Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,368)

Search Parameters:
Keywords = triazoles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3519 KiB  
Article
Synthesis of Alkyl/Aryloxymethyl Derivatives of 1,2,4-Triazole-3-Carboxamides and Their Biological Activities
by Ekaterina A. Mikhina, Daria V. Stepanycheva, Varvara P. Maksimova, Olga N. Sineva, Natalia N. Markelova, Lyubov E. Grebenkina, Ekaterina A. Lesovaya, Marianna G. Yakubovskaya, Andrey V. Matveev and Ekaterina M. Zhidkova
Molecules 2024, 29(20), 4808; https://doi.org/10.3390/molecules29204808 (registering DOI) - 11 Oct 2024
Abstract
Ribavirin and its analogues exhibit an in vitro antiproliferative effect in cancer cells. In this work, we studied the biological activities of a number of alkyl/aryloxymethyl derivatives of ribavirin’s aglycon—1,2,4-triazole-3-carboxamide. Alkyl/arylxymethyl derivatives of 1,2,4-triazole-3-carboxamide with substitutions at the fifth or first position of [...] Read more.
Ribavirin and its analogues exhibit an in vitro antiproliferative effect in cancer cells. In this work, we studied the biological activities of a number of alkyl/aryloxymethyl derivatives of ribavirin’s aglycon—1,2,4-triazole-3-carboxamide. Alkyl/arylxymethyl derivatives of 1,2,4-triazole-3-carboxamide with substitutions at the fifth or first position of the triazole ring, were synthesized and their antiproliferative and antimicrobial effects were assessed. For both series, the presence of an antiproliferative effect was investigated, and 1-alkyl/aryloxymethyl derivatives were shown an antimicrobial potential against a Gram-positive bacteria Micrococcus luteus and Gram-negative bacterium Pseudomonas aeruginosa. The obtained results showed that the n-decyloxymethyl derivatives induced leukemia cell death at low micromolar concentrations. We confirmed that n-decyloxymethyl derivatives of ribavirin inhibited the cell cycle progression and induced an accumulation of leukemia cells in the subG1-phase. The molecular docking results suggest that alkyl/aryloxymethyl derivatives may act by inhibiting translation initiation, due to interference with eIF4E assembly. The outcome results revealed that active derivatives (1- or 5-n-decyloxymethyl-1,2,4-triazole-3-carboxamides) can be considered as a lead compound for anticancer treatments. Full article
Show Figures

Figure 1

5 pages, 667 KiB  
Short Note
(4aS,5S,6aR,10aR,10bR)-5-Methoxy-9,9-dimethyl-4a,5,6a,7,10a,10b-hexahydro-12H-[1,3]dioxino[4′,5′:5,6]pyrano[4,3-b][1,2,3]triazolo[1,5-d][1,4]oxazine
by Leticia Lomas Romero, Guillermo E. Negron Silva, Ricardo Corona-Sánchez, Elsie Ramírez-Domínguez, Atilano Gutiérrez-Carrillo and Alma Sánchez-Eleuterio
Molbank 2024, 2024(4), M1898; https://doi.org/10.3390/M1898 - 9 Oct 2024
Abstract
A new tetracyclic morpholine-fused[5,1-c]-triazole, (4aS,5S,6aR,10aR,10bR)-5-methoxy-9,9-dimethyl-4a,5,6a,7,10a,10b-hexahydro-12H-[1,3]dioxino[4′,5′:5,6]pyrano[4,3-b][1,2,3]triazolo[1,5-d][1,4]oxazine, was synthesized via a five-step sequence starting from methyl α-D-glucopyranoside by using, as a key step, an intramolecular copper(I) catalyzed alkyne-azide cycloaddition (CuAAC). The synthesized compound was fully characterized by 1H and 13C NMR, FT-IR, and HRMS. Full article
(This article belongs to the Section Organic Synthesis)
Show Figures

Figure 1

15 pages, 1600 KiB  
Article
Microwave-Assisted Synthesis of Symmetrical 1,4-Disubstituted Bis-1H-1,2,3-triazoles Using Copper N-Heterocyclic Carbene Catalysts
by Loren Taylor Mitchell, Erin Barnett, Max Hexom, Alexander Ruiz and Allen Schoffstall
Catalysts 2024, 14(10), 702; https://doi.org/10.3390/catal14100702 - 9 Oct 2024
Abstract
Bis-triazoles separated by a symmetrical linking group are joined at C4 of each triazole or at N1 of each triazole. Preparation of a series of bis-1H-1,2,3-triazoles derived from o-bis(azidomethyl)benzene and an alkyne is reported with use of copper N-heterocyclic carbene [...] Read more.
Bis-triazoles separated by a symmetrical linking group are joined at C4 of each triazole or at N1 of each triazole. Preparation of a series of bis-1H-1,2,3-triazoles derived from o-bis(azidomethyl)benzene and an alkyne is reported with use of copper N-heterocyclic carbene catalysis with microwave-assisted heating in an aqueous solvent. The products were symmetrical N1–N1′-bis-1H-1,2,3-triazoles. Additional syntheses utilized dialkynes and organic azides to prepare symmetrical C4–C4′-bis-1H-1,2,3-triazoles. Pure products were often obtained directly when water was used as the solvent with microwave-assisted heating. Results are given for experiments using conventional heating or no heating. Sonication results are given for a reaction where microwave-assisted heating was unsatisfactory. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Figure 1

19 pages, 12508 KiB  
Article
Complex Protection of Some Steels in Sulfuric Acid Solutions by 1,2,4-Triazole Derivatives
by Yaroslav G. Avdeev, Tatyana A. Nenasheva, Andrey Yu. Luchkin, Andrey I. Marshakov and Yurii I. Kuznetsov
Materials 2024, 17(19), 4728; https://doi.org/10.3390/ma17194728 - 26 Sep 2024
Abstract
The corrosion behavior of steels of various grades in sulfuric acid solutions with the addition of nitrogen-containing corrosion inhibitors has been studied. Compounds containing the 1,2,4-triazole moiety effectively protect low-carbon (St3, St20, 08PS), high-strength (70S2KhA), and stainless steels (1Kh18N9T) not only from corrosion [...] Read more.
The corrosion behavior of steels of various grades in sulfuric acid solutions with the addition of nitrogen-containing corrosion inhibitors has been studied. Compounds containing the 1,2,4-triazole moiety effectively protect low-carbon (St3, St20, 08PS), high-strength (70S2KhA), and stainless steels (1Kh18N9T) not only from corrosion but also from the hydrogen penetration into the metals in concentrated sulfuric acid solutions. In some cases, the degree of steel protection from corrosion by these compounds exceeded 99%. The possibility of creating mixed inhibitors for steel protection containing triazole derivatives and KI has been shown. The rate constants for the main steps of cathodic evolution and hydrogen penetration into steel in sulfuric acid solutions have been determined, and the subsurface concentrations of hydrogen in the metals have been calculated. Triazole derivatives were found to act as inhibitors of hydrogen absorption by steel in H2SO4 solution. The degree of protection of steel from hydrogen absorption can reach 97%. It has been shown that triazole derivatives act as complex inhibitors of steel corrosion in sulfuric acid solutions because, along with strong inhibition of metal corrosion, they prevent hydrogen absorption by steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

15 pages, 1723 KiB  
Article
Prothioconazole Stress Reduces Bacterial Richness and Alters Enzyme Activity in Soybean Rhizosphere
by Ronggang Zhai, Mengchen Shi, Panpan Chen and Yi Wang
Toxics 2024, 12(10), 692; https://doi.org/10.3390/toxics12100692 - 25 Sep 2024
Abstract
Prothioconazole (PTC) is currently a popular triazole fungicide. In recent years, as the use of PTC has increased, there has been growing concern about its environmental and toxicological effects. Here, we studied the effect of PTC on the growth of soybean plants and [...] Read more.
Prothioconazole (PTC) is currently a popular triazole fungicide. In recent years, as the use of PTC has increased, there has been growing concern about its environmental and toxicological effects. Here, we studied the effect of PTC on the growth of soybean plants and further analyzed the enzyme activity and microbial community of rhizosphere soil after PTC treatment through 16S rRNA gene high-throughput sequencing and fungal ITS. Changes in structural diversity and species richness were measured using Simpson’s diversity index, Shannon’s diversity index and the Chao1 and ACE algorithms. The statistical t-test was applied to test whether the index values were significantly different between the two groups. The results showed that the contents of malondialdehyde (MDA) and H2O2 increased after the recommended dose of PTC, indicating that PTC has a strong toxic effect on plant growth, thus affecting the healthy growth of plants. In the presence of PTC, the species richness of fungi and bacteria decreased in all three soil types (black soil, yellow earth and red earth), and the community structure also changed significantly (the p-values were all less than 0.05). Proteobacteria, Actinomycetota, Bacteroidota and Acidobacteriota were the main bacteria, and the abundance of Acidobacteriota and Chloroflexi increased. The dominant fungal communities were Ascomycota and Mortierellomycota. The increased abundance of potentially beneficial microorganisms, such as Sphingomonadaceae, suggested that plants may be resistant to PTC stress by recruiting beneficial microorganisms. PICRUSt analysis showed that the metabolism-related functions and membrane transport pathway of rhizosphere bacterial community were inhibited after PTC stress. Spearman correlation analysis revealed a weak correlation between key fungal taxa and rhizosphere variables in the presence of PTC. Therefore, compared with those in the fungal community, the bacterial community was more likely to help plants resist PTC stress, indicating that these key fungal groups may indirectly help soybean growth under PTC stress by affecting the bacterial community. Full article
(This article belongs to the Special Issue Ecological Risk Assessment of Pesticides)
Show Figures

Figure 1

17 pages, 1924 KiB  
Article
Pharmacokinetics and Dose Proportionality Study of a Novel Antiparkinsonian Agent, a 1H-1,2,4-Triazol-3-ylthio-conjugate of Prottremine
by Daria S. Gorina, Anastasiya V. Lastovka, Artem D. Rogachev, Alexandra V. Podturkina, Alla V. Pavlova, Oleg V. Ardashov, Nikolai S. Li-Zhulanov, Tatyana G. Tolstikova, Konstantin P. Volcho and Nariman F. Salakhutdinov
Molecules 2024, 29(18), 4498; https://doi.org/10.3390/molecules29184498 - 22 Sep 2024
Abstract
The novel antiparkinsonian agent PA-96 is the focus of our research. PA-96 supported the survival of cultured naïve dopamine neurons, alleviated motor deficits in MPTP and haloperidol-based mice models of Parkinson’s disease, and increased the density of tyrosine hydroxylase positive neurons and dopamine [...] Read more.
The novel antiparkinsonian agent PA-96 is the focus of our research. PA-96 supported the survival of cultured naïve dopamine neurons, alleviated motor deficits in MPTP and haloperidol-based mice models of Parkinson’s disease, and increased the density of tyrosine hydroxylase positive neurons and dopamine concentration in the midbrain of an MPTP-damaged brain. In this work, an HPLC–MS/MS method was developed and validated, and the pharmacokinetics of the agent was investigated in mice after a single or multiple oral administration (p.o.) and intravenous injection (i.v.) at various doses. The dose proportionality was also evaluated after a single p.o. administration of three ascending doses (1, 5, and 10 mg/kg) and a single i.v. injection of two doses (1 and 10 mg/kg); also, the bioavailability was estimated. The disproportionality of pharmacokinetic parameters could be explained by the saturation of active centres of enzymes or receptors binding the substance: at low doses, part of the compound is bound, leaving a small amount circulating in blood, and rapidly metabolised and/or bound too. The bioavailability of PA-96 was c.a. 7 and 35% for the doses of 5 and 10 mg/kg, correspondingly. Full article
Show Figures

Figure 1

15 pages, 1610 KiB  
Article
Linear and Angular Heteroannulated Pyridines Tethered 6-Hydroxy-4,7-Dimethoxybenzofuran: Synthesis and Antimicrobial Activity
by Najla A. Alshaye, Al-Shimaa Badran and Magdy A. Ibrahim
Molecules 2024, 29(18), 4496; https://doi.org/10.3390/molecules29184496 - 22 Sep 2024
Abstract
2-Chloropyridine-3-carbonitrile derivative 1 was utilized as a key precursor to build a series of linear and angular annulated pyridines linked to a 6-hydroxy-4,7-dimethoxybenzofuran moiety. Reaction of substrate 1 with various hydrazines afforded pyrazolo[3,4-b]pyridines. Treatment of substrate 1 with 1,3-N, [...] Read more.
2-Chloropyridine-3-carbonitrile derivative 1 was utilized as a key precursor to build a series of linear and angular annulated pyridines linked to a 6-hydroxy-4,7-dimethoxybenzofuran moiety. Reaction of substrate 1 with various hydrazines afforded pyrazolo[3,4-b]pyridines. Treatment of substrate 1 with 1,3-N,N-binucleophiles including 3-amino-1,2,4-triazole, 5-amino-1H-tetrazole, 3-amino-6-methyl-1,2,4-triazin-5(4H)-one and 2-aminobenzimidazole produced the novel angular pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidine, pyrido[3,2-e][1,2,4]tetrazolo[1,5-a]pyrimidine, pyrido[3′,2′:5,6] pyrimido[2,1-c][1,2,4]triazine and benzo[4,5]imidazo[1,2-a]pyrido[3,2-e]pyrimidine, respectively. Reaction of substrate 1 with 1,3-C,N-binucleophiles including cyanoacetamides and 1H-benzimidazol-2-ylacetonitrile furnished 1,8-naphthyridines and benzoimidazonaphthyridine. Moreover, reacting substrate 1 with 5-aminopyrazoles gave pyrazolo[3,4-b][1,8]naphthyridines. Finally, reaction of compound 1 with 6-aminouracils as cyclic enamines yielded pyrimido[4,5-b][1,8]naphthyridines. Some of the synthesized products showed noteworthy antimicrobial efficiency against all types of microbial strains. Structures of the produced compounds were established using analytical and spectroscopic tools. Full article
(This article belongs to the Special Issue Synthetic Studies Aimed at Heterocyclic Organic Compounds)
Show Figures

Graphical abstract

15 pages, 2824 KiB  
Article
Amphiphilic Fluorescein Triazoles: Synthesis and Visible-Light Catalysis in Water
by Alina Artemenko, Elza Sultanova, Diana Mironova, Aliya Akhatova, Ekaterina Bondareva, Daut Islamov, Konstantin Usachev, Svetlana Solovieva, Vladimir Burilov and Igor Antipin
Organics 2024, 5(3), 346-360; https://doi.org/10.3390/org5030018 - 11 Sep 2024
Abstract
Triazole derivatives of fluorescein-containing N,N-dimethylaminopropyl fragments and their ammonium salts were synthesized with yields of 74–85%. The resulting compounds exhibit fluorescent properties in the green region of the visible spectrum. The critical aggregation concentration (CAC) was estimated using a pyrene [...] Read more.
Triazole derivatives of fluorescein-containing N,N-dimethylaminopropyl fragments and their ammonium salts were synthesized with yields of 74–85%. The resulting compounds exhibit fluorescent properties in the green region of the visible spectrum. The critical aggregation concentration (CAC) was estimated using a pyrene fluorescent probe corresponding to a range of 0.28–1.43 mM, and at concentrations above the CAC, the compounds form stable aggregates ranging from 165 to 202 nm. A relative quantum yield of 5–24% has been calculated based on fluorescence and UV spectra. The best value is shown by a derivative containing a tetradecyl substituent. When studying the photocatalytic properties of synthesized compounds through the reaction between N-substituted 1,2,3,4-tetrahydroisoquinoline and malonic ester, the mono-tetradecyl derivative demonstrated the best results. According to gas chromatography–mass spectrometry (GC-MS) data, the conversion of the initial heterocycle reached 95%. Therefore, these resulting compounds have the potential to act as an effective photocatalysts. Full article
Show Figures

Figure 1

10 pages, 1312 KiB  
Case Report
Navigating Uncertainty: Managing Influenza-Associated Invasive Pulmonary Aspergillosis in an Intensive Care Unit
by Giacomo Casalini, Andrea Giacomelli, Laura Galimberti, Riccardo Colombo, Laura Milazzo, Dario Cattaneo, Antonio Castelli and Spinello Antinori
J. Fungi 2024, 10(9), 639; https://doi.org/10.3390/jof10090639 - 7 Sep 2024
Abstract
We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with [...] Read more.
We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with multidrug-resistant microorganisms, resulting in a fatal outcome despite the optimisation of antifungal treatment through therapeutic drug monitoring. This case underscores the complexity that clinicians face in managing critically ill patients with invasive fungal infections. Full article
(This article belongs to the Special Issue Fungal Infections: New Challenges and Opportunities, 2nd Edition)
Show Figures

Figure 1

13 pages, 4481 KiB  
Article
Orientation Control of Perfluorosulfonic Acid Films via Addition of 1,2,4-Triazole during Casting
by Tatsuya Miyajima, Susumu Saito, Takumi Okuyama, Satoshi Matsushita, Tetsuji Shimohira and Go Matsuba
Polymers 2024, 16(17), 2533; https://doi.org/10.3390/polym16172533 - 7 Sep 2024
Abstract
Perfluorosulfonic acid (PFSA) polymers are used as electrolyte membranes in polymer electrolyte fuel cells. To investigate the effect on proton conductivity through structural orientation control, we added 1,2,4-triazole to PFSA films during casting to impart anisotropy to the ion-cluster structure of the films. [...] Read more.
Perfluorosulfonic acid (PFSA) polymers are used as electrolyte membranes in polymer electrolyte fuel cells. To investigate the effect on proton conductivity through structural orientation control, we added 1,2,4-triazole to PFSA films during casting to impart anisotropy to the ion-cluster structure of the films. The proton conductivities of the films were found to be high in the film-surface direction and low in the film-thickness direction. Structural analysis using small-angle X-ray scattering suggested that the anisotropy in proton conductivity was due to anisotropy in the ion-cluster structure, which in turn was attributed to the formation of a phase-separated structure via strong bonding between sulfonic acid groups and 1,2,4-triazole during cast film formation and the surface segregation of fluorine. We expect the findings of this study to aid in the fabrication of PFSA films with controlled ion clusters. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials)
Show Figures

Figure 1

24 pages, 14919 KiB  
Article
Structure-Aided Computational Design of Triazole-Based Targeted Covalent Inhibitors of Cruzipain
by Juan Pablo Cerutti, Lucas Abreu Diniz, Viviane Corrêa Santos, Salomé Catalina Vilchez Larrea, Guillermo Daniel Alonso, Rafaela Salgado Ferreira, Wim Dehaen and Mario Alfredo Quevedo
Molecules 2024, 29(17), 4224; https://doi.org/10.3390/molecules29174224 - 5 Sep 2024
Abstract
Cruzipain (CZP), the major cysteine protease present in T. cruzi, the ethiological agent of Chagas disease, has attracted particular attention as a therapeutic target for the development of targeted covalent inhibitors (TCI). The vast chemical space associated with the enormous molecular diversity [...] Read more.
Cruzipain (CZP), the major cysteine protease present in T. cruzi, the ethiological agent of Chagas disease, has attracted particular attention as a therapeutic target for the development of targeted covalent inhibitors (TCI). The vast chemical space associated with the enormous molecular diversity feasible to explore by means of modern synthetic approaches allows the design of CZP inhibitors capable of exhibiting not only an efficient enzyme inhibition but also an adequate translation to anti-T. cruzi activity. In this work, a computer-aided design strategy was developed to combinatorially construct and screen large libraries of 1,4-disubstituted 1,2,3-triazole analogues, further identifying a selected set of candidates for advancement towards synthetic and biological activity evaluation stages. In this way, a virtual molecular library comprising more than 75 thousand diverse and synthetically feasible analogues was studied by means of molecular docking and molecular dynamic simulations in the search of potential TCI of CZP, guiding the synthetic efforts towards a subset of 48 candidates. These were synthesized by applying a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) centered synthetic scheme, resulting in moderate to good yields and leading to the identification of 12 hits selectively inhibiting CZP activity with IC50 in the low micromolar range. Furthermore, four triazole derivatives showed good anti-T. cruzi inhibition when studied at 50 μM; and Ald-6 excelled for its high antitrypanocidal activity and low cytotoxicity, exhibiting complete in vitro biological activity translation from CZP to T. cruzi. Overall, not only Ald-6 merits further advancement to preclinical in vivo studies, but these findings also shed light on a valuable chemical space where molecular diversity might be explored in the search for efficient triazole-based antichagasic agents. Full article
Show Figures

Figure 1

7 pages, 1455 KiB  
Article
A Novel Electromagnetic Wavelength Measurement Method Based on Photoacoustic Effect and Photoacoustic Response Characteristics of Nanomaterials
by Yijie Huang, Renbin Zhong, Zhenhui Zhang and Lin Huang
Photonics 2024, 11(9), 831; https://doi.org/10.3390/photonics11090831 - 2 Sep 2024
Viewed by 236
Abstract
This study proposes a differential wavelength measurement method based on the electromagnetic-induced photoacoustic effect. The differential method involves irradiating the sample with multiple wavelengths and utilizing differences in absorption characteristics across different materials to calculate and measure the excitation light wavelengths. Compared to [...] Read more.
This study proposes a differential wavelength measurement method based on the electromagnetic-induced photoacoustic effect. The differential method involves irradiating the sample with multiple wavelengths and utilizing differences in absorption characteristics across different materials to calculate and measure the excitation light wavelengths. Compared to traditional detection methods, this approach combines the unique properties of electromagnetic-induced photoacoustic effect, offering high sensitivity and a wider detection range from microwave to light. Furthermore, the system is structurally simple and stable, suitable for non-destructive testing of various materials, including wavelength-sensitive biological tissues. The experimental results demonstrate that combined with Polymers Benzodithiophene Triazole–Quinoxaline (PBTQ) and Single-Walled Carbon Nanotubes (SWCNTs) as absorbing media, this technique provides a rapid and cost-effective means of wavelength measurement, achieving an uncertainty of approximately 2.33 nm within the range of 680–800 nm, and it can be used for wavelength/frequency measurement of various electromagnetic waves. Full article
(This article belongs to the Special Issue New Perspectives in Biomedical Optics and Optical Imaging)
Show Figures

Figure 1

14 pages, 3217 KiB  
Article
Preparation and Application of Multi-Walled Carbon Nanotube-Supported Metconazole Suspension Concentrate for Seed Coating to Control Wheat Sharp Eyespot
by Xuexiang Ren, Dongdong Qi, Zhao Li, Yu Chi, Xianyan Su, Kaixin Gu, Zhenghe Ye, Shun He and Li Chen
Agronomy 2024, 14(9), 1985; https://doi.org/10.3390/agronomy14091985 - 1 Sep 2024
Viewed by 407
Abstract
Wheat sharp eyespot is a prevalent soil-borne disease that causes substantial economic losses in agriculture. Metconazole, a new triazole broad-spectrum fungicide, has demonstrated effective control of soil-borne diseases. Multi-walled carbon nanotubes (MWCNTs) are an innovative adsorbent material known for their large surface area [...] Read more.
Wheat sharp eyespot is a prevalent soil-borne disease that causes substantial economic losses in agriculture. Metconazole, a new triazole broad-spectrum fungicide, has demonstrated effective control of soil-borne diseases. Multi-walled carbon nanotubes (MWCNTs) are an innovative adsorbent material known for their large surface area and high absorptive capacity. This study identifies MWCNTs as the optimal adsorption material for metconazole, achieving an adsorption rate of 85.27% under optimal conditions (stirring time of 30 min and feeding ratio of 6:1). The optimized formula consists of 1.5% dispersant sodium wood, 1% emulsifier BY-112, 2% AEO-15, 3% glycol, 3% filmogen, and 4% red dyes. A 0.5% MWCNT–metconazole suspension concentrate for seed coating (FSC) significantly enhances the inhibitory effect of metconazole on wheat growth and promotes root development. At the tillering stage, a coating ratio of 1:100 shows a marked impact on wheat growth, and MWCNTs can improve the control effect of metconazole to Rhizoctonia cerealis. This work offers a novel approach for applying metconazole in a wheat suspension concentrate for seed coating. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

15 pages, 2721 KiB  
Article
Conjugation of CRAMP18–35 Peptide to Chitosan and Hydroxypropyl Chitosan via Copper-Catalyzed Azide–Alkyne Cycloaddition and Investigation of Antibacterial Activity
by Sankar Rathinam, Kasper K. Sørensen, Martha Á. Hjálmarsdóttir, Mikkel B. Thygesen and Már Másson
Int. J. Mol. Sci. 2024, 25(17), 9440; https://doi.org/10.3390/ijms25179440 - 30 Aug 2024
Viewed by 215
Abstract
We developed a synthesis strategy involving a diazo transfer reaction and subsequent click reaction to conjugate a murine cathelicidin-related antimicrobial peptide (CRAMP18–35) to chitosan and hydroxypropyl chitosan (HPC), confirmed the structure, and investigated the antimicrobial activity. Chitosan azide and HPC-azide were [...] Read more.
We developed a synthesis strategy involving a diazo transfer reaction and subsequent click reaction to conjugate a murine cathelicidin-related antimicrobial peptide (CRAMP18–35) to chitosan and hydroxypropyl chitosan (HPC), confirmed the structure, and investigated the antimicrobial activity. Chitosan azide and HPC-azide were prepared with a low degree of azidation by reacting the parent chitosan and HPC with imidazole sulfonyl azide hydrochloride. CRAMP18–35 carrying an N-terminal pentynoyl group was successfully grafted onto chitosan and HPC via copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. The chitosan–peptide conjugates were characterized by IR spectroscopy and proton NMR to confirm the conversion of the azide to 1,2,3-triazole and to determine the degree of substitution (DS). The DS of the chitosan and HPC CRAMP18–35 conjugates was 0.20 and 0.13, respectively. The antibacterial activity of chitosan–peptide conjugates was evaluated for activity against two species of Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), and two species of Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). The antimicrobial peptide conjugates were selectively active against the Gram-negative bacteria and lacking activity against Gram-positive bacteria. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

22 pages, 4312 KiB  
Article
Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides
by Andrzej Zieba, Dominika Pindjakova, Malgorzata Latocha, Justyna Plonka-Czerw, Dariusz Kusmierz, Alois Cizek and Josef Jampilek
Molecules 2024, 29(17), 4044; https://doi.org/10.3390/molecules29174044 - 26 Aug 2024
Viewed by 437
Abstract
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3af and 6af were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and [...] Read more.
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3af and 6af were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7ah were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6ad with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3af and 6af and 1,2,3-triazole derivatives 7ah were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3af were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 µM. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity. Full article
(This article belongs to the Special Issue Heterocycles in Medicinal Chemistry III)
Show Figures

Figure 1

Back to TopTop