species, those without logging were typically dominated by Norway spruce (Picea abies L. Karst). Our findings suggest that although salvage logging reduced the carbon and total water content in deadwood, it can promote tree species diversity. Therefore, the currently prevailing opinion about the exclusively negative effects of salvage logging on the forest environment should be accepted with caution, and local conditions must be considered before making broad judgments. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 3409 KiB  
Article
Development and Verification of a Multi-Physics Transport Code of Molten Salt Reactor Fission Products
by Liang Chen, Liaoyuan He, Shaopeng Xia, Minyu Peng, Guifeng Zhu, Rui Yan, Yang Zou and Hongjie Xu
Energies 2024, 17(21), 5448; https://doi.org/10.3390/en17215448 - 31 Oct 2024
Viewed by 398
Abstract
The transport of fission products in molten salt reactors has attracted much attention. However, few codes can completely describe the transport characteristic, though the migration of fission products in the molten salt reactor is essential to estimate the source term, decay heat, and [...] Read more.
The transport of fission products in molten salt reactors has attracted much attention. However, few codes can completely describe the transport characteristic, though the migration of fission products in the molten salt reactor is essential to estimate the source term, decay heat, and radiation shielding. This study built a program named ThorFPMC (Thorium Fission Products Migration Code) that can handle the multi-physics transport characteristic based on the flow burnup code ThorMODEc (Thorium MOlten Salt Reactor Specific DEpletion Code). A problem-related depletion chain compression method was applied to decrease the order of the solve matrix. The matrix exponential and splitting methods were applied to solve the steady state and transient calculation, respectively. Error analysis showed that for a specific problem, the simplified depletion chain matrix index method could solve the fission products migration equation with an arbitrary time-step with high speed (s) and high precision (10−4); the splitting method could reach a precision of 10−2 level for the full fuel depletion chain, multi-nodes, and transient problems. Compared to the Strang splitting method, the perturbation splitting method has higher precision and less time consumption. In summary, the developed programmer could describe the migration effect of fission products in molten salt reactors, which provides a significant tool for the design of molten salt reactors. Full article
(This article belongs to the Special Issue Advanced Technologies in Nuclear Engineering)
Show Figures

Figure 1

16 pages, 3120 KiB  
Article
Bone Scintigraphy in Cardiac Transthyretin-Related Amyloidosis: A Novel Time-Saving Tool for Semiquantitative Analysis, with Good Potential for Predicting Different Etiologies
by Susanna Mattoni, Maria Francesca Morrone, Giuseppe Della Gala, Sonia Elisa Prisco, Maurizio Sguazzotti, Giulia Saturi, Simone Longhi, Stefano Fanti, Rachele Bonfiglioli and Lidia Strigari
Appl. Sci. 2024, 14(21), 9982; https://doi.org/10.3390/app14219982 - 31 Oct 2024
Viewed by 500
Abstract
(1) Background: The visual and semiquantitative analysis of Technetium-99metastable-3,3-diphospono-1,2-propanodicarboxylic acid (99mTc-DPD) bone scintigraphy is promising for diagnosing cardiac amyloidosis but time-consuming. We validated a faster method, the geometric mean (GM) method with a semi-automated workflow, for heart–whole body (WB) ratio (H/WBr), [...] Read more.
(1) Background: The visual and semiquantitative analysis of Technetium-99metastable-3,3-diphospono-1,2-propanodicarboxylic acid (99mTc-DPD) bone scintigraphy is promising for diagnosing cardiac amyloidosis but time-consuming. We validated a faster method, the geometric mean (GM) method with a semi-automated workflow, for heart–whole body (WB) ratio (H/WBr), heart retention (Hr), and WB retention (WBr) calculations compared to the classic method (CM) established in the literature. The capability of semiquantitative scintigraphy indexes to differentiate the etiology in transthyretin-related cardiac amyloidosis (cATTR) patients was investigated. (2) Methods: H/WBr, Hr, and WBr were calculated by extracting counts for WB, kidneys, bladder, and heart on early and late planar image scans and applying background, scan-time, and decay corrections, using CM and GM both on a referring workstation and on a semi-automated workflow in external software. The comparison between CM and GM was assessed with Pearson’s correlation, Lin’s Concordance Correlation Coefficient (CCC), and Bland–Altman analysis. H/WBr, Hr, and WBr and several clinical variables were used to implement LASSO, Random Forest (RF), and Neural Network (NN) models to predict mutated and wild-type ATTR etiologies. ROC curves and AUC were calculated. (3) Results: Hr, WBr, and H/WBr using CM and GM were highly correlated. Bland–Altman analysis between CM and GM showed biases of 0.12% [CI:0.04%;0.19%] for H/WBr, 0.07% [CI: 0.01%; 0.13%] for Hr, and -0.50% [CI: −1.22%; 0.22%] for WBr. LASSO and NN models had good performance in predicting etiologies with AUC values of 87.3% and 73.6%, respectively. The RF model showed a poorer AUC of 55.8%. (4) Conclusions: The GM in the assisted workflow was validated against the CM. LASSO and NN approaches allowed a good prediction performance to be obtained for patient etiology. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

15 pages, 3415 KiB  
Article
Glyphosate Herbicide Impacts on the Seagrasses Halodule wrightii and Ruppia maritima from a Subtropical Florida Estuary
by Austin Fox, Hope Leonard, Eugenia Springer and Tyler Provoncha
J. Mar. Sci. Eng. 2024, 12(11), 1941; https://doi.org/10.3390/jmse12111941 - 31 Oct 2024
Viewed by 416
Abstract
Seagrass meadows are among the most threatened ecosystems on Earth, with losses attributed to increasing coastal populations, degraded water quality and climate change. As coastal communities work to improve water quality, there is increased concern regarding the use of herbicides within the watersheds [...] Read more.
Seagrass meadows are among the most threatened ecosystems on Earth, with losses attributed to increasing coastal populations, degraded water quality and climate change. As coastal communities work to improve water quality, there is increased concern regarding the use of herbicides within the watersheds of these sensitive ecosystems. Glyphosate is the most widely used herbicide on Earth because it is non-selective and lethal to most plants. Also, the targeted amino acid synthesis pathway of glyphosate is not carried out by vertebrates, and it is generally considered one of the safer but effective herbicides on the market. At least partially due to its cost-effectiveness compared to other techniques, including mechanical harvesting, glyphosate use in the aquatic environment has increased in coastal areas to manage aquatic weeds, maintain navigable waterways and mitigate upland flooding. This has prompted concerns regarding potential ecosystem-level impacts. To test the acute toxicity of glyphosate to seagrasses, mesocosm experiments exposed Ruppia maritima and Halodule wrightii to 1 ppm, 100 ppm and 1000 ppm of glyphosate (as glyphosate acid). No significant decrease in leaf chlorophyll a (Chl a) was identified for either species at 1 ppm versus a control; however, significant decreases were observed at higher concentrations. In all except 1000 ppm mesocosms, water column Chl a increased, with a 7-fold increase at 100 ppm. These data demonstrate that at very high glyphosate concentrations, both acute toxicity and light limitation from enhanced algal biomass may have adverse impacts on seagrasses. Despite these observations, no significant adverse impacts attributed to acute toxicity were observed at 1 ppm, which is >1000 times higher than concentrations measured in the Indian River Lagoon system. Overall, herbicide use and associated decaying biomass contribute nutrients to these systems, in contrast to the removal of nutrients when mechanical harvesting is used. Based on our data and calculations, when used at recommended application rates, contributions to eutrophication, degraded water quality and harmful algal blooms were more likely to impact seagrasses than acute toxicity of glyphosate. Full article
Show Figures

Figure 1

18 pages, 1182 KiB  
Article
Dynamics of Photoinduced Charge Carriers in Metal-Halide Perovskites
by András Bojtor, Dávid Krisztián, Ferenc Korsós, Sándor Kollarics, Gábor Paráda, Márton Kollár, Endre Horváth, Xavier Mettan, Bence G. Márkus, László Forró and Ferenc Simon
Nanomaterials 2024, 14(21), 1742; https://doi.org/10.3390/nano14211742 - 30 Oct 2024
Viewed by 585
Abstract
The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger [...] Read more.
The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger recombination. We prove that performing injection-dependent measurement is crucial in identifying the recombination mechanism. We present temperature and injection level dependent measurements in CsPbBr3, which is the most common inorganic lead-halide perovskite. In this material, we observe the dominance of charge-carrier trapping, which results in ultra-long charge-carrier lifetimes. Although charge trapping can limit the effectiveness of materials in photovoltaic applications, it also offers significant advantages for various alternative uses, including delayed and persistent photodetection, charge-trap memory, afterglow light-emitting diodes, quantum information storage, and photocatalytic activity. Full article
Show Figures

Figure 1

13 pages, 10676 KiB  
Article
Volumetric CT Assessment of In Situ Induced Hepatic Lesions in a Transgenic Swine Model
by Derek Smetanick, Danielle Stolley, David Fuentes, Natalie W. Fowlkes, Faith Shakoor, Maria Sophia Stenkamp, Samantha Hicks, Steve Parrish and Erik Cressman
Life 2024, 14(11), 1395; https://doi.org/10.3390/life14111395 - 30 Oct 2024
Viewed by 446
Abstract
The growth rate of in situ-induced hepatic lesions in an Oncopig large animal model is quantitatively assessed. Oncopigs (n = 9) received baseline triple-phase CT scans prior to lesion induction. Lesions were subsequently induced by delivering the Ad-Cre vector to four locations in [...] Read more.
The growth rate of in situ-induced hepatic lesions in an Oncopig large animal model is quantitatively assessed. Oncopigs (n = 9) received baseline triple-phase CT scans prior to lesion induction. Lesions were subsequently induced by delivering the Ad-Cre vector to four locations in the liver. Triple-phase CT scans were obtained weekly to track the growth of the lesions. Animals were sacrificed at 14, 21, or 28 days (n = 3 in each group). The overall success rate of lesion generation was ~78%. Histopathology sections consistently revealed lesions that were highly inflammatory and consisted of a large leukocyte population without clear evidence of carcinomas. Lesions presented within imaging as hypovascular, low attenuating masses with slight contrast enhancement around the margins but little to no enhancement within the lesions themselves. The observed lesions were manually segmented on the venous phase image. Segmentation volumes were fitted to a logistic growth and decay model. Several lesions observed at earlier time points in the 28-day group had fully regressed by the time of the necropsy. The overall trend of rapid growth for the first 21 days, with spontaneous regression of the lesions being observed from day 21 to 28, suggests that the optimal window for experimental studies may be from days 14 to 21. The data and mathematical models generated from this study may be used for future computational models; however, the current model presented has moderate clinical relevance because many induced tumors resolved spontaneously within a few weeks. Awareness and careful consideration of the modest relevance and limitations of the model are advisable for each specific use case. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

22 pages, 5113 KiB  
Article
GDnet-IP: Grouped Dropout-Based Convolutional Neural Network for Insect Pest Recognition
by Dongcheng Li, Yongqi Xu, Zheming Yuan and Zhijun Dai
Agriculture 2024, 14(11), 1915; https://doi.org/10.3390/agriculture14111915 - 29 Oct 2024
Viewed by 466
Abstract
Lightweight convolutional neural network (CNN) models have proven effective in recognizing common pest species, yet challenges remain in enhancing their nonlinear learning capacity and reducing overfitting. This study introduces a grouped dropout strategy and modifies the CNN architecture to improve the accuracy of [...] Read more.
Lightweight convolutional neural network (CNN) models have proven effective in recognizing common pest species, yet challenges remain in enhancing their nonlinear learning capacity and reducing overfitting. This study introduces a grouped dropout strategy and modifies the CNN architecture to improve the accuracy of multi-class insect recognition. Specifically, we optimized the base model by selecting appropriate optimizers, fine-tuning the dropout probability, and adjusting the learning rate decay strategy. Additionally, we replaced ReLU with PReLU and added BatchNorm layers after each Inception layer, enhancing the model’s nonlinear expression and training stability. Leveraging the Inception module’s branching structure and the adaptive grouping properties of the WeDIV clustering algorithm, we developed two grouped dropout models, the iGDnet-IP and GDnet-IP. Experimental results on a dataset containing 20 insect species (15 pests and five beneficial insects) demonstrated an increase in cross-validation accuracy from 84.68% to 92.12%, with notable improvements in the recognition rates for difficult-to-classify species, such as Parnara guttatus Bremer and Grey (PGBG) and Papilio xuthus Linnaeus (PXLL), increasing from 38% and 47% to 62% and 93%, respectively. Furthermore, these models showed significant accuracy advantages over standard dropout methods on test sets, with faster training times compared to four conventional CNN models, highlighting their suitability for mobile applications. Theoretical analyses of model gradients and Fisher information provide further insight into the grouped dropout strategy’s role in improving CNN interpretability for insect recognition tasks. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

17 pages, 4895 KiB  
Article
Effect of Temperature and Electric Field Strength on Carrier Mobility of Oil-Impregnated Pressboard Under DC Voltage
by Jun Deng, Zhicheng Xie, Hao Ge, Xiaoqiang Xue, Chunjia Gao, Jianwei Cheng, Haibin Zhou, Zhicheng Pan, Gang Lyu and Heng Wu
Energies 2024, 17(21), 5338; https://doi.org/10.3390/en17215338 - 26 Oct 2024
Viewed by 626
Abstract
The influence of carrier mobility on the space charge transport behavior inside the oil-impregnated pressboard insulation of converter transformers cannot be neglected. However, at present, current knowledge is usually derived from empirical or theoretical values, lacks experimental studies, and often ignores the effects [...] Read more.
The influence of carrier mobility on the space charge transport behavior inside the oil-impregnated pressboard insulation of converter transformers cannot be neglected. However, at present, current knowledge is usually derived from empirical or theoretical values, lacks experimental studies, and often ignores the effects of temperature and field strength under actual operating conditions. In this paper, based on the variable-temperature surface potential decay (SPD) method, a carrier mobility measurement platform for oil-impregnated pressboard is established, and the carrier mobility values for different combinations of oil and oil-impregnated pressboard are obtained experimentally to analyze and reveal the influence mechanisms of temperature and field strength on the carrier mobility. The results indicate the following: (1) The positive and negative carrier mobilities of oil-impregnated pressboard are in the range of 10−12–10−13 m2·V−1·s−1, and the negative carrier mobility is always higher than the positive carrier mobility. (2) The carrier mobility is positively correlated with the changes of temperature and field strength, and when the temperature increases from 20 °C to 80 °C, the positive and negative carrier mobilities increase by 4.01 times and 4.72 times, respectively; when the field strength increases from 1 kV/mm to 7 kV/mm, the positive and negative carrier mobility increases by 2.53 and 2.72 times, respectively. (3) The carrier mobility of the pressboard with a higher oil absorption rate changes more significantly with temperature; when the field strength is 7 kV/mm and the temperature increases from 20 °C to 80 °C, the positive polarity carrier mobility increases from 3.96 × 10−13 m2·V−1·s−1 to 2.64 × 10−11 m2·V−1·s−1, an increase of 66.67 times, while the increase in the carrier mobility of the pressboard with a lower oil absorption rate is only 1.59 times. (4) The carrier mobility of the naphthenic transformer oil-impregnated pressboard is higher than that of the paraffin-based transformer oil-impregnated pressboard, and the carrier mobility of two kinds of naphthenic transformer oil-impregnated pressboard is 3.16 times and 2.47 times higher than that of the paraffin-based transformer oil-impregnated pressboard, respectively, under the conditions of 60 °C and 7 kV/mm. (5) Utilizing the Darcy model and microscopic scanning results of the pressboard morphology, it was revealed that permeability and fiber structure are key factors influencing the variation in carrier mobility. The research results of this paper can provide theoretical basis for the calibration and optimization of the oil-pressboard insulation structure of converter transformers. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 271 KiB  
Article
Exponential Stability of a Kirchhoff Plate Equation with Structural Damping and Internal Time Delay
by Zayd Hajjej and Hongwei Zhang
Symmetry 2024, 16(11), 1427; https://doi.org/10.3390/sym16111427 - 26 Oct 2024
Viewed by 806
Abstract
In this manuscript, we investigate the exponential stability of a Kirchhoff plate equation with free boundary conditions in a bounded domain of R2. First, we consider the case where the model is subjected only to structural damping and, using the energy [...] Read more.
In this manuscript, we investigate the exponential stability of a Kirchhoff plate equation with free boundary conditions in a bounded domain of R2. First, we consider the case where the model is subjected only to structural damping and, using the energy method, we prove the exponential decay of the energy associated with this model. Second, we consider the case where structural damping with a linear internal time delay term is applied, and we use the same technique to derive the exponential stability of the new model. Finally, we examine the scenario where the model is governed by structural damping with an added fractional time delay term and, by constructing an appropriate Lyapunov function, we show that the energy associated with the system is exponentially stable. This work improves upon prior results concerning the Kirchhoff plate equation with frictional damping, where exponential stability could not be achieved. Full article
(This article belongs to the Section Mathematics)
Back to TopTop