Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,900)

Search Parameters:
Keywords = topology modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1567 KiB  
Article
Study on the Design of Series-Type All-DC Wind Farms Based on Half-Bridge Voltage Balancing Circuits
by Xiaochen Su, Haiyun Wang, Zhanlong Li and Qianyu Ma
Electronics 2024, 13(19), 3839; https://doi.org/10.3390/electronics13193839 (registering DOI) - 28 Sep 2024
Abstract
Offshore wind farms connected in series, with each wind turbine connected in series with one another, enhance the coupling between them. Significant differences in wind speeds between neighboring DC wind turbines (DCWTs) might result in a substantial disparity in the output voltage, hence [...] Read more.
Offshore wind farms connected in series, with each wind turbine connected in series with one another, enhance the coupling between them. Significant differences in wind speeds between neighboring DC wind turbines (DCWTs) might result in a substantial disparity in the output voltage, hence posing a risk of overvoltage. Nevertheless, implementing voltage-limiting configurations for DCWTs might lead to the dissipation of wind energy, thereby diminishing the wind farm’s capacity to deliver electricity. This work introduces a half-bridge voltage balancing circuit (HVBC) topology as a solution to the issue of DCWT output voltage changes affecting the stable operation of wind farms. The proposed HVBC topology is designed specifically for large-capacity series-connected all-DC wind farms where wind speed variations occur. This design achieves power decoupling for series-connected all-DC wind farms by providing current compensation to the series-connected DCWTs. A control strategy is devised by examining the decoupling principle and operational characteristics of the HVBC. A 60 kV/48 MW tandem-type all-DC wind farm model consisting of six DCWTs in series is built in Matlab/Simulink. The model is then simulated to evaluate its performance under conditions of unequal wind speed, rapid changes in wind speed, and wind turbine failure shutdown. This research verifies the feasibility of the HVBC topology and improves the stability of the series-type all-DC wind farm. Full article
(This article belongs to the Topic Integration of Renewable Energy)
19 pages, 1328 KiB  
Article
Multi-Objective Combinatorial Optimization Algorithm Based on Asynchronous Advantage Actor–Critic and Graph Transformer Networks
by Dongbao Jia, Ming Cao, Wenbin Hu, Jing Sun, Hui Li, Yichen Wang, Weijie Zhou, Tiancheng Yin and Ran Qian
Electronics 2024, 13(19), 3842; https://doi.org/10.3390/electronics13193842 (registering DOI) - 28 Sep 2024
Abstract
Multi-objective combinatorial optimization problems (MOCOPs) are designed to identify solution sets that optimally balance multiple competing objectives. Addressing the challenges inherent in applying deep reinforcement learning (DRL) to solve MOCOPs, such as model non-convergence, lengthy training periods, and insufficient diversity of solutions, this [...] Read more.
Multi-objective combinatorial optimization problems (MOCOPs) are designed to identify solution sets that optimally balance multiple competing objectives. Addressing the challenges inherent in applying deep reinforcement learning (DRL) to solve MOCOPs, such as model non-convergence, lengthy training periods, and insufficient diversity of solutions, this study introduces a novel multi-objective combinatorial optimization algorithm based on DRL. The proposed algorithm employs a uniform weight decomposition method to simplify complex multi-objective scenarios into single-objective problems and uses asynchronous advantage actor–critic (A3C) instead of conventional REINFORCE methods for model training. This approach effectively reduces variance and prevents the entrapment in local optima. Furthermore, the algorithm incorporates an architecture based on graph transformer networks (GTNs), which extends to edge feature representations, thus accurately capturing the topological features of graph structures and the latent inter-node relationships. By integrating a weight vector layer at the encoding stage, the algorithm can flexibly manage issues involving arbitrary weights. Experimental evaluations on the bi-objective traveling salesman problem demonstrate that this algorithm significantly outperforms recent similar efforts in terms of training efficiency and solution diversity. Full article
20 pages, 4977 KiB  
Article
Simulation-Based Hybrid Energy Storage Composite-Target Planning with Power Quality Improvements for Integrated Energy Systems in Large-Building Microgrids
by Chunguang He, Xiaolin Tan, Zixuan Liu, Jiakun An, Xuejun Li, Gengfeng Li and Runfan Zhang
Electronics 2024, 13(19), 3844; https://doi.org/10.3390/electronics13193844 (registering DOI) - 28 Sep 2024
Abstract
In this paper, we present an optimization planning method for enhancing power quality in integrated energy systems in large-building microgrids by adjusting the sizing and deployment of hybrid energy storage systems. These integrated energy systems incorporate wind and solar power, natural gas supply, [...] Read more.
In this paper, we present an optimization planning method for enhancing power quality in integrated energy systems in large-building microgrids by adjusting the sizing and deployment of hybrid energy storage systems. These integrated energy systems incorporate wind and solar power, natural gas supply, and interactions with electric vehicles and the main power grid. In the optimization planning method developed, the objectives of cost-effective and low-carbon operation, the lifecycle cost of hybrid energy storage, power quality improvements, and renewable energy utilization are targeted and coordinated by using utility fusion theory. Our planning method addresses multiple energy forms—cooling, heating, electricity, natural gas, and renewable energies—which are integrated through a combined cooling, heating, and power system and a natural gas turbine. The hybrid energy storage system incorporates batteries and compressed-air energy storage systems to handle fast and slow variations in power demand, respectively. A sensitivity matrix between the output power of the energy sources and the voltage is modeled by using the power flow method in DistFlow, reflecting the improvements in power quality and the respective constraints. The method proposed is validated by simulating various typical scenarios on the modified IEEE 13-node distribution network topology. The novelty of this paper lies in its focus on the application of integrated energy systems within large buildings and its approach to hybrid energy storage system planning in multiple dimensions, including making co-location and capacity sizing decisions. Other innovative aspects include the coordination of hybrid energy storage combinations, simultaneous siting and sizing decisions, lifecycle cost calculations, and optimization for power quality enhancement. As part of these design considerations, microgrid-related technologies are integrated with cutting-edge nearly zero-energy building designs, representing a pioneering attempt within this field. Our results indicate that this multi-objective, multi-dimensional, utility fusion-based optimization method for hybrid energy storage significantly enhances the economic efficiency and quality of the operation of integrated energy systems in large-building microgrids in building-level energy distribution planning. Full article
(This article belongs to the Special Issue Innovations in Intelligent Microgrid Operation and Control)
Show Figures

Figure 1

17 pages, 1501 KiB  
Article
A Power Grid Topological Error Identification Method Based on Knowledge Graphs and Graph Convolutional Networks
by Shuyu Fei, Xiong Wan, Haiwei Wu, Xin Shan, Haibao Zhai and Hongmin Gao
Electronics 2024, 13(19), 3837; https://doi.org/10.3390/electronics13193837 (registering DOI) - 28 Sep 2024
Abstract
Precise and comprehensive model development is essential for predicting power network balance and maintaining power system analysis and optimization. The development of big data technologies and measurement systems has introduced new challenges in power grid modeling, simulation, and fault prediction. In-depth analysis of [...] Read more.
Precise and comprehensive model development is essential for predicting power network balance and maintaining power system analysis and optimization. The development of big data technologies and measurement systems has introduced new challenges in power grid modeling, simulation, and fault prediction. In-depth analysis of grid data has become vital for maintaining steady and safe operations. Traditional knowledge graphs can structure data in graph form, but identifying topological errors remains a challenge. Meanwhile, Graph Convolutional Networks (GCNs) can be trained on graph data to detect connections between entities, facilitating the identification of potential topological errors. Therefore, this paper proposes a method for power grid topological error identification that combines knowledge graphs with GCNs. The proposed method first constructs a knowledge graph to organize grid data and introduces a new GCN model for deep training, significantly improving the accuracy and robustness of topological error identification compared to traditional GCNs. This method is tested on the IEEE 30-bus system, the IEEE 118-bus system, and a provincial power grid system. The results demonstrate the method’s effectiveness in identifying topological errors, even in scenarios involving branch disconnections and data loss. Full article
12 pages, 34840 KiB  
Article
Miniaturized Multiband Substrate-Integrated Waveguide Bandpass Filters with Multi-Layer Configuration and High In-Band Isolation
by Yu Zhan, Yi Wu, Kaixue Ma and Kiat Seng Yeo
Electronics 2024, 13(19), 3834; https://doi.org/10.3390/electronics13193834 (registering DOI) - 28 Sep 2024
Viewed by 157
Abstract
This article presents a multiband bandpass filter structure with an in-line topology based on substrate-integrated waveguide (SIW) technology. A multi-layer configuration is employed to achieve circuit miniaturization. By constructing the coupling matrix, the coupling relationships among all resonators are quantitatively characterized, enabling the [...] Read more.
This article presents a multiband bandpass filter structure with an in-line topology based on substrate-integrated waveguide (SIW) technology. A multi-layer configuration is employed to achieve circuit miniaturization. By constructing the coupling matrix, the coupling relationships among all resonators are quantitatively characterized, enabling the extraction of the theoretical frequency response and guiding circuit modeling and optimization. We designed and fabricated a third-order tri-band SIW filter and a third-order quad-band SIW filter, achieving a return loss of nearly 20 dB across all passbands. The close agreement between simulated and measured results validates the proposed design model. Additionally, the high in-band isolation of over 40 dB is demonstrated between all adjacent bands, highlighting the potential applicability of this technology in multiband scenarios. Full article
Show Figures

Figure 1

13 pages, 5960 KiB  
Article
An Eight-Coil Wireless Power Transfer Method for Improving the Coupling Tolerance Based on Uniform Magnetic Field
by Suqi Liu, Xueying Yan, Guiqiang Xu, Gang Wang and Yuping Liu
Processes 2024, 12(10), 2109; https://doi.org/10.3390/pr12102109 - 27 Sep 2024
Viewed by 285
Abstract
In wireless power transfers (WPTs), it is challenging to obtain a constant output of power (COP) and constant transmission efficiency (CTE) in large coupling variation ranges. In this study, the eight-coil WPT system achieves a uniform magnetic field (UMF) in the transmitter and [...] Read more.
In wireless power transfers (WPTs), it is challenging to obtain a constant output of power (COP) and constant transmission efficiency (CTE) in large coupling variation ranges. In this study, the eight-coil WPT system achieves a uniform magnetic field (UMF) in the transmitter and receiver sides using two transmitting (Tx) coils and two receiving (Rx) coils, respectively. COP and CTE are then achieved with large coupling variation ranges. The circuit model and equations of the transmission characteristics are first obtained based on the structure and working principle of the Helmholtz coil. The model of the mutual inductance and equation of the impedance coupled factor are then developed. The laws of the transmission characteristic are also determined by adopting a simulation tool and equations of the transmission characteristics. Finally, the eight-coil WPT experimental system is designed. In a fixed-frequency mode, the COP and CTE are achieved when the coupling and misalignment distances are changed within a quarter or one-fifth of the relay coil diameter, respectively. This topology provides an efficient solution for problems faced in practical applications, such as wireless chargers of kitchen appliances and automatic mobile robots of small size. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3667 KiB  
Article
Graph Node Scoring for the Analysis and Visualisation of Mobility Networks and Data
by Rafael Alejandro Martínez Márquez and Giuseppe Patanè
Urban Sci. 2024, 8(4), 155; https://doi.org/10.3390/urbansci8040155 - 27 Sep 2024
Viewed by 200
Abstract
Urban mobility and geographical systems benefit significantly from a graph-based topology. To identify the network’s crucial zones in terms of connectivity or movement across the network, we implemented several centrality metrics on a particular type of spatial network, i.e., a Region Adjacency graph, [...] Read more.
Urban mobility and geographical systems benefit significantly from a graph-based topology. To identify the network’s crucial zones in terms of connectivity or movement across the network, we implemented several centrality metrics on a particular type of spatial network, i.e., a Region Adjacency graph, using three geographical regions of different sizes to exhibit the scalability of conventional metrics. To boost the topological analysis of a network with geographical data, we discuss the eigendata centrality and implement it for the largest of our Region Adjacency graphs using available geographical information. For flow prediction data-driven models, we discuss the Deep Gravity model and utilise either its geographical input data or predicted flow values to implement an additional node score through the Perron vector of the transition probability matrix. The results show that the topological analysis of a spatial network can be significantly enhanced by including regional and mobility data for graphs of different scales, connectivity, and orientation properties. Full article
Show Figures

Figure 1

21 pages, 3979 KiB  
Article
Modeling, Design, and Application of Analog Pre-Distortion for the Linearity and Efficiency Enhancement of a K-Band Power Amplifier
by Tommaso Cappello, Sarmad Ozan, Andy Tucker, Peter Krier, Tudor Williams and Kevin Morris
Electronics 2024, 13(19), 3818; https://doi.org/10.3390/electronics13193818 - 27 Sep 2024
Viewed by 187
Abstract
This paper presents the theory, design, and application of a dual-branch series-diode analog pre-distortion (APD) linearizer to improve the linearity and efficiency of a K-band high-power amplifier (HPA). A first-of-its-kind, frequency-dependent large-signal APD model is presented. This model is used to evaluate different [...] Read more.
This paper presents the theory, design, and application of a dual-branch series-diode analog pre-distortion (APD) linearizer to improve the linearity and efficiency of a K-band high-power amplifier (HPA). A first-of-its-kind, frequency-dependent large-signal APD model is presented. This model is used to evaluate different phase relationships between the linear and nonlinear branches, suggesting independent gain and phase expansion characteristics with this topology. This model is used to assess the impact of diode resistance, capacitance, and ideality factors on the APD characteristics. This feature is showcased with two similar GaAs diodes to find the best fit for the considered HPA. The selected diode is characterized and modeled between 1 and 26.5 GHz. A comprehensive APD design and simulation workflow is reported. Before fabrication, the simulated APD is evaluated with the measured HPA to verify linearity improvements. The APD prototype achieves a large-signal bandwidth of 6 GHz with 3 dB gain expansion and 8° phase rotation. This linearizer is demonstrated with a 17–21 GHz GaN HPA with 41 dBm output power and 35% efficiency. Using a wideband 750 MHz signal, this APD improves the noise–power ratio (NPR) by 6.5–8.2 dB over the whole HPA bandwidth. Next, the HPA output power is swept to compare APD vs. power backoff for the same NPR. APD improves the HPA output power by 1–2 W and efficiency by approximately 5–9% at 19 GHz. This efficiency improvement decreases by only 1–2% when including the APD post-amplifier consumption, thus suggesting overall efficiency and output power improvements with APD at K-band frequencies. Full article
Show Figures

Figure 1

19 pages, 21217 KiB  
Article
Air Traffic Flow Prediction in Aviation Networks Using a Multi-Dimensional Spatiotemporal Framework
by Cong Wu, Hui Ding, Zhongwang Fu and Ning Sun
Electronics 2024, 13(19), 3803; https://doi.org/10.3390/electronics13193803 - 25 Sep 2024
Viewed by 293
Abstract
A novel, multi-dimensional, spatiotemporal prediction framework is proposed to enhance air traffic flow prediction in increasingly complex aviation networks. This framework incorporates graph convolutional networks (GCNs) with multi-dimensional Long Short-Term Memory (LSTM) networks and multi-scale, temporal convolution, employing an attention mechanism to effectively [...] Read more.
A novel, multi-dimensional, spatiotemporal prediction framework is proposed to enhance air traffic flow prediction in increasingly complex aviation networks. This framework incorporates graph convolutional networks (GCNs) with multi-dimensional Long Short-Term Memory (LSTM) networks and multi-scale, temporal convolution, employing an attention mechanism to effectively capture spatiotemporal dependencies. By addressing irregular topologies and dynamic temporal trends, the framework models local air traffic patterns with improved accuracy. The experimental results demonstrate significant predictive accuracy improvements over traditional methods, particularly in accounting for the complex nature of air traffic flows. The model’s scalability and adaptability extend its application to various aviation networks, encompassing all airspace units within three local networks, rather than focusing solely on airport traffic. These findings contribute to the development of more intelligent, accurate, and adaptive air traffic management systems, ultimately enhancing both operational efficiency and safety. Full article
(This article belongs to the Special Issue Innovative Technologies and Services for Unmanned Aerial Vehicles)
Show Figures

Figure 1

26 pages, 19476 KiB  
Article
Fractal Dimension-Based Multi-Focus Image Fusion via Coupled Neural P Systems in NSCT Domain
by Liangliang Li, Xiaobin Zhao, Huayi Hou, Xueyu Zhang, Ming Lv, Zhenhong Jia and Hongbing Ma
Fractal Fract. 2024, 8(10), 554; https://doi.org/10.3390/fractalfract8100554 - 25 Sep 2024
Viewed by 517
Abstract
In this paper, we introduce an innovative approach to multi-focus image fusion by leveraging the concepts of fractal dimension and coupled neural P (CNP) systems in nonsubsampled contourlet transform (NSCT) domain. This method is designed to overcome the challenges posed by the limitations [...] Read more.
In this paper, we introduce an innovative approach to multi-focus image fusion by leveraging the concepts of fractal dimension and coupled neural P (CNP) systems in nonsubsampled contourlet transform (NSCT) domain. This method is designed to overcome the challenges posed by the limitations of camera lenses and depth-of-field effects, which often prevent all parts of a scene from being simultaneously in focus. Our proposed fusion technique employs CNP systems with a local topology-based fusion model to merge the low-frequency components effectively. Meanwhile, for the high-frequency components, we utilize the spatial frequency and fractal dimension-based focus measure (FDFM) to achieve superior fusion performance. The effectiveness of the method is validated through extensive experiments conducted on three benchmark datasets: Lytro, MFI-WHU, and MFFW. The results demonstrate the superiority of our proposed multi-focus image fusion method, showcasing its potential to significantly enhance image clarity across the entire scene. Our algorithm has achieved advantageous values on metrics QAB/F, QCB, QCV, QE, QFMI, QG, QMI, and QNCIE. Full article
Show Figures

Figure 1

21 pages, 6721 KiB  
Article
A Principled Framework to Assess the Information-Theoretic Fitness of Brain Functional Sub-Circuits
by Duy Duong-Tran, Nghi Nguyen, Shizhuo Mu, Jiong Chen, Jingxuan Bao, Frederick H. Xu, Sumita Garai, Jose Cadena-Pico, Alan David Kaplan, Tianlong Chen, Yize Zhao, Li Shen and Joaquín Goñi
Mathematics 2024, 12(19), 2967; https://doi.org/10.3390/math12192967 - 24 Sep 2024
Viewed by 283
Abstract
In systems and network neuroscience, many common practices in brain connectomic analysis are often not properly scrutinized. One such practice is mapping a predetermined set of sub-circuits, like functional networks (FNs), onto subjects’ functional connectomes (FCs) without adequately assessing the information-theoretic appropriateness of [...] Read more.
In systems and network neuroscience, many common practices in brain connectomic analysis are often not properly scrutinized. One such practice is mapping a predetermined set of sub-circuits, like functional networks (FNs), onto subjects’ functional connectomes (FCs) without adequately assessing the information-theoretic appropriateness of the partition. Another practice that goes unchallenged is thresholding weighted FCs to remove spurious connections without justifying the chosen threshold. This paper leverages recent theoretical advances in Stochastic Block Models (SBMs) to formally define and quantify the information-theoretic fitness (e.g., prominence) of a predetermined set of FNs when mapped to individual FCs under different fMRI task conditions. Our framework allows for evaluating any combination of FC granularity, FN partition, and thresholding strategy, thereby optimizing these choices to preserve the important topological features of the human brain connectomes. By applying to the Human Connectome Project with Schaefer parcellations at multiple levels of granularity, the framework showed that the common thresholding value of 0.25 was indeed information-theoretically valid for group-average FCs, despite its previous lack of justification. Our results pave the way for the proper use of FNs and thresholding methods, and provide insights for future research in individualized parcellations. Full article
(This article belongs to the Section Computational and Applied Mathematics)
Show Figures

Figure 1

23 pages, 3964 KiB  
Article
Geometry of Textual Data Augmentation: Insights from Large Language Models
by Sherry J. H. Feng, Edmund M-K. Lai and Weihua Li
Electronics 2024, 13(18), 3781; https://doi.org/10.3390/electronics13183781 - 23 Sep 2024
Viewed by 534
Abstract
Data augmentation is crucial for enhancing the performance of text classification models when labelled training data are scarce. For natural language processing (NLP) tasks, large language models (LLMs) are able to generate high-quality augmented data. But a fundamental understanding of the reasons for [...] Read more.
Data augmentation is crucial for enhancing the performance of text classification models when labelled training data are scarce. For natural language processing (NLP) tasks, large language models (LLMs) are able to generate high-quality augmented data. But a fundamental understanding of the reasons for their effectiveness remains limited. This paper presents a geometric and topological perspective on textual data augmentation using LLMs. We compare the augmentation data generated by GPT-J with those generated through cosine similarity from Word2Vec and GloVe embeddings. Topological data analysis reveals that GPT-J generated data maintains label coherence. Convex hull analysis of such data represented by their two principal components shows that they lie within the spatial boundaries of the original training data. Delaunay triangulation reveals that increasing the number of augmented data points that are connected within these boundaries correlates with improved classification accuracy. These findings provide insights into the superior performance of LLMs in data augmentation. A framework for predicting the usefulness of augmentation data based on geometric properties could be formed based on these techniques. Full article
(This article belongs to the Special Issue Emerging Theory and Applications in Natural Language Processing)
Show Figures

Figure 1

22 pages, 1101 KiB  
Review
Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways
by Jinping Feng, Xinan Zhang and Tianhai Tian
Int. J. Mol. Sci. 2024, 25(18), 10204; https://doi.org/10.3390/ijms251810204 - 23 Sep 2024
Viewed by 401
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important intracellular signaling cascade that plays a key role in various cellular processes. Understanding the regulatory mechanisms of this pathway is essential for developing effective interventions and targeted therapies for related diseases. Recent advances in [...] Read more.
The mitogen-activated protein kinase (MAPK) pathway is an important intracellular signaling cascade that plays a key role in various cellular processes. Understanding the regulatory mechanisms of this pathway is essential for developing effective interventions and targeted therapies for related diseases. Recent advances in single-cell proteomic technologies have provided unprecedented opportunities to investigate the heterogeneity and noise within complex, multi-signaling networks across diverse cells and cell types. Mathematical modeling has become a powerful interdisciplinary tool that bridges mathematics and experimental biology, providing valuable insights into these intricate cellular processes. In addition, statistical methods have been developed to infer pathway topologies and estimate unknown parameters within dynamic models. This review presents a comprehensive analysis of how mathematical modeling of the MAPK pathway deepens our understanding of its regulatory mechanisms, enhances the prediction of system behavior, and informs experimental research, with a particular focus on recent advances in modeling and inference using single-cell proteomic data. Full article
Show Figures

Figure 1

23 pages, 7033 KiB  
Article
Diagnosis of DC-DC Converter Semiconductor Faults Based on the Second-Order Derivative of the Converter Input Current
by Fernando Bento and Antonio J. Marques Cardoso
Electronics 2024, 13(18), 3778; https://doi.org/10.3390/electronics13183778 - 23 Sep 2024
Viewed by 327
Abstract
The deployment of DC microgrids presents an excellent opportunity to enhance energy efficiency in buildings. Among other components, DC-DC converters play a crucial role in ensuring the interface between the microgrid and its energy generation, storage, and consumption components. However, the reliability of [...] Read more.
The deployment of DC microgrids presents an excellent opportunity to enhance energy efficiency in buildings. Among other components, DC-DC converters play a crucial role in ensuring the interface between the microgrid and its energy generation, storage, and consumption components. However, the reliability of these energy conversion solutions remains somewhat limited. Adopting strategies for accurate monitoring and diagnostics of the DC-DC converter topologies that best suit each equipment’s constraints is, therefore, of critical relevance. Solutions available in the literature concerning fault diagnostics on DC-DC converters do not consider the application of such converters in the household and tertiary sector environments and associated constraints—cost effectiveness, robustness against parameter uncertainty of the converter model, and obviation of the need for historical data. On this basis, this paper presents a simple and effective fault diagnostic strategy, based on a time-domain analysis of the second-order derivative of the converter input current. Its implementation is straightforward and can be integrated into the pre-installed converter control unit. The unique features of the fault diagnostic algorithm show good results for a broad range of operating points, along with insensitivity against load transients and supply voltage fluctuations. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

10 pages, 284 KiB  
Article
Topological Susceptibility of the Gluon Plasma in the Stochastic-Vacuum Approach
by Dmitry Antonov
Universe 2024, 10(9), 377; https://doi.org/10.3390/universe10090377 - 23 Sep 2024
Viewed by 267
Abstract
Topological susceptibility of the SU(3) gluon plasma is calculated by accounting for both factorized and non-factorized contributions to the two-point correlation function of topological-charge densities. It turns out that, while the factorized contribution keeps this correlation function non-positive away from the origin, the [...] Read more.
Topological susceptibility of the SU(3) gluon plasma is calculated by accounting for both factorized and non-factorized contributions to the two-point correlation function of topological-charge densities. It turns out that, while the factorized contribution keeps this correlation function non-positive away from the origin, the non-factorized contribution makes it positive at the origin, in accordance with the reflection positivity condition. Matching the obtained result for topological susceptibility to its lattice value at the deconfinement critical temperature, we fix the parameters of the quartic cumulant of gluonic field strengths, and calculate the contribution of that cumulant to the string tension. This contribution reduces the otherwise too large value of the string tension, which stems from the quadratic cumulant, making it much closer to the standard phenomenological value. Full article
(This article belongs to the Special Issue Quantum Field Theory, 2nd Edition)
Back to TopTop