Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,259)

Search Parameters:
Keywords = vehicle behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3764 KiB  
Article
Obstacle Avoidance Strategy and Path Planning of Medical Automated Guided Vehicles Based on the Bionic Characteristics of Antelope Migration
by Jing Hu, Junchao Niu, Bangcheng Zhang, Xiang Gao, Xinming Zhang and Sa Huang
Biomimetics 2025, 10(3), 142; https://doi.org/10.3390/biomimetics10030142 (registering DOI) - 26 Feb 2025
Abstract
Automated Guided Vehicles (AGVs) face dynamic and static obstacles in the process of transporting patients in medical environments, and they need to avoid these obstacles in real time. This paper proposes a bionic obstacle avoidance strategy based on the adaptive behavior of antelopes, [...] Read more.
Automated Guided Vehicles (AGVs) face dynamic and static obstacles in the process of transporting patients in medical environments, and they need to avoid these obstacles in real time. This paper proposes a bionic obstacle avoidance strategy based on the adaptive behavior of antelopes, aiming to address this problem. Firstly, the traditional artificial potential field and dynamic window algorithm are improved by using the bionic characteristics of antelope migration. Secondly, the success rate and prediction range of AGV navigation are improved by adding new potential field force points and increasing the window size. Simulation experiments were carried out on a numerical simulation platform, and the verification results showed that the bionic obstacle avoidance strategy proposed in this paper can avoid dynamic and static obstacles at the same time. In the example, the success rate of path planning is increased by 34%, the running time is reduced by 33%, and the average path length is reduced by 1%. The proposed method can help realize the integration of “dynamic and static” avoidance in the process of transporting patients and effectively save time by using AGVs to transport patients. It provides a theoretical basis for realizing obstacle avoidance and rapidly loading AGVs in medical environments. Full article
Show Figures

Figure 1

26 pages, 2195 KiB  
Article
Are Electric Vehicles a Solution for Arctic Isolated Microgrid Communities?
by Michelle Wilber, Jennifer I. Schmidt, Tobias Schwoerer, Tim Bodony, Matt Bergan, Joseph Groves, Tom Atkinson and Leif Albertson
World Electr. Veh. J. 2025, 16(3), 128; https://doi.org/10.3390/wevj16030128 - 25 Feb 2025
Abstract
The Arctic presents various challenges for a transition to electric vehicles compared to other regions of the world, including environmental conditions such as colder temperatures, differences in infrastructure, and cultural and economic factors. For this study, academic researchers partnered with three rural communities: [...] Read more.
The Arctic presents various challenges for a transition to electric vehicles compared to other regions of the world, including environmental conditions such as colder temperatures, differences in infrastructure, and cultural and economic factors. For this study, academic researchers partnered with three rural communities: Kotzebue, Galena, and Bethel, Alaska, USA. The study followed a co-production process that actively involved community partners to identify 21 typical vehicle use cases that were then empirically modeled to determine changes in fueling costs and greenhouse gas emissions related to a switch from an internal combustion engine to an electric vehicle. While most use cases showed decreases in fueling costs and climate emissions from a transition to electric versions of the vehicles, some common use profiles did not. Specifically, the short distances of typical commutes, when combined with low idling and engine block heater use, led to an increase in both fueling costs and emissions. Arctic communities likely need public investment and additional innovation in incentives, vehicle types, and power systems to fully and equitably participate in the transition to electrified transportation. More research on electric vehicle integration, user behavior, and energy demand at the community level is needed. Full article
(This article belongs to the Special Issue Impact of Electric Vehicles on Power Systems and Society)
10 pages, 1597 KiB  
Brief Report
The Administration of Cannabinoid Receptor 2 Agonist Decreases Binge-like Intake of Palatable Food in Mice
by Luis Miguel Rodríguez-Serrano and María Elena Chávez-Hernández
Int. J. Mol. Sci. 2025, 26(5), 1981; https://doi.org/10.3390/ijms26051981 - 25 Feb 2025
Abstract
Binge eating disorder (BED) is characterized by uncontrollable episodes of eating in a short period of time, with a subjective loss of control of overconsumption behavior. The role CB2 cannabinoid receptor (CB2R) plays in binge-like intake has not yet been identified. In this [...] Read more.
Binge eating disorder (BED) is characterized by uncontrollable episodes of eating in a short period of time, with a subjective loss of control of overconsumption behavior. The role CB2 cannabinoid receptor (CB2R) plays in binge-like intake has not yet been identified. In this regard, the present study aims to evaluate the effect of the administration of CB2R agonist, antagonist, or both on binge-like intake of palatable food (PF) in adolescent mice. We used 35 C57BL6/J male mice of 30 postnatal days in this research; all animals were housed individually and had ad libitum access to a standard diet (SD) and water. Animals were evaluated for a total of 15 sessions of the Binge Eating Test (BET), which consisted of 1 h access to PF (chocolate sandwich cookies) according to intermittent diet protocol, with one-day access/one-day no-access. PF and SD caloric intake, as well as the PF binge index (defined as consuming ≥20% of total caloric intake per day during the 1 h access to PF), were analyzed. Mice were randomly assigned to one of the following treatment groups: (1) control; (2) vehicle; (3) HU308, selective CB2R agonist; (4) AM630, selective CB2R antagonist; (5) AM630+HU308 coadministration of antagonist and agonists of CB2R. All treatments were administered intraperitoneally before BET sessions. Our results show that HU308 significantly reduced binge-like intake of PF, while no significant differences were found in the rest of the groups. These results suggest that activation of the CB2R decreases the binge-like intake in adolescent mice and that chronic overconsumption in conditions of non-homeostatic feeding can be modulated by the CB2R. Furthermore, the activation of CB2R may also modulate reward pathways, reducing binge-like behavior, which could be further explored in future studies as a treatment for BED. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

27 pages, 6382 KiB  
Article
Utilizing IoT Sensors and Spatial Data Mining for Analysis of Urban Space Actors’ Behavior in University Campus Space Design
by Krzysztof Koszewski, Robert Olszewski, Piotr Pałka, Renata Walczak, Przemysław Korpas, Karolina Dąbrowska-Żółtak, Michał Wyszomirski, Olga Czeranowska-Panufnik, Andrzej Manujło, Urszula Szczepankowska-Bednarek, Joanna Kuźmicz-Kubiś, Anna Szalwa, Krzysztof Ejsmont and Paweł Czernic
Sensors 2025, 25(5), 1393; https://doi.org/10.3390/s25051393 - 25 Feb 2025
Abstract
This paper discusses the use of IoT sensor networks and spatial data mining methods to support the design process in the revitalization of the university campus of the Warsaw University of Technology (WUT) in the spirit of universal design. The aim of the [...] Read more.
This paper discusses the use of IoT sensor networks and spatial data mining methods to support the design process in the revitalization of the university campus of the Warsaw University of Technology (WUT) in the spirit of universal design. The aim of the research was to develop a methodology for the use of IoT and edge computing for the acquisition of spatial knowledge based on spatial big data, as well as for the development of an open (geo)information society that shares the responsibility for the process of shaping the spaces of smart cities. The purpose of the article is to verify the hypothesis on whether it is possible to obtain spatial–temporal quantitative data that are useful in the process of designing the space of a university campus using low-cost Internet of Things sensors, i.e., already existing networks of CCTV cameras supported by simple installed beam-crossing sensors. The methodological approach proposed in the article combines two main areas—the use of IT technologies (IoT, big data, spatial data mining) and data-driven design based on analysis of urban space actors’ behavior for participatory revitalization of a university campus. The research method applied involves placing a network of locally communicating heterogeneous IoT sensors in the space of a campus. These sensors collect data on the behavior of urban space actors: people and vehicles. The data collected and the knowledge gained from its analysis are used to discuss the shape of the campus space. The testbed of the developed methodology was the central campus of the WUT (Warsaw University of Technology), which made it possible to analyze the time-varying use of the selected campus spaces and to identify the premises for the revitalization project in accordance with contemporary trends in the design of the space of HEIs (higher education institutions), as well as the needs of the academic community and the residents of the capital. The results are used not only to optimize the process of redesigning the WUT campus, but also to support the process of discussion and activation of the community in the development of deliberative democracy and participatory shaping of space in general. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

26 pages, 14205 KiB  
Article
Design and Implementation of a DC–DC Resonant LLCConverter for Electric Vehicle Fast Chargers
by Joao Rocha, Saghir Amin, Sergio Coelho, Gonçalo Rego, Joao L. Afonso and Vitor Monteiro
Energies 2025, 18(5), 1099; https://doi.org/10.3390/en18051099 - 24 Feb 2025
Abstract
This article presents the design and implementation of a DC–DC power converter for application in electric vehicle (EV) fast-charging systems. The prototype is of the resonant LLC type and consists of a high-power transformer operating at high frequency, which is an essential feature [...] Read more.
This article presents the design and implementation of a DC–DC power converter for application in electric vehicle (EV) fast-charging systems. The prototype is of the resonant LLC type and consists of a high-power transformer operating at high frequency, which is an essential feature for the adequate behavior of the EV fast-charging system as a whole. As demonstrated throughout the article, by using this converter topology as well as its specific operating modes, such as for achieving zero-voltage switching (ZVS) and zero-current switching (ZCS), it is possible to enhance efficiency by reducing conduction and switching losses as well as to increase power density. The details of the high-power high-frequency transformer (HFT), considering different designs, are presented and discussed. With the implemented laboratorial prototype fully developed with silicon carbide (SiC) power semiconductor devices, it was possible to demonstrate and validate the main features of the resonant LLC converter, including high efficiency, under distinct conditions of operation. Full article
Show Figures

Figure 1

14 pages, 2848 KiB  
Article
Smart Charging and V2G: Enhancing a Hybrid Energy Storage System with Intelligent and Bidirectional EV Charging
by Thomas Franzelin, Sarah Schwarz and Stephan Rinderknecht
World Electr. Veh. J. 2025, 16(3), 121; https://doi.org/10.3390/wevj16030121 - 23 Feb 2025
Abstract
Energy storage systems and intelligent charging infrastructures are critical components addressing the challenges arising with the growth of renewables and the rising energy demand. Hybrid energy storage systems, in particular, are promising, as they combine two or more types of energy storage technologies [...] Read more.
Energy storage systems and intelligent charging infrastructures are critical components addressing the challenges arising with the growth of renewables and the rising energy demand. Hybrid energy storage systems, in particular, are promising, as they combine two or more types of energy storage technologies with complementary characteristics to enhance the overall performance. Managing electric vehicle charging enables the demand to align with fluctuating generation, while storage systems can enhance energy flexibility and reliability. In the case of bidirectional charging, EVs can even function as mobile, flexible storage systems that can be integrated into the grid. This paper introduces a novel testing environment that integrates unidirectional and bidirectional charging infrastructures into an existing hybrid energy storage system. It describes the test environment in technical detail, explains the functionality, and outlines its usefulness in practical applications. The test system not only supports grid integration but also expands the degrees of freedom for testing, enabling flexible and realistic experimental setups. This environment facilitates comprehensive investigations into EV behavior, charging strategies, control algorithms, and user interactions. It provides a platform for exploring the possibilities, limitations, and optimal use cases for smart charging and hybrid storage systems in practice. Full article
(This article belongs to the Special Issue Recent Developments in Practical Demonstrations of V2G Technologies)
Show Figures

Figure 1

21 pages, 50499 KiB  
Article
Lateral Displacement and Distance of Vehicles in Freeway Overtaking Scenario Based on Naturalistic Driving Data
by Cunshu Pan, Yuhao Zhang, Heshan Zhang and Jin Xu
Appl. Sci. 2025, 15(5), 2370; https://doi.org/10.3390/app15052370 - 22 Feb 2025
Abstract
The design of passenger-dedicated lane width is essential for freeway reconstruction and expansion projects. However, the technical standard of lane width established in China is based on trucks. This study aims to propose a passenger-dedicated lane width calculation method for freeways based on [...] Read more.
The design of passenger-dedicated lane width is essential for freeway reconstruction and expansion projects. However, the technical standard of lane width established in China is based on trucks. This study aims to propose a passenger-dedicated lane width calculation method for freeways based on overtaking behavior. Computer vision technology was used to extract vehicle trajectories and dimensions from videos captured by an unmanned aerial vehicle (UAV). Statistical methods such as cumulative frequency statistics, typical percentile statistics and regression analysis were employed to elaborate on the lateral displacement and distance of vehicles during overtaking. The results show that vehicles’ lateral displacements are mainly related to behaviors such as lane changing, lateral distance maintenance and lane keeping. The body width sum of parallel vehicles has little effect on the geometric center distance but significantly reduces the wheel distance when increasing. The general value of the passenger-dedicated lane width on freeways is recommended to be 3.5 m, and the limit value is 3.25 m. Compared with existing lane width calculation methods, this study pays more attention to the relationship between vehicle width and lateral distance, which can better cope with the challenges caused by vehicle diversity in lane width design. Full article
Show Figures

Figure 1

20 pages, 6421 KiB  
Review
Lithium-Ion Battery Condition Monitoring: A Frontier in Acoustic Sensing Technology
by Yuanyuan Pan, Ke Xu, Ruiqiang Wang, Honghong Wang, Guodong Chen and Kai Wang
Energies 2025, 18(5), 1068; https://doi.org/10.3390/en18051068 - 22 Feb 2025
Abstract
Lithium-ion batteries (LIBs) are widely used in the fields of consumer electronics, new energy vehicles, and grid energy storage due to their high energy density and long cycle life. However, how to effectively evaluate the State of Charge (SOC), State of Health (SOH), [...] Read more.
Lithium-ion batteries (LIBs) are widely used in the fields of consumer electronics, new energy vehicles, and grid energy storage due to their high energy density and long cycle life. However, how to effectively evaluate the State of Charge (SOC), State of Health (SOH), and overcharging behavior of batteries has become a key issue in improving battery safety and lifespan. Acoustic sensing technology, as an advanced non-destructive monitoring method, achieves real-time monitoring of the internal state of batteries and accurate evaluation of key parameters through ultrasonic testing technology and acoustic emission technology. This article systematically reviews the research progress of acoustic sensing technology in SOC, SOH, and overcharge behavior evaluation of LIBs, analyzes its working principle and application advantages, and explores future optimization directions and industrialization prospects. Acoustic sensing technology provides important support for building efficient and safe battery management systems. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

16 pages, 8422 KiB  
Article
Numerical Calculation Optimization for Particulate Matter Trapping and Oxidation of Catalytic Diesel Particulate Filter
by Maki Nakamura, Koji Yokota and Masakuni Ozawa
Appl. Sci. 2025, 15(5), 2356; https://doi.org/10.3390/app15052356 - 22 Feb 2025
Abstract
In recent years, the transition to electric vehicles has accelerated significantly. However, this shift does not imply the complete elimination of diesel engine vehicles, particularly in commercial and cargo transport, where diesel engines remain essential due to their high thermal efficiency and torque. [...] Read more.
In recent years, the transition to electric vehicles has accelerated significantly. However, this shift does not imply the complete elimination of diesel engine vehicles, particularly in commercial and cargo transport, where diesel engines remain essential due to their high thermal efficiency and torque. Despite their advantages, diesel engines produce particulate matter (PM) in their exhaust, which poses environmental and health risks. To mitigate PM emissions, diesel particulate filters (DPFs) are integrated into exhaust systems. However, as PM accumulates in the DPF, pressure drops occur, increasing the load on the engine. Therefore, periodic removal of PM through oxidation, known as regeneration, is required. Optimizing the PM combustion temperature improves fuel efficiency, but since diesel engine exhaust temperatures typically range from 100 to 500 °C, catalysts that facilitate PM oxidation at lower temperatures are necessary. This study focuses on PM oxidation catalysts designed for low-temperature diesel exhaust conditions. One of the key challenges in this area is the difficulty in directly observing PM trapping and oxidation behavior within a catalyzed DPF. Additionally, changing the catalyst during experiments is not straightforward. To address these challenges, we have developed a numerical model that simulates the entire process—from PM deposition to oxidation—inside a DPF. This model allows for easy modification of catalyst properties, providing a flexible framework for analyzing PM oxidation behavior under various conditions. In this study, numerical simulations were conducted to analyze the PM deposition and oxidation processes within the DPF. The results were derived from a simplified model developed specifically for this research. The proposed calculation method allows for the qualitative assessment of DPF performance when catalysts are altered, contributing to the optimization of DPF design. Full article
(This article belongs to the Special Issue Novel Advances of Combustion and Its Emissions)
Show Figures

Figure 1

16 pages, 4453 KiB  
Article
EV Charging Behavior Analysis and Load Prediction via Order Data of Charging Stations
by Shiqian Wang, Bo Liu, Qiuyan Li, Ding Han, Jianshu Zhou and Yue Xiang
Sustainability 2025, 17(5), 1807; https://doi.org/10.3390/su17051807 - 20 Feb 2025
Abstract
To understand the charging behavior of electric vehicle (EV) users and the sustainable use of the flexibility resources of EV, EV charging behavior analysis and load prediction via order data of charging stations was proposed. The user probability distribution model is established from [...] Read more.
To understand the charging behavior of electric vehicle (EV) users and the sustainable use of the flexibility resources of EV, EV charging behavior analysis and load prediction via order data of charging stations was proposed. The user probability distribution model is established from the characteristic dimensions of EV charging initial time, initial state of charge, power level, and charging time. Under the conditions of specific districts, seasons, multiple EV types, and specific weather, the Monte Carlo simulation method is used to predict the EV load distribution at the physical level. The correlation between users’ willingness to charge and the electricity price is analyzed, and the logistic function is used to establish the charging load prediction model on the economic level. Taking a city in Henan Province, China, as an example, the calculation results show that the EV charging load distribution varies with the district, season, weather, and EV type, and the 24 h time-of-use (TOU) electricity price and EV quantity distribution are analyzed. The proposed method can better reflect EV charging behavior and accurately predict EV charging load. Full article
(This article belongs to the Special Issue Sustainable Management for Distributed Energy Resources)
Show Figures

Figure 1

41 pages, 10418 KiB  
Review
Advancements in Vibration Testing: Effects on Thermal Performance and Degradation of Modern Batteries
by Khursheed Sabeel, Maher Al-Greer and Imran Bashir
Batteries 2025, 11(2), 82; https://doi.org/10.3390/batteries11020082 - 19 Feb 2025
Abstract
Lithium-ion cells are increasingly being used as central power storage systems for modern applications, i.e., e-bikes, electric vehicles (EVs), satellites, and spacecraft, and they face significant and constant vibrations. This review examines how these vibrations affect the batteries’ mechanical, thermal, and electrical properties. [...] Read more.
Lithium-ion cells are increasingly being used as central power storage systems for modern applications, i.e., e-bikes, electric vehicles (EVs), satellites, and spacecraft, and they face significant and constant vibrations. This review examines how these vibrations affect the batteries’ mechanical, thermal, and electrical properties. Vibrations can cause structural issues, such as the separation of electrodes and the deformation of separators. These problems raise internal resistance and lead to localized heat generation. As a result, thermal management becomes more complicated, battery aging accelerates, and safety risks arise, including short circuits and thermal runaways. To tackle these challenges, we need more realistic testing protocols that consider the combined effects of vibrations, temperature, and mechanical stress. Improving thermal management systems (TMSs) using advanced cooling techniques and materials, e.g., phase change solutions, can help to alleviate these problems. It is also essential to design batteries with vibration-resistant materials and enhanced structural integrity to boost their durability. Moreover, vibrations play a significant role in various degradation mechanisms, including dendrite formation, self-discharge, and lithium plating, all of which can reduce battery capacity and lifespan. Our current research builds on these insights using a multiscale physics-based modeling approach to investigate how vibrations interact with thermal behavior and contribute to battery degradation. By combining computational models with experimental data, we aim to develop strategies and tools to enhance lithium-ion batteries’ safety, reliability, and longevity in challenging environments. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Graphical abstract

19 pages, 5670 KiB  
Article
Investigation of the Thermal Vibration Behavior of an Orthogonal Woven Composite Nozzle Based on RVE Analysis
by Lin Wang, Xiaoniu Li, Congze Fan, Wenzhe Song, Yiwei Chen, Yufeng Jin, Xiaobo Han and Jinghua Zheng
Aerospace 2025, 12(2), 157; https://doi.org/10.3390/aerospace12020157 - 18 Feb 2025
Abstract
Carbon fiber-reinforced epoxy composites, known for their high specific stiffness, specific strength, and toughness are one of the primary materials used for composite nozzles in aerospace industries. The high temperature vibration behaviors of the composite nozzles, especially those that withstand internal pressures, are [...] Read more.
Carbon fiber-reinforced epoxy composites, known for their high specific stiffness, specific strength, and toughness are one of the primary materials used for composite nozzles in aerospace industries. The high temperature vibration behaviors of the composite nozzles, especially those that withstand internal pressures, are key to affecting their dynamic response and even failure during the service. This study investigates the changes in frequencies and the vibrational modes of the carbon fiber reinforced epoxy nozzles, focusing on a three-dimensional (3D) orthogonal woven composite, with high internal temperatures from 25 °C to 300 °C and non-uniform internal pressures, up to 5.4 MPa. By considering the temperature-sensitive parameters, including Young’s modulus, thermal conductivity, and thermal expansion coefficients, which are derived from a self-built representative volume element (RVE), the intrinsic frequencies and vibrational modes in composite nozzles were examined. Findings reveal that 2 nodal diameter (ND) and 3ND modes are influenced by Exx and Eyy while bending and torsion modes are predominantly affected by shear modulus. Temperature and internal pressure exhibit opposite effects on the modal frequencies. When the inner wall temperature rises from 25 °C to 300 °C, 2ND and 3ND frequencies decrease by an average of 30.39%, while bending and torsion frequencies decline by an average of 54.80%, primarily attributed to the decline modulus. Modal shifts were observed at ~150 °C, where the bending mode shifts to the 1st-order mode. More importantly, introducing non-uniform internal pressures induces the increase in nozzle stiffening in the xy-plane, leading to an apparent increase in the average 2ND and 3ND frequencies by 17.89% and 7.96%, while negligible changes in the bending and torsional frequencies. The temperature where the modal shifts were reduced to ~50 °C. The research performed in this work offers crucial insights for assessing the vibration life and safety design of hypersonic flight vehicles exposed to high-temperature thermal vibrations. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 3166 KiB  
Article
A Study on Analyzing Travel Characteristics of Micro Electric Vehicles by Using GPS Data
by Sunhoon Kim, Sooncheon Hwang and Dongmin Lee
Appl. Sci. 2025, 15(4), 2113; https://doi.org/10.3390/app15042113 - 17 Feb 2025
Abstract
A micro electric vehicle (micro-EV) is a small electric car with one or two seats designed for short-to-medium-distance trips. Micro-EVs produce relatively less pollution during operation and, due to their compact size, offer greater mobility in narrow areas compared to conventional transportation. These [...] Read more.
A micro electric vehicle (micro-EV) is a small electric car with one or two seats designed for short-to-medium-distance trips. Micro-EVs produce relatively less pollution during operation and, due to their compact size, offer greater mobility in narrow areas compared to conventional transportation. These advantages have led to a continuous increase in the number of micro-EVs. However, their small battery capacity results in a limited driving range per charge, and restrictions on power and speed lead to lower driving performance. Due to these drawbacks, micro-EVs still hold a small share of the overall vehicle market. Therefore, it is necessary to evaluate the strengths of micro-EVs and analyze how they should be utilized to promote their widespread adoption. Therefore, this study analyzed the strengths of micro-EVs and identified the types of services where they can be effectively utilized to promote the use of micro-EVs as a smart mobility option. This study focused on micro-EVs used as a shared transport service, delivery service, and in public service, as part of an R&D project on micro-EVs conducted by the Ministry of Trade, Industry, and Energy. A total of 106 micro-EVs were deployed for each service type: 57 for shared transport, 13 for delivery, and 36 for public service. Each micro-EV was equipped with a GPS device, and the analysis was conducted using GPS data collected from January 2021 to October 2021. Micro-EVs with missing data due to GPS device malfunctions were excluded from the analysis. As a result, two micro-EVs from the shared transport service and one from the public service were excluded. The study compared the travel characteristics of micro-EVs across the three different service types. Additionally, a comparative analysis of the driving characteristics of micro-EVs and conventional vehicles was conducted to assess the advantages of micro-EVs over traditional vehicles. The results of the analyses showed that micro-EVs were more utilized for the delivery service type than other service types in terms of daily usage time and travel distance (3.5 h/day and 38.5 km/day, respectively), trip amounts (24.1 trips/day), and number of trips per trip chain (9.4 trips/trip chain). Moreover, micro-EVs have their strengths compared to other modes of transportation when traveling narrow roads. Analysis of the roads around the areas where micro-EVs were located showed that the micro-EVs were exposed to narrow roads with a width of under 5 m (among the total road link extensions, 57% consisted of road links with a width of less than 5 m), especially the micro-EVs used for delivery service. It is expected that the findings of this study will serve as a foundational resource for developing strategies to promote the adoption of micro electric vehicles. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

20 pages, 13304 KiB  
Article
Discrete Element Method Analysis of Soil Penetration Depth Affected by Spreading Speed in Drone-Seeded Rice
by Kwon Joong Son
Agriculture 2025, 15(4), 422; https://doi.org/10.3390/agriculture15040422 - 17 Feb 2025
Abstract
This research explores, using discrete element method (DEM) simulations, the behavior of rice seed infiltration into soil when it is deployed via unmanned aerial vehicle (UAV)-mounted systems. Five distinct sowing strategies were analyzed to evaluate their effectiveness in embedding seeds within paddy soil: [...] Read more.
This research explores, using discrete element method (DEM) simulations, the behavior of rice seed infiltration into soil when it is deployed via unmanned aerial vehicle (UAV)-mounted systems. Five distinct sowing strategies were analyzed to evaluate their effectiveness in embedding seeds within paddy soil: gravitational drop, centrifugal spreading, airflow propulsion, pneumatic discharge, and pneumatic shooting. A two-step analysis was performed. Initially, the flight dynamics of rice seeds were modeled, and the influence of air and water drag forces were accounted for. Subsequently, soil penetration was simulated with DEM based on the material properties and contact parameters sourced from the existing literature. The results show that the pneumatic methods effectively penetrated the soil, with pneumatic shooting proving to be the most efficient due to its superior impact momentum. Conversely, the methods that failed to penetrate left seeds on the soil surface. These findings demonstrate the necessity to enhance UAV sowing technology to improve penetration depth while maintaining operational efficiency, and they also offer crucial insights for the progress of UAV applications in agriculture. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 7555 KiB  
Article
Control of Multiple Mobile Robots Based on Data Fusion from Proprioceptive and Actuated Exteroceptive Onboard Sensors
by Arpit Joon, Wojciech Kowalczyk and Przemyslaw Herman
Electronics 2025, 14(4), 776; https://doi.org/10.3390/electronics14040776 - 17 Feb 2025
Abstract
This paper introduces a team of Automated Guided Vehicles (AGVs) equipped with open-source, perception-enhancing rotating devices. Each device has a set of ArUco markers, employed to compute the relative pose of other AGVs. These markers also serve as landmarks, delineating a path for [...] Read more.
This paper introduces a team of Automated Guided Vehicles (AGVs) equipped with open-source, perception-enhancing rotating devices. Each device has a set of ArUco markers, employed to compute the relative pose of other AGVs. These markers also serve as landmarks, delineating a path for the robots to follow. The authors combined various control methodologies to track the ArUco markers on another rotating device mounted on the AGVs. Behavior trees are implemented to facilitate task-switching or to respond to sudden disturbances, such as environmental obstacles. The Robot Operating System (ROS) is installed on the AGVs to manage high-level controls. The efficacy of the proposed solution is confirmed through a real experiment. This research contributes to the advancement of AGV technology and its potential applications in various fields for example in a warehouse with a restricted and known environment where AGVs can transport goods while avoiding other AGVs in the same environment. Full article
(This article belongs to the Special Issue Recent Advances in Robotics and Automation Systems)
Show Figures

Figure 1

Back to TopTop