Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (783)

Search Parameters:
Keywords = vegetative reproduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7835 KiB  
Article
Reproductive Biology in the Possible Last Healthy Population of Parodia rechensis (Cactaceae): Perspectives to Avoid Its Extinction
by Rafael Becker, Rosana Farias-Singer, Diego E. Gurvich, Renan Pittella, Fernando H. Calderon-Quispe, Júlia de Moraes Brandalise and Rodrigo Bustos Singer
Plants 2024, 13(20), 2890; https://doi.org/10.3390/plants13202890 (registering DOI) - 15 Oct 2024
Viewed by 294
Abstract
All 32 Brazilian species of Parodia Speg (Cactaceae) occurring in Rio Grande do Sul State are considered threatened, according to the IUCN criteria. Until 2021, Parodia rechensis (CR) was known by only two small populations. However, a new population with over 400 individuals [...] Read more.
All 32 Brazilian species of Parodia Speg (Cactaceae) occurring in Rio Grande do Sul State are considered threatened, according to the IUCN criteria. Until 2021, Parodia rechensis (CR) was known by only two small populations. However, a new population with over 400 individuals was discovered in 2021, prompting the study of its reproductive biology as a way to promote its conservation. Anthesis, breeding system, and natural pollination were studied in the field. The breeding system was studied by applying controlled pollination treatments to plants excluded from pollinators (bagged). Germination features were studied at the Seed Bank of the Porto Alegre Botanical Garden under controlled temperatures (20, 25, and 30 °C). The anthesis is diurnal and lasts for up to four days. The flowers offer pollen as the sole resource to the pollinators. The study species is unable to set fruit and seed without the agency of pollinators and has self-incompatible (unable to set fruit and seeds when pollinated with pollen of the same individual) characteristics that can considerably restrict its reproduction. Native bees of Halictidae and Apidae (Hymenoptera) are the main pollinators, with a smaller contribution of Melyridae (Coleoptera) and Syrphidae (Diptera). Natural fruit set is moderate (≤64%, per individual), but the species presents vegetative growth, producing several branches from the mother plant. Seeds showed the optimum germination rate at 20 °C and an inhibition of 75% in germinability at 30 °C. Our findings suggest the need to manage the species’ habitat to guarantee the permanency of the plants and healthy populations of pollinators as well. Our findings raise concerns about the germination and establishment of new individuals in the context of rising temperatures caused by climate change. Suggestions for the possible management of the extant populations are made. Full article
(This article belongs to the Special Issue Pollination in a Changing World)
Show Figures

Figure 1

26 pages, 10735 KiB  
Article
Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet (Panicum miliaceum L.)
by Xinyu Zhao, Minxuan Liu, Chunxiang Li, Jingyi Zhang, Tianshu Li, Fengjie Sun, Ping Lu and Yue Xu
Int. J. Mol. Sci. 2024, 25(20), 11012; https://doi.org/10.3390/ijms252011012 - 13 Oct 2024
Viewed by 304
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest crops, domesticated nearly 8000 years ago in northern China. It gradually spread across the entire Eurasian continent, as well as to America and Africa, with recent improvement in various reproductive and vegetative [...] Read more.
Broomcorn millet (Panicum miliaceum L.) is one of the earliest crops, domesticated nearly 8000 years ago in northern China. It gradually spread across the entire Eurasian continent, as well as to America and Africa, with recent improvement in various reproductive and vegetative traits. To identify the genes that were selected during the domestication and improvement processes, we performed a comparative transcriptome analysis based on wild types, landraces, and improved cultivars of broomcorn millet at both seeding and filling stages. The variations in gene expression patterns between wild types and landraces and between landraces and improved cultivars were further evaluated to explore the molecular mechanisms underlying the domestication and improvement of broomcorn millet. A total of 2155 and 3033 candidate genes involved in domestication and a total of 84 and 180 candidate genes related to improvement were identified at seedling and filling stages of broomcorn millet, respectively. The annotation results suggested that the genes related to metabolites, stress resistance, and plant hormones were widely selected during both domestication and improvement processes, while some genes were exclusively selected in either domestication or improvement stages, with higher selection pressure detected in the domestication process. Furthermore, some domestication- and improvement-related genes involved in stress resistance either lost their functions or reduced their expression levels due to the trade-offs between stress resistance and productivity. This study provided novel genetic materials for further molecular breeding of broomcorn millet varieties with improved agronomic traits. Full article
Show Figures

Graphical abstract

15 pages, 2828 KiB  
Article
In Situ Seedling Establishment and Performance of Cyperus esculentus Seedlings
by Sander De Ryck, Evelyne Steylaerts, Branko Fort, Dirk Reheul and Benny De Cauwer
Agriculture 2024, 14(10), 1794; https://doi.org/10.3390/agriculture14101794 - 12 Oct 2024
Viewed by 324
Abstract
Cyperus esculentus seeds are often considered irrelevant for C. esculentus spread as their fragile seedlings would not establish or survive in agricultural soils. However, the ever-increasing spread and upsurge of genetically different clonal populations in NW-Europe raises questions about the establishment of C. [...] Read more.
Cyperus esculentus seeds are often considered irrelevant for C. esculentus spread as their fragile seedlings would not establish or survive in agricultural soils. However, the ever-increasing spread and upsurge of genetically different clonal populations in NW-Europe raises questions about the establishment of C. esculentus seeds and the reproductive performance of seedlings. Indeed, little is known about the potential of C. esculentus seedlings to grow and propagate under outdoor conditions relative to plants grown from tubers. Seeds from different clonal populations were sown outdoors in various soil types and under different irrigation levels (rainfed, irrigated) to assess seed germination and seedling establishment. Additionally, two pot experiments were conducted with three different plant types (plants originating from mother tubers and from seeds harvested on open- or self-pollinated plants) obtained from eight clonal populations. Plant performance was investigated by measuring vegetative and generative parameters. Germination under outdoor conditions was significantly affected by clonal population and was highest in irrigated sand (5.3%). Germination in sand was 4.1 times higher in irrigated plots than in rainfed plots. In irrigated plots, germination was 3.8 and 4.7 times higher in sand than in sandy loam and clay, respectively. Depending on the year, three out of five to five out of six clonal populations produced more tubers when grown from mother tubers than from seeds. Maximal tuber reproduction factors of 1:965, 1:752, and 1:618 were achieved for plants from mother tubers and seeds from open- and self-pollinated flowers, respectively. Plants originating from open-pollinated seedlings have the potential to equal or exceed the vegetative reproductive capacity of plants originating from mother tubers. As a result of their ability to establish in situ and their substantial vegetative reproductive capacity, C. esculentus seedlings are highly relevant for agriculture and merit appropriate attention in any integrated weed management system targeting C. esculentus. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

19 pages, 2666 KiB  
Article
Exogenous N Supply on N Transportation and Reuse during the Rice Grain-Filling Stage and Its Relationship with Leaf Color-Changing Parameters
by Yi Tao, Yanan Xu, Chang Ye, Junlin Zhu, Deshun Xiao, Wenli Liao, Yijun Zhu, Guang Chu, Chunmei Xu and Danying Wang
Agronomy 2024, 14(10), 2321; https://doi.org/10.3390/agronomy14102321 - 9 Oct 2024
Viewed by 430
Abstract
During the later reproductive period of rice growth, the chlorophyll in the leaves degraded, accompanied by the nitrogen (N) transportation from leaves to panicle, resulting in a change in leaf color from green to yellow. This study aimed to investigate the effects of [...] Read more.
During the later reproductive period of rice growth, the chlorophyll in the leaves degraded, accompanied by the nitrogen (N) transportation from leaves to panicle, resulting in a change in leaf color from green to yellow. This study aimed to investigate the effects of exogenous N supply on leaf color-changing, N accumulation, N transportation, and N loss of indica-japonica hybrid rice during the grain-filling stage. Two indica-japonica hybrid rice cultivars, Chunyou 167 (CY167) and Chunyou 927 (CY927), which exhibited significant differences in leaf color-changing during the grain-filling stage, were selected as materials for field experiment and hydroponic experiment with low, medium, and high N treatments (LN, MN, and HN). The dynamic changes in SPAD value from heading to maturity were measured and fitted with quadratic function to extract leaf color-changing parameters; labeled 15N was used as N source after heading to trace the source of N in the panicle and the remobilization of vegetative organ N. The results showed that 67.37–72.38% of the panicle N was transported from vegetative organs, the N transport efficiency was the upper three leaves > lower leaves > stem, and about 3.1–35.0% of the transported N was lost via volatilization. The effects of exogenous N concentration on N harvest index, N dry matter/grain production efficiency, N reuse efficiency, and N loss were closely related to leaf color-changing parameters. In MN and HN treatment, the N loss was negatively correlated with the onset time of leaf color-changing (T0) and the final leaf color index (CIf), but positively correlated with the leaf color-changing rate (Rmean). Increasing the supply of exogenous N increased T0 and CIf, but decreased Rmean, N transport/reuse efficiency, N harvest index, and N dry matter/grain production efficiency. Compared to the cultivar CY167 with normal leaf color-changing, the “stay-green” cultivar CY927 had higher T0, CIf, and lower Rmean, resulting in less N volatilization loss, lower N harvest index and N transport efficiency, while higher N reuse efficiency. In conclusion, the exogenous N supply affects leaf color by influencing the transportation and reuse of leaf N during the grain-filling stage. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

14 pages, 4902 KiB  
Article
UAV-Based Phenotyping: A Non-Destructive Approach to Studying Wheat Growth Patterns for Crop Improvement and Breeding Programs
by Sabahat Zahra, Henry Ruiz, Jinha Jung and Tyler Adams
Remote Sens. 2024, 16(19), 3710; https://doi.org/10.3390/rs16193710 - 5 Oct 2024
Viewed by 988
Abstract
Rising food demands require new techniques to achieve higher genetic gains for crop production, especially in regions where climate can negatively affect agriculture. Wheat is a staple crop that often encounters this challenge, and ideotype breeding with optimized canopy traits for grain yield, [...] Read more.
Rising food demands require new techniques to achieve higher genetic gains for crop production, especially in regions where climate can negatively affect agriculture. Wheat is a staple crop that often encounters this challenge, and ideotype breeding with optimized canopy traits for grain yield, such as determinate tillering, synchronized flowering, and stay-green (SG), can potentially improve yield under terminal drought conditions. Among these traits, SG has emerged as a key factor for improving grain quality and yield by prolonging photosynthetic activity during reproductive stages. This study aims to highlight the importance of growth dynamics in a wheat mapping population by using multispectral images obtained from uncrewed aerial vehicles as a high-throughput phenotyping technique to assess the effectiveness of using such images for determining correlations between vegetation indices and grain yield, particularly regarding the SG trait. Results show that the determinate group exhibited a positive correlation between NDVI and grain yield, indicating the effectiveness of these traits in yield improvement. In contrast, the indeterminate group, characterized by excessive vegetative growth, showed no significant NDVI–grain yield relationship, suggesting that NDVI values in this group were influenced by sterile tillers rather than contributing to yield. These findings provide valuable insights for crop breeders by offering a non-destructive approach to enhancing genetic gains through the improved selection of resilient wheat genotypes. Full article
(This article belongs to the Special Issue Within-Season Agricultural Monitoring from Remotely Sensed Data)
Show Figures

Figure 1

30 pages, 2467 KiB  
Review
Illuminating Cannabis sativa L.: The Power of Light in Enhancing C. sativa Growth and Secondary Metabolite Production
by S.M. Ahsan, Md. Injamum-Ul-Hoque, Shifa Shaffique, Akhtar Ayoobi, Md Atikur Rahman, Md. Mezanur Rahman and Hyong Woo Choi
Plants 2024, 13(19), 2774; https://doi.org/10.3390/plants13192774 - 3 Oct 2024
Viewed by 977
Abstract
Light is crucial for higher plants, driving photosynthesis and serving as a powerful sensory signal that profoundly modulates growth, development, physiological functions, hormone activation, and biochemical pathways. Various light parameters—quality, intensity, composition, and photoperiod—exert a tremendous influence on plant growth and development, particularly [...] Read more.
Light is crucial for higher plants, driving photosynthesis and serving as a powerful sensory signal that profoundly modulates growth, development, physiological functions, hormone activation, and biochemical pathways. Various light parameters—quality, intensity, composition, and photoperiod—exert a tremendous influence on plant growth and development, particularly in industrial hemp (Cannabis sativa L.). C. sativa, a crop of historical significance and unparalleled versatility, holds immense value in the food, fiber, and medicinal industries. The cultivation of medicinal cannabis is burgeoning in controlled environments due to evolving healthcare regulations. Optimal light conditions significantly enhance both yield and harvest quality, notably increasing the density of apical inflorescences and the ratio of inflorescence to total aboveground biomass. C. sativa metabolites, especially phenolic and terpene compounds and Phytocannabinoids like CBD (cannabidiol), THC (tetrahydrocannabinol), and CBG (cannabigerol), possess immense medicinal value. Secondary metabolites in C. sativa predominantly accumulate in the trichomes of female flowers and surrounding sugar leaves, underscoring the critical need to boost inflorescence weight and metabolite concentrations while ensuring product consistency. Different light parameters distinctly impact C. sativa’s metabolic profile, providing a robust foundation for understanding the optimal conditions for synthesizing specific secondary metabolites. While the effects of light measurement on various crops are well-established, scientific evidence specifically relating to light quality effects on C. sativa morphology and secondary metabolite accumulation remains scarce. In this review, we critically summarized how different light properties can alter cannabis growth (vegetative and reproductive), physiology and metabolism. Furthermore, the mechanisms by which specific wavelengths influence growth, development, and secondary metabolite biosynthesis in C. sativa are not fully elucidated, which could be a prospective task for future researchers. Our review paves the way for a profound understanding of light’s influence on C. sativa growth and advancements in greenhouse settings to maximize metabolite production for commercial use. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation—2nd Edition)
Show Figures

Figure 1

18 pages, 3277 KiB  
Article
Responses of Growth, Enzyme Activity, and Flower Bud Differentiation of Pepper Seedlings to Nitrogen Concentration at Different Growth Stages
by Zhengnan Yan, Xiuxiu Cao, Lixue Bing, Jinxiu Song, Ye Qi, Qingyan Han, Yanjie Yang and Duo Lin
Agronomy 2024, 14(10), 2270; https://doi.org/10.3390/agronomy14102270 - 1 Oct 2024
Viewed by 635
Abstract
The concentration of nitrogen fertilizer is matched with the nutrient requirements in different growth stages of plants, which coordinates their vegetative and reproductive growth. In this study, the influences of nitrogen concentration before and after initiation of flower bud differentiation (first and second [...] Read more.
The concentration of nitrogen fertilizer is matched with the nutrient requirements in different growth stages of plants, which coordinates their vegetative and reproductive growth. In this study, the influences of nitrogen concentration before and after initiation of flower bud differentiation (first and second stage, respectively) on pepper seedling quality were studied. The chlorophyll a content, sucrose synthase activity, and sucrose phosphate synthase activity of pepper seedlings grown under moderate nitrogen (15 mmol L−1) in the first stage combined with high nitrogen (25.61 mmol L−1) in the second stage were 15.7%, 39.3%, and 34.6% higher than those of the same nitrogen concentration (15 mmol L−1) in the first and second stages treatment, respectively. The regression model also showed that the values of flower bud diameter, shoot fresh weight, root fresh weight, and glutamine synthetase activity of pepper were high under the condition of moderate nitrogen in the first stage and higher nitrogen in the second stage. In addition, the results of comprehensive evaluation showed that moderate nitrogen (15 mmol L−1) in the first stage and high nitrogen (25.61 mmol L−1) in the second stage treatment ranked first, which improved carbon and nitrogen metabolism, increased biomass accumulation, and promoted the flower bud differentiation and flowering of pepper seedlings. Full article
Show Figures

Figure 1

22 pages, 1777 KiB  
Review
Recent Insights into the Physio-Biochemical and Molecular Mechanisms of Low Temperature Stress in Tomato
by Kwanuk Lee and Hunseung Kang
Plants 2024, 13(19), 2715; https://doi.org/10.3390/plants13192715 - 28 Sep 2024
Viewed by 435
Abstract
Climate change has emerged as a crucial global issue that significantly threatens the survival of plants. In particular, low temperature (LT) is one of the critical environmental factors that influence plant morphological, physiological, and biochemical changes during both the vegetative and reproductive growth [...] Read more.
Climate change has emerged as a crucial global issue that significantly threatens the survival of plants. In particular, low temperature (LT) is one of the critical environmental factors that influence plant morphological, physiological, and biochemical changes during both the vegetative and reproductive growth stages. LT, including abrupt drops in temperature, as well as winter conditions, can cause detrimental effects on the growth and development of tomato plants, ranging from sowing, transplanting, truss appearance, flowering, fertilization, flowering, fruit ripening, and yields. Therefore, it is imperative to understand the comprehensive mechanisms underlying the adaptation and acclimation of tomato plants to LT, from the morphological changes to the molecular levels. In this review, we discuss the previous and current knowledge of morphological, physiological, and biochemical changes, which contain vegetative and reproductive parameters involving the leaf length (LL), plant height (PH) stem diameter (SD), fruit set (FS), fruit ripening (FS), and fruit yield (FY), as well as photosynthetic parameters, cell membrane stability, osmolytes, and ROS homeostasis via antioxidants scavenging systems during LT stress in tomato plants. Moreover, we highlight recent advances in the understanding of molecular mechanisms, including LT perception, signaling transduction, gene regulation, and fruit ripening and epigenetic regulation. The comprehensive understanding of LT response provides a solid basis to develop the LT-resistant varieties for sustainable tomato production under the ever-changing temperature fluctuations. Full article
Show Figures

Figure 1

16 pages, 5278 KiB  
Article
A Flowering Morphological Investigation, Fruit Fatty Acids, and Mineral Elements Dynamic Changes of Idesia polycarpa Maxim
by Yanpeng Wang, Cuiyu Liu, Jiasong Hu, Kaiyun Wu, Bangchu Gong and Yang Xu
Plants 2024, 13(18), 2663; https://doi.org/10.3390/plants13182663 - 23 Sep 2024
Viewed by 492
Abstract
Idesia polycarpa Maxim is a high-value species of fruit oil with edible, abundant linoleic acid and polyphenols. Idesia polycarpa is described as a dioecious species, and the flowers are male; female and bisexual flowers are produced on separate plants. In order to explore [...] Read more.
Idesia polycarpa Maxim is a high-value species of fruit oil with edible, abundant linoleic acid and polyphenols. Idesia polycarpa is described as a dioecious species, and the flowers are male; female and bisexual flowers are produced on separate plants. In order to explore the flower types of Idesia polycarpa, the morphology of its flowers and inflorescence were investigated in this study. The flower and inflorescence types, the diameter, and the flowering sequencing in male and female inflorescence were determined. We also detected the length, width, and fresh weight of leaves, shoots, and female inflorescence, as well as the length and fresh weight of the petiole during the development. Additionally, we compared the length, width, the length/width ratio, and the flowering density between 5- and 7-year-old female trees. The phenological period observation of Idesia polycarpa showed that the development process can be roughly divided into 12 stages, including bud burst, leaf expansion, inflorescence growth, initial flowering, full flowering, flower decline, initial fruiting, fruit enlargement, fruit color change, fruit ripening, post-ripening of fruit, and leaf fall periods. Furthermore, four elites’ fruit determined the oil content and the composition of fatty acid content during the development. The dynamic of fatty acids contents, the palrnitic acid, palmitoleic acid, stearic acid, oleic acid, and linolenic acid contents were detected during the fruit development of four elites. Moreover, the mineral elements content of fruit of four elites during development were determined. The patterns of vegetative and reproductive growth in young dioecious trees of Idesia polycarpa provided the theoretical basis for artificial pruning and training. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

26 pages, 6130 KiB  
Article
Comprehensive Spatial-Temporal and Risk Factor Insights for Optimizing Livestock Anthrax Vaccination Strategies in Karnataka, India
by Jayashree Anandakumar, Kuralayanapalya Puttahonnappa Suresh, Archana Veeranagouda Patil, Chethan A. Jagadeesh, Sushma Bylaiah, Sharanagouda S. Patil and Divakar Hemadri
Vaccines 2024, 12(9), 1081; https://doi.org/10.3390/vaccines12091081 - 22 Sep 2024
Viewed by 785
Abstract
Anthrax, a zoonotic disease affecting both livestock and humans globally, is caused by Bacillus anthracis. The objectives of this study were the following: (1) to identify environmental risk factors for anthrax and use this information to develop an improved predictive risk map, and [...] Read more.
Anthrax, a zoonotic disease affecting both livestock and humans globally, is caused by Bacillus anthracis. The objectives of this study were the following: (1) to identify environmental risk factors for anthrax and use this information to develop an improved predictive risk map, and (2) to estimate spatial variation in basic reproduction number (Ro) and herd immunity threshold at the village level, which can be used to optimize vaccination policies within high-risk regions. Based on the anthrax incidences from 2000–2023 and vaccine administration figures between 2008 and 2022 in Karnataka, this study depicted spatiotemporal pattern analysis to derive a risk map employing machine learning algorithms and estimate Ro and herd immunity threshold for better vaccination coverage. Risk factors considered were key meteorological, remote sensing, soil, and geographical parameters. Spatial autocorrelation and SaTScan analysis revealed the presence of hotspots and clusters predominantly in the southern, central, and uppermost northern districts of Karnataka and temporal cluster distribution between June and September. Factors significantly associated with anthrax were air temperature, surface pressure, land surface temperature (LST), enhanced vegetation index (EVI), potential evapotranspiration (PET), soil temperature, soil moisture, pH, available potassium, sulphur, and boron, elevation, and proximity to waterbodies and waterways. Ensemble technique with random forest and classification tree models were used to improve the prediction accuracy of anthrax. High-risk areas are expected in villages in the southern, central, and extreme northern districts of Karnataka. The estimated Ro revealed 11 high-risk districts with Ro > 1.50 and respective herd immunity thresholds ranging from 11.24% to 55.47%, and the assessment of vaccination coverage at the 70%, 80%, and 90% vaccine efficacy levels, all serving for need-based strategic vaccine allocation. A comparison analysis of vaccinations administered and vaccination coverage estimated in this study is used to illustrate difference in the supply and vaccine force. The findings from the present study may support in planning preventive interventions, resource allocation, especially of vaccines, and other control strategies against anthrax across Karnataka, specifically focusing on predicted high-risk regions. Full article
Show Figures

Figure 1

19 pages, 2944 KiB  
Article
Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations
by Deepshila Gautam, Jyoti R. Behera, Suhas Shinde, Shivakumar D. Pattada, Mary Roth, Libin Yao, Ruth Welti and Aruna Kilaru
Biology 2024, 13(9), 726; https://doi.org/10.3390/biology13090726 - 16 Sep 2024
Viewed by 883
Abstract
Membrane lipid composition is critical for an organism’s growth, adaptation, and functionality. Mosses, as early non-vascular land colonizers, show significant adaptations and changes, but their dynamic membrane lipid alterations remain unexplored. Here, we investigated the temporal changes in membrane lipid composition of the [...] Read more.
Membrane lipid composition is critical for an organism’s growth, adaptation, and functionality. Mosses, as early non-vascular land colonizers, show significant adaptations and changes, but their dynamic membrane lipid alterations remain unexplored. Here, we investigated the temporal changes in membrane lipid composition of the moss Physcomitrium patens during five developmental stages and analyzed the acyl content and composition of the lipids. We observed a gradual decrease in total lipid content from the filamentous protonema stage to the reproductive sporophytes. Notably, we found significant levels of very long-chain polyunsaturated fatty acids, particularly arachidonic acid (C20:4), which are not reported in vascular plants and may aid mosses in cold and abiotic stress adaptation. During vegetative stages, we noted high levels of galactolipids, especially monogalactosyldiacylglycerol, associated with chloroplast biogenesis. In contrast, sporophytes displayed reduced galactolipids and elevated phosphatidylcholine and phosphatidic acid, which are linked to membrane integrity and environmental stress protection. Additionally, we observed a gradual decline in the average double bond index across all lipid classes from the protonema stage to the gametophyte stage. Overall, our findings highlight the dynamic nature of membrane lipid composition during moss development, which might contribute to its adaptation to diverse growth conditions, reproductive processes, and environmental challenges. Full article
(This article belongs to the Special Issue Lipid Metabolism in Plant Growth and Development)
Show Figures

Figure 1

22 pages, 27897 KiB  
Article
Evaluation of the Urban Canopy Scheme TERRA-URB in the ICON Model at Hectometric Scale over the Naples Metropolitan Area
by Davide Cinquegrana, Myriam Montesarchio, Alessandra Lucia Zollo and Edoardo Bucchignani
Atmosphere 2024, 15(9), 1119; https://doi.org/10.3390/atmos15091119 - 14 Sep 2024
Viewed by 537
Abstract
The present work is focused on the validation of the urban canopy scheme TERRA-URB, implemented in ICON weather forecast model. TERRA-URB is used to capture the behavior of urbanized areas as sources of heat fluxes, mainly due to anthropogenic activities that can influence [...] Read more.
The present work is focused on the validation of the urban canopy scheme TERRA-URB, implemented in ICON weather forecast model. TERRA-URB is used to capture the behavior of urbanized areas as sources of heat fluxes, mainly due to anthropogenic activities that can influence temperature, humidity, and other atmospheric variables of the surrounding areas. Heat fluxes occur especially during the nighttime in large urbanized areas, characterized by poor vegetation, and are responsible for the formation of Urban Heat and Dry Island, i.e., higher temperatures and lower humidity compared to rural areas. They can be exacerbated under severe conditions, with dangerous consequences for people living in these urban areas. For these reasons, the need of accurately forecasting these phenomena is particularly felt. The present work represents one of the first attempts of using a very high resolution (about 600 m) in a Numerical Weather Prediction model. Performances of this advanced version of ICON have been investigated over a domain located in southern Italy, including the urban metropolitan area of Naples, considering a week characterized by extremely high temperatures. Results highlight that the activation of TERRA-URB scheme entails a better representation of temperature, relative humidity, and wind speed in urban areas, especially during nighttime, also allowing a proper reproduction of Urban Heat and Dry Island effects. Over rural areas, instead, no significant differences are found in model results when the urban canopy scheme is used. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

33 pages, 7990 KiB  
Article
Phenotypic, Physiological, and Gene Expression Analysis for Nitrogen and Phosphorus Use Efficienies in Three Popular Genotypes of Rice (Oryza sativa Indica)
by Bhumika Madan and Nandula Raghuram
Plants 2024, 13(18), 2567; https://doi.org/10.3390/plants13182567 - 13 Sep 2024
Cited by 1 | Viewed by 716
Abstract
Crop nitrogen (N) and phosphorus (P) use efficiencies (NUE/PUE) are important to minimize wastage and nutrient pollution, but no improved crop for both is currently available. We addressed them together in rice, in the view of its high consumption of NPK fertilizers. We [...] Read more.
Crop nitrogen (N) and phosphorus (P) use efficiencies (NUE/PUE) are important to minimize wastage and nutrient pollution, but no improved crop for both is currently available. We addressed them together in rice, in the view of its high consumption of NPK fertilizers. We analyzed 46 morphophysiological parameters for the N/P response in three popular indica genotypes, namely, BPT 5204, Panvel 1, and CR Dhan 301 at low, medium, and normal N/P doses. They include 18 vegetative, 15 physiological, and 13 reproductive parameters. The segregation of significantly N/P-responsive parameters correlating with NUE/PUE revealed 21 NUE, 22 PUE, and 12 common parameters. Feature selection analyses revealed the common high-ranking parameters including the photosynthetic rate at the reproductive stage, tiller number, root–shoot ratio, culm thickness, and flag leaf width. The venn selection using the reported NUE/PUE-related candidate genes in rice revealed five genes in common for both, namely OsIAA3, OsEXPA10, OsCYP75B4, OsSultr3;4, and OsFER2, which were associated with three of the common traits for NUE/PUE. Their expression studies using qRT-PCR revealed the opposite regulation in contrasting genotypes for OsSultr3;4 and OsEXPA10 in N-response and for OsFER2 in P-response, indicating their role in contrasting N/P use efficiencies. Overall, CR Dhan 301 has the highest NUE and PUE followed by Panvel 1 and BPT5204 among the studied genotypes. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

21 pages, 3481 KiB  
Article
Does Nitrogen Fertilization Improve Nitrogen-Use Efficiency in Spring Wheat?
by Aixia Xu, Yafei Chen, Xuexue Wei, Zechariah Effah, Lingling Li, Junhong Xie, Chang Liu and Sumera Anwar
Agronomy 2024, 14(9), 2049; https://doi.org/10.3390/agronomy14092049 - 7 Sep 2024
Viewed by 477
Abstract
To investigate the effects and mechanism of prolonged inorganic nitrogen (N) fertilization on the N-use efficiency of spring wheat (Triticum aestivum L.), a long-term study initiated in 2003 was conducted. The study analyzed how N fertilization affects dry matter translocation, N translocation, [...] Read more.
To investigate the effects and mechanism of prolonged inorganic nitrogen (N) fertilization on the N-use efficiency of spring wheat (Triticum aestivum L.), a long-term study initiated in 2003 was conducted. The study analyzed how N fertilization affects dry matter translocation, N translocation, soil NO3-N, and N-use efficiency. Five different N-fertilizer rate treatments were tested: N0, N52.5, N105, N157.5, and N210, corresponding to annual N fertilizer doses of 0, 52.5, 105.0, 157.5, and 210.0 kg N ha−1, respectively. Results showed that increasing N-fertilizer rates significantly enhanced the two-year average dry matter accumulation amount (DMA) at maturity by 22.97–56.25% and pre-flowering crop growth rate (CGR) by 17.11–92.85%, with no significant increase beyond 105 kg N ha−1. However, no significant correlation was observed between the dry matter translocation efficiency (DTE) and wheat grain yield. Both insufficient and excessive N applications resulted in an imbalanced N distribution favoring vegetative growth over reproductive growth, thus negatively impacting N-use efficiency. At maturity, the N-fertilized treatments significantly increased the two-year average N accumulation amount (NAA) by 52.04–129.98%, with no further increase beyond 105 kg N ha−1. N fertilization also improved the two-year average N translocation efficiency (NTE) by 56.89–63.80% and the N contribution proportion (NCP) of wheat vegetative organs by 27.79–57.83%, peaking in the lower-N treatment (N52.5). However, high-N treatment (N210) led to an increase in NO3-N accumulation in the 0–100 cm soil layer, with an increase of 26.27% in 2018 and 122.44% in 2019. This higher soil NO3-N accumulation in the 0–100 cm layer decreased NHI, NUE, NAE, NPFP, and NMB. Additionally, N fertilization significantly reduced the two-year average N harvest index (NHI) by 9.89–12.85% and N utilization efficiency (NUE) by 11.14–20.79%, both decreasing with higher N application rates. The NAA followed the trend of anthesis > maturity > jointing. At the 105 kg N ha−1 rate, the highest N agronomic efficiency (NAE) (9.31 kg kg−1), N recovery efficiency (NRE) (38.32%), and N marginal benefit (NMB) (10.67 kg kg−1) were observed. Higher dry matter translocation amount (DTA) and N translocation amount (NTA) reduced NHI and NUE, whereas higher NTE improved NHI, NUE, and N partial factor productivity (NPFP). Overall, N fertilization enhanced N-use efficiency in spring wheat by improving N translocation rather than dry matter translocation. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 3697 KiB  
Article
Diversity and Life History Traits of Native Weed Communities in Agricultural Areas: A Case Study in Eastern China
by Guoqi Chen, Zeyue Huang, Kai An, Yang Chen and Jiahao Xue
Biology 2024, 13(9), 704; https://doi.org/10.3390/biology13090704 - 7 Sep 2024
Viewed by 553
Abstract
Native weeds have a long history of adaptation to local environments. Understanding the relationship between the occurrence of native weeds and their life history traits is crucial for effective weed management and risk assessment of plant invasions. In this study, we surveyed native [...] Read more.
Native weeds have a long history of adaptation to local environments. Understanding the relationship between the occurrence of native weeds and their life history traits is crucial for effective weed management and risk assessment of plant invasions. In this study, we surveyed native weed species and their dominance across 666 field sites in agricultural areas of Yangzhou City, China, and each site was 13.3 hectares in area. A total of 287 native weed species were recorded, referring to 63 families, among which 45% were 50–100 cm in plant height and 47% were of an erect life type. In terms of the proportions out of the total native weed occurrence dominance, Poaceae, Compositae, and Fabaceae weeds accounted for 30%, 13%, and 11%; liana and perennials both occupied 32%; and aquatic, hygrophyte, sun plant, and shade plant all occupied < 10%. Additionally, the proportions increased with increasing seed production per plant and with increasing weediness reported worldwide. Native weed groups holding moderate vegetative reproduction abilities, moderate seed sizes, or herbicide resistance showed higher proportions. Moreover, most of the native weeds surveyed were not succulent or thorny plants and did not hold thorns, awns, obvious hairs, or mucilage on their fruits. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Invasive Alien Plants)
Show Figures

Figure 1

Back to TopTop