Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = vertical hydraulic conductivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2540 KiB  
Article
Novel 3D Structural-Light Scanner Technique for Continuous Monitoring of Pier Scour in Laboratory
by Jana Zaidan, Adrien Poupardin, Abdelkrim Bennabi, François Marin and Ahmed Benamar
J. Mar. Sci. Eng. 2024, 12(9), 1566; https://doi.org/10.3390/jmse12091566 - 6 Sep 2024
Abstract
Laboratory experiments are crucial for understanding scour around embedded structures. However, there is currently no standard and reliable instrumentation for monitoring the progression of this physical process in laboratory. In this paper, the capability of a novel 3D structural-light scanner technique to continuously [...] Read more.
Laboratory experiments are crucial for understanding scour around embedded structures. However, there is currently no standard and reliable instrumentation for monitoring the progression of this physical process in laboratory. In this paper, the capability of a novel 3D structural-light scanner technique to continuously measure the scour bed topography in uninterrupted flow is demonstrated. A suitable data processing procedure is developed to operate this device. Data processing is faster compared to other methods due to the automatic cloud reconstruction. This technique is rapid and allows for data acquisition with high vertical spatial accuracy. Flume tests are conducted on a circular pier founded in sand in clear water, as benchmark tests, to validate the effectiveness of this technique. The results observed with the scanner were coherent with those reported in the literature. Local scour initiation occurred near the sides of the pier. The maximum final scour depth measured was nearly equal to the pier diameter. This technique is considered non-intrusive under the tested hydraulic conditions and presents few limitations compared to other devices. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

31 pages, 29333 KiB  
Article
VARS and HDMR Sensitivity Analysis of Groundwater Flow Modeling through an Alluvial Aquifer Subject to Tidal Effects
by Javier Samper, Brais Sobral, Bruno Pisani, Alba Mon, Carlos López-Vázquez and Javier Samper-Pilar
Water 2024, 16(17), 2526; https://doi.org/10.3390/w16172526 - 5 Sep 2024
Abstract
Groundwater flow and transport models are essential tools for assessing and quantifying the migration of organic contaminants at polluted sites. Uncertainties in the hydrodynamic and transport parameters of the aquifer have a significant effect on model predictions. Uncertainties can be quantified with advanced [...] Read more.
Groundwater flow and transport models are essential tools for assessing and quantifying the migration of organic contaminants at polluted sites. Uncertainties in the hydrodynamic and transport parameters of the aquifer have a significant effect on model predictions. Uncertainties can be quantified with advanced sensitivity methods such as Sobol’s High Dimensional Model Reduction (HDMR) and Variogram Analysis of Response Surfaces (VARS). Here we present the application of VARS and HDMR to assess the global sensitivities of the outputs of a transient groundwater flow model of the Gállego alluvial aquifer which is located downstream of the Sardas landfill in Huesca (Spain). The aquifer is subject to the tidal effects caused by the daily oscillations of the water level in the Sabiñánigo reservoir. Global sensitivities are analyzed for hydraulic heads, aquifer/reservoir fluxes, groundwater Darcy velocity, and hydraulic head calibration metrics. Input parameters include aquifer hydraulic conductivities and specific storage, aquitard vertical hydraulic conductivities, and boundary inflows and conductances. VARS, HDMR, and graphical methods agree to identify the most influential parameters, which for most of the outputs are the hydraulic conductivities of the zones closest to the landfill, the vertical hydraulic conductivity of the most permeable zones of the aquitard, and the boundary inflow coming from the landfill. The sensitivity of heads and aquifer/reservoir fluxes with respect to specific storage change with time. The aquifer/reservoir flux when the reservoir level is high shows interactions between specific storage and aquitard conductivity. VARS and HDMR parameter rankings are similar for the most influential parameters. However, there are discrepancies for the less relevant parameters. The efficiency of VARS was demonstrated by achieving stable results with a relatively small number of simulations. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 3403 KiB  
Article
Machine Learning for Dynamic Pressure Coefficient Prediction in Vertical Water Jets
by Amin Salemnia, Seyedehmaryam Hosseini Boldaji, Vida Atashi and Manoochehr Fathi-Moghadam
Fluids 2024, 9(9), 205; https://doi.org/10.3390/fluids9090205 - 1 Sep 2024
Viewed by 317
Abstract
Vertical water jets present significant challenges for hydraulic structures due to their potential to cause erosion and structural damage. This study aimed to predict the dimensionless pressure coefficient (Cp) of vertical water jets by examining the relationships between experimental parameters, such [...] Read more.
Vertical water jets present significant challenges for hydraulic structures due to their potential to cause erosion and structural damage. This study aimed to predict the dimensionless pressure coefficient (Cp) of vertical water jets by examining the relationships between experimental parameters, such as Froude number, slope, and the ratio of waterfall height over the product of the Froude number and diameter, referred to as α, using machine learning models. Two hundred forty controlled experiments were conducted, with pressure data collected. To address the problem’s non-linearity, six machine learning models were tested: linear regression, K-nearest neighbors, decision tree, support vector regression, random forest, and XGBoost. The XGBoost model outperformed others, achieving an R-squared of 0.953 and a Root Mean Squared Error (RMSE) of 0.191. Residual analysis validated its better performance, demonstrating that it delivered the most accurate predictions with minimal bias. Feature importance analysis revealed the Froude number was the most significant predictor, followed by slope and diameter. This study emphasizes the importance of the Froude number in predicting jet behavior and shows the efficacy of advanced machine learning models in capturing complex fluid dynamics, providing valuable insights for optimizing engineering applications such as water jet cutting and cooling systems. Full article
(This article belongs to the Special Issue Machine Learning and Artificial Intelligence in Fluid Mechanics)
Show Figures

Figure 1

18 pages, 8812 KiB  
Article
A Method for Real-Time Measurement of the Vertical Vortex at Flood Discharge Outlets Using Ultrasonic Sensors
by Dingfan Fan, Min Yu, Zhixiang Yao, Yang Du and Hang Liu
Sensors 2024, 24(17), 5583; https://doi.org/10.3390/s24175583 - 28 Aug 2024
Viewed by 299
Abstract
In this study, ultrasonic sensors were used to measure the vertical vortex at flood discharge outlets in real time, and numerical simulations and model experiments were conducted. When a sound signal passes through a vortex, its propagation characteristics will change, which helps to [...] Read more.
In this study, ultrasonic sensors were used to measure the vertical vortex at flood discharge outlets in real time, and numerical simulations and model experiments were conducted. When a sound signal passes through a vortex, its propagation characteristics will change, which helps to determine the existence of the vortex. Moreover, its characteristic parameters can be obtained through inversion. In this paper, first, the theories of acoustic measurement methods were introduced and their feasibility was verified through a comparison between Particle Image Velocimetry (PIV) measurement and numerical simulation results. Then, the Computational Fluid Dynamics (CFD) method was used to simulate the vertical vortex at the flood discharge outlets of hydraulic structures and the simulation data were restored to the actual size at scale. Finally, acoustic numerical simulations of actual vortex data were conducted, and ultrasonic sensors were used to measure the velocity of a simplified vertical vortex model under laboratory conditions. The research results indicate that the acoustic measurement method proposed in this article is effective in the measurement of the characteristic parameters of vertical vortex with a core radius of 0.03~0.05 m and a maximum tangential velocity of 0.5 m/s, the measurement error of the maximum tangential velocity is within 10%. Full article
(This article belongs to the Special Issue Acoustic Sensors and Their Applications—2nd Edition)
Show Figures

Figure 1

15 pages, 3475 KiB  
Article
Viscosity of Clayey Soils: Experimental Studies
by Armen Z. Ter-Martirosyan, Lyubov Yu. Ermoshina and George O. Anzhelo
Appl. Sci. 2024, 14(14), 5974; https://doi.org/10.3390/app14145974 - 9 Jul 2024
Viewed by 430
Abstract
Due to the high rate of the development of housing, transportation and hydraulic engineering construction in the last hundred years, the study of the phenomenon of creep of clay soils has become a subject of scientific research. In the study, experimental investigations of [...] Read more.
Due to the high rate of the development of housing, transportation and hydraulic engineering construction in the last hundred years, the study of the phenomenon of creep of clay soils has become a subject of scientific research. In the study, experimental investigations of clay soil were conducted using a simple shear device in kinematic loading mode, aimed at examining the influence of shear rate on the viscosity coefficient of the clay soil and its strength characteristics. The tests were performed at four different shear rates and three different vertical load values. Based on the results of experimental and theoretical studies, the viscosity coefficients of clay soil were obtained, and a new rheological equation was proposed, which simultaneously takes into account the influence of Coulomb friction, structural cohesion, cohesion of water–colloidal bonds and viscous resistance of the soil. It has been shown that the shear rate has a significant impact on the viscosity coefficient of clay soil, and the viscosity coefficient itself is a variable quantity, depending both on the magnitude of the applied load and the duration of its application. The obtained results can be used for further improvement of methods for calculating the settlement of structures over time, as well as for predicting the time until the bearing capacity of foundation soils is exhausted. Full article
(This article belongs to the Special Issue Mechanical Properties and Engineering Applications of Special Soils)
Show Figures

Figure 1

26 pages, 10575 KiB  
Article
Sub-Nappe Air Cavity Pressure and Cavity Water Depth during Caisson Breakwater Overtopping by a Tsunami
by Taeksang Kim, Julien Noé Malherbe, Sirawit Shimpalee and Jeremy David Bricker
J. Mar. Sci. Eng. 2024, 12(7), 1135; https://doi.org/10.3390/jmse12071135 - 5 Jul 2024
Viewed by 889
Abstract
The design of coastal and hydraulic structures must account for extreme conditions, such as wave overtopping, and consider variables that may not be relevant under normal circumstances to ensure safety. This research investigates the characteristics of air cavity pressure and cavity water depth [...] Read more.
The design of coastal and hydraulic structures must account for extreme conditions, such as wave overtopping, and consider variables that may not be relevant under normal circumstances to ensure safety. This research investigates the characteristics of air cavity pressure and cavity water depth beside an overflowed vertical caisson breakwater, focusing on the influence of flow conditions and hydraulic parameters for a slowly varying, surging-type tsunami. A physical model was used to conduct controlled experiments, enabling the study to explore various scenarios, including subcritical and supercritical downstream flows with varying downstream flume outlet heights and different upstream water depths. Dimensionless equations for air cavity pressure and cavity water depth were derived through multivariate regression analysis, providing a systematic approach to analyze their behaviors under different flow conditions. The results show that air cavity pressure is significantly influenced by the presence of air in the cavity, with a transition from fully ventilated to partially or non-ventilated conditions as the upstream water depth increases. Cavity water depth is observed to be deeper in the non-ventilated case, aligning with previous studies. The derived dimensionless equations demonstrate strong correlations, offering valuable tools for predicting air cavity pressure and cavity water depth under various scenarios, contributing to the design and analysis of hydraulic structures. This study provides insights into wave-structure interactions, extreme wave loads, and the dynamic responses of coastal infrastructures under wave-induced conditions. Overall, this research advances our understanding of air cavity pressure and cavity water depth behaviors, providing essential data for optimizing the design, performance, and safety of hydraulic and marine structures in response to complex ocean wave loads. Full article
(This article belongs to the Special Issue Impact of Ocean Wave Loads on Marine Structures)
Show Figures

Figure 1

16 pages, 6591 KiB  
Article
Effect of Drying and Wetting Cycles on the Surface Cracking and Hydro-Mechanical Behavior of Expansive Clays
by Abdullah A. Shaker, Muawia Dafalla, Ahmed M. Al-Mahbashi and Mosleh A. Al-Shamrani
Buildings 2024, 14(7), 1908; https://doi.org/10.3390/buildings14071908 - 22 Jun 2024
Cited by 1 | Viewed by 506
Abstract
Expansive clays present serious issues in a variety of engineering applications, including roadways, light buildings, and infrastructure, because of their notable volume changes with varying moisture content. Tough weather conditions can lead to drying and shrinking, which alters expansive clays’ hydro-mechanical properties and [...] Read more.
Expansive clays present serious issues in a variety of engineering applications, including roadways, light buildings, and infrastructure, because of their notable volume changes with varying moisture content. Tough weather conditions can lead to drying and shrinking, which alters expansive clays’ hydro-mechanical properties and results in cracking. The hydro-mechanical behavior of Al-Ghatt expansive clay and the impact of wetting and drying cycles on the formation of surface cracks are addressed in this investigation. For four cycles of wetting and drying and three vertical stress levels, i.e., 50 kPa, 100 kPa, and 200 kPa, were investigated. The sizes and patterns of cracks were observed and classified. A simplified classification based on main track and secondary branch tracks is introduced. The vertical strain measure at each cycle, which showed swell and shrinkage, was plotted. The hydromechanical behavior of the clay, which corresponds to three levels of overburden stress as indicated by its swell potential and hydraulic conductivity was observed. It was found that at low overburden stresses of 50 kPa, the shrinkage is high and drops with increasing the number of cycles. Al-Ghatt clay’s tendency to crack is significantly reduced or eliminated by the 200 kPa overburden pressure. The results of this work can be used to calculate the depth of a foundation and the amount of partial soil replacement that is needed. Full article
Show Figures

Figure 1

16 pages, 11484 KiB  
Article
Analysis of Two-Dimensional Hydraulic Characteristics of Vertical-Slot, Double-Pool Fishway Based on Fluent
by Shengzhe Qi, Chenghua Fu and Meiling Xie
Water 2024, 16(12), 1695; https://doi.org/10.3390/w16121695 - 14 Jun 2024
Viewed by 513
Abstract
Research shows that the novel vertical-slot, double-pool fishway can reduce the flow velocity at the vertical slots of the fishway, enhance the efficiency of the water flow in the chambers, and increase the fish passage area and migratory corridor for fish. Utilizing Fluent, [...] Read more.
Research shows that the novel vertical-slot, double-pool fishway can reduce the flow velocity at the vertical slots of the fishway, enhance the efficiency of the water flow in the chambers, and increase the fish passage area and migratory corridor for fish. Utilizing Fluent, two-dimensional and three-dimensional models of the novel fishway were established, and numerical simulation analysis was conducted on their hydraulic characteristics. The results indicate that the flow velocity at the cross-section of the middle vertical slot in the fishway pool decreases horizontally from left to right and increases vertically from top to bottom, with similar water flow distribution patterns on different vertical lines. The flow conditions and hydraulic characteristics of the surface, middle, and bottom layers in the pool are similar, mainly characterized by planar, two-dimensional flow. The error between the trajectory of the water flow in the main flow area and the maximum velocity value is within 10%. The novel vertical-slot, double-pool fishway retains the planar binary characteristics of traditional vertical-slot fishways. The results of the two-dimensional numerical simulation can be analogized to the vertical uniformization of the three-dimensional numerical simulation, providing support for the study of its two-dimensional numerical simulation of hydraulic characteristics and presenting a theoretical basis for the structural design and construction of fishways. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

23 pages, 4708 KiB  
Article
Numerical Investigation of Different Stepped Spillway Geometries over a Mild Slope for Safe Operation Using Multi-Phase Model
by Binaya Raj Pandey, Megh Raj K C, Brian Crookston and Gerald Zenz
Water 2024, 16(11), 1635; https://doi.org/10.3390/w16111635 - 6 Jun 2024
Viewed by 970
Abstract
The appropriate design and operation of spillways are critical for dam safety. To enhance design practices and gain insights into flow hydraulics, both experimental and numerical modeling are commonly employed. In this study, we conducted a numerical investigation of flow over a mildly [...] Read more.
The appropriate design and operation of spillways are critical for dam safety. To enhance design practices and gain insights into flow hydraulics, both experimental and numerical modeling are commonly employed. In this study, we conducted a numerical investigation of flow over a mildly sloping (1V:3H) stepped spillway with various step geometries using a multi-phase mixture model with dispersed interface tracking in ANSYS Fluent. The model was validated against experimental data from Utah State University, focusing on water surface profiles over the crest, velocities, and air concentrations. The validated numerical model was used to simulate flow over different step geometries (i.e., 0.2 m H uniform Step, 0.1 m H uniform step, non-uniform steps, adverse slope steps, and stepped pool) for a range of discharges from 0.285 m3/s/m to 1.265 m3/s/m. While flow depths over the crest and velocities in the chute compared well with experimental results, air concentrations exhibited some deviation, indicating numerical limitations of the solver. The shift in the location of the inception point was found to be mainly influenced by a higher flow rate than the different design configurations over an identical mild slope. The downstream non-linear flow velocity curve with different flow rates indicated less effectiveness of the step roughness over a high flow rate as a result of the reduction in relative roughness. The theoretical velocity ratio indicated the least reduction in downstream velocity with the stepped pooled spillway due to the formation of a “stagnant pool”. A higher negative-pressure region due to flow separation at the vertical face of the steps was obtained by adverse slope steps, which shows that the risk of cavitation is higher over the adverse slope step spillway. Turbulent kinetic energy (TKE) was found to be higher for uniform 0.2 m H steps due to the strong mixing of flow over the steps. The least TKE was found at the steps of the stepped pool spillway due to the formation of a “stagnant pool”. Uniform 0.2 m H steps achieved the maximum energy dissipation efficiency, whereas the stepped pool spillway obtained the least energy dissipation efficiency, introducing higher flow velocity at the stilling basin with a higher residual head. The adverse slope and non-uniform steps were found to be more effective than the uniform 0.1 m H steps and stepped pool spillway. The application of uniform steps of higher drop height and length could achieve higher TKE over the steps, reducing the directional flow velocity, which reduces the risk of potential damage. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

16 pages, 5238 KiB  
Article
Hydrodynamic Simulation of Urban Waterlogging Based on an Improved Vertical Flow Exchange Method
by Xi Jin and Yan Mu
Water 2024, 16(11), 1563; https://doi.org/10.3390/w16111563 - 29 May 2024
Viewed by 652
Abstract
In the 1D–2D coupled simulation of urban waterlogging, the calculation process of vertical flow exchange is independent from the 1D hydraulic calculation, resulting in a failure to consider the node head and pipe flow during the exchange flow calculation, which may lead to [...] Read more.
In the 1D–2D coupled simulation of urban waterlogging, the calculation process of vertical flow exchange is independent from the 1D hydraulic calculation, resulting in a failure to consider the node head and pipe flow during the exchange flow calculation, which may lead to irrational results and further affect the stability of the model calculation. However, setting an upper limit for the exchange flow may introduce excessive subjective factors into the simulation process. In this study, a vertical flow exchange method based on the water balance of nodes is proposed. When a node is in an overloaded state, the calculation of vertical flow exchange at the node is integrated into the 1D hydraulic simulation process, thus taking into consideration the influence of the node head and pipe flow when calculating vertical flow exchange. Additionally, the iterative solution method used in the 1D hydraulic model ensures numerical harmony between the vertical flow exchange, node head and pipe flow, thus ensuring the stability of the coupled calculation. For the non-overloaded nodes, the calculation of the vertical flow exchange was conducted using a variable-head orifice discharge formula, enabling the consideration of changes in the surface water depth during the calculation of the node backflow. Using the InfoWorks ICM model as a benchmark, a comparative analysis of case simulation results demonstrated that the improved vertical flow exchange method was able to accurately and stably simulate the process of vertical flow exchange. When used with the improved vertical exchange method, the coupled model gave simulation results that closely matched those of the benchmark model. Full article
(This article belongs to the Special Issue Advanced Research on Hydraulic Engineering and Hydrological Modelling)
Show Figures

Figure 1

20 pages, 14009 KiB  
Article
Canopy Architecture and Sun Exposure Influence Berry Cluster–Water Relations in the Grapevine Variety Muscat of Alexandria
by Olfa Zarrouk, Clara Pinto, Maria Victoria Alarcón, Alicia Flores-Roco, Leonardo Santos, Teresa S. David, Sara Amancio, Carlos M. Lopes and Luisa C. Carvalho
Plants 2024, 13(11), 1500; https://doi.org/10.3390/plants13111500 - 29 May 2024
Viewed by 1225
Abstract
Climate-change-related increases in the frequency and intensity of heatwaves affect viticulture, leading to losses in yield and grape quality. We assessed whether canopy-architecture manipulation mitigates the effects of summer stress in a Mediterranean vineyard. The Vitis vinifera L variety Muscat of Alexandria plants [...] Read more.
Climate-change-related increases in the frequency and intensity of heatwaves affect viticulture, leading to losses in yield and grape quality. We assessed whether canopy-architecture manipulation mitigates the effects of summer stress in a Mediterranean vineyard. The Vitis vinifera L variety Muscat of Alexandria plants were monitored during 2019–2020. Two canopy shoot-positioning treatments were applied: vertical shoot positioning (VSP) and modulated shoot positioning (MSP). In MSP, the west-side upper foliage was released to promote partial shoot leaning, shading the clusters. Clusters were sampled at pea size (PS), veraison (VER), and full maturation (FM). Measurements included rachis anatomy and hydraulic conductance (Kh) and aquaporins (AQP) and stress-related genes expression in cluster tissues. The results show significant seasonal and interannual differences in Kh and vascular anatomy. At VER, the Kh of the rachis and rachis+pedicel and the xylem diameter decreased but were unaffected by treatments. The phloem–xylem ratio was either increased (2019) or reduced (2020) in MSP compared to VSP. Most AQPs were down-regulated at FM in pedicels and up-regulated at VER in pulp. A potential maturation shift in MSP was observed and confirmed by the up-regulation of several stress-related genes in all tissues. The study pinpoints the role of canopy architecture in berry–water relations and stress response during ripening. Full article
(This article belongs to the Special Issue Grapevine Response to Abiotic Stress)
Show Figures

Figure 1

15 pages, 10303 KiB  
Article
Applicability of Single-Borehole Dilution Tests in Aquifers with Vertical Flow
by Maria L. Calvache, Manuel López-Chicano, Angela M. Blanco-Coronas, Beatriz de la Torre and Carlos Duque
Water 2024, 16(9), 1305; https://doi.org/10.3390/w16091305 - 3 May 2024
Viewed by 1086
Abstract
A set of experimental field single-borehole dilution tests were completed in the Motril–Salobreña detrital aquifer (Spain) in a sector with coarse material in four different moments under variable hydrological conditions. The comparative study of the tracer washing, and the temperature profile patterns for [...] Read more.
A set of experimental field single-borehole dilution tests were completed in the Motril–Salobreña detrital aquifer (Spain) in a sector with coarse material in four different moments under variable hydrological conditions. The comparative study of the tracer washing, and the temperature profile patterns for the tests carried out in two wells located hundreds of m from each other, revealed the presence of ascending vertical flows in one of the wells (not detected by other means) that compromises the reliability of the tracer test. The values of both the apparent horizontal velocity and hydraulic conductivity obtained in the affected well were less than half of those estimated in the well not affected by the upward vertical flows. The repetition of the test eight times during different seasons showed that the hydraulic conductivity calculated from the apparent horizontal velocity can vary; therefore, to approximate to a representative hydraulic conductivity value, using this method is recommended to carry out tests under different hydrological conditions and average the results. The difference generated by the changes in conditions for the specific setting of the study area was 25%. Taking this into account, it was considered that an approximation to the more representative value would be an average under variable hydrological conditions, resulting in a horizontal velocity of 6.7 m/d and hydraulic conductivity of 337 m/d. This information is critical for the management of the aquifer as it has strategic resources against droughts that are becoming more frequent in the Mediterranean area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

26 pages, 14585 KiB  
Article
Geotechnical Characterisation of Flysch-Derived Colluvial Soils from a Pre-Alpine Slope Affected by Recurrent Landslides
by Marco Del Fabbro, Paolo Paronuzzi and Alberto Bolla
Geosciences 2024, 14(5), 115; https://doi.org/10.3390/geosciences14050115 - 24 Apr 2024
Viewed by 1384
Abstract
Heterogeneous rock masses that include rhythmic alternations of marl, shale, marly limestone, sandstone, siltstone, and argillite, such as Flysch, are particularly prone to generating colluvial deposits on gentle slopes, which are often subject to failures triggered by heavy rainfall. Flysch-derived colluvial soils are [...] Read more.
Heterogeneous rock masses that include rhythmic alternations of marl, shale, marly limestone, sandstone, siltstone, and argillite, such as Flysch, are particularly prone to generating colluvial deposits on gentle slopes, which are often subject to failures triggered by heavy rainfall. Flysch-derived colluvial soils are made up of highly heterogeneous sediments ranging from clayey loam to rock fragments, and they have been studied more rarely than homogeneous soils. In this work, we present a geotechnical and hydraulic characterisation performed both in situ and in the laboratory on flysch-derived colluvial soils that were involved in a channelised landslide in the pre-alpine area of the Friuli Venezia Giulia region (NE Italy). The investigated soils were characterised by the average values of the grain size composition of about 25% gravel, 20% sand, 30% silt, and 25% clay. The loamy matrix presented low-to-medium values of the liquid and plastic limits, as well as of the plasticity index (LL = 40%, PL = 23%, and PI = 17%, respectively). The values of the peak friction angle for natural intact samples were 33° < ϕp < 38°, whereas the residual friction angle fell to 23–24° at great depths and high vertical stresses, for a prevailing silty–clayey matrix. Variable head permeability tests were performed both in situ and in the laboratory, showing that the values of the vertical and horizontal permeability were very close and in the range 1 × 10−4–1 × 10−6 m/s. The soil permeability measured in the field was generally higher than the hydraulic conductivity calculated on laboratory samples. The proposed geotechnical and hydrological characterisation of flysch-derived colluvial soils can be of fundamental importance before the use of more thorough analyses/models aimed at forecasting the possible occurrence of slope failures and evaluating the related landslide hazard. The reported geotechnical and hydraulic parameters of flysch-derived colluvial materials can represent a useful reference for rainfall infiltration modelling and slope stability analyses of colluvial covers that are subject to intense and/or prolonged precipitation. However, when facing engineering problems involving colluvial soils, particularly those coming from flysch rock masses, the intrinsic variability in their grain size composition, consistency, and plasticity characteristics is a key feature and attention should be paid to the proper assumption of the corresponding geotechnical and hydraulic parameters. Full article
Show Figures

Figure 1

23 pages, 16458 KiB  
Article
Research on the Law of Layered Fracturing in the Composite Roof Strata of Coal Seams via Hydraulic Fracturing
by Bo Wang, Enke Hou, Liang Ma, Zaibin Liu, Tao Fan, Zewen Gong, Yaoquan Gao, Wengang Du, Qiang Liu and Bingzhen Ma
Energies 2024, 17(8), 1941; https://doi.org/10.3390/en17081941 - 19 Apr 2024
Viewed by 627
Abstract
Horizontal wells within the roof are an effective method to develop gas in broken and soft coal seams, and layer-penetrating fracturing is a key engineering method for the stimulating of horizontal wells within the roof of a coal seam. To understand the propagation [...] Read more.
Horizontal wells within the roof are an effective method to develop gas in broken and soft coal seams, and layer-penetrating fracturing is a key engineering method for the stimulating of horizontal wells within the roof of a coal seam. To understand the propagation law of fracture in the composite roof of coal seams, this study conducted research using numerical simulation and physical similarity simulation methods. Furthermore, engineering experiments were carried out at the Panxie coal mine in the Huainan Mining Area and the Luling coal mine in Huaibei Mining Area, to further validate this technology. The numerical simulation results indicated that fracture within the coal seam roof can propagate from the roof to the target coal seam, effectively fracturing the coal seam. Due to the coal seam’s plasticity being greater than that of the roof mudstone, the coal seam forms a broader fracture than the roof. With the increase in pseudo roof mudstone thickness and being under constant fracturing displacement, the energy consumed by the pseudo roof mudstone during fracturing causes a decrease in pore pressure when fracture extends to the coal seam, resulting in a reduction in fracture width. Therefore, the pseudo roof mudstone is an adverse factor for the expansion of hydraulic fracturing. Physical similarity simulation results demonstrated that when horizontal boreholes were arranged within the siltstone of the coal seam roof, were under reasonable vertical distance and high flow rate fracturing via fluid injection conditions, and if the coal seam had a thin pseudo roof mudstone, the fracture could propagate through the direct roof-pseudo roof interface and the pseudo roof-coal seam interface, extending to the lower coal seam. The fracture form was curved and had irregular vertical fractures, indicating that hydraulic fracturing can achieve production enhancement and the transformation of soft and hard coal seams. However, when the coal seam had a thick pseudo roof mudstone, the mudstone posed strong resistance to hydraulic fracturing, making it difficult for the fracture to propagate to the lower coal seam. Therefore, the pseudo roof mudstone plays a detrimental role in hydraulic fracturing and the production enhancement of coal seams. The engineering verification conducted at Panxie coal mine and Luling coal mine showed that by utilizing a construction drainage rate of 7.5 cubic meters per minute at Panxie coal mine, the maximum fracture length reached 218.3 m, with a maximum fracture height of 36.8 m. The maximum daily gas production of a single well reached 1450 cubic meters per day, with a total gas extraction volume of 43.62 × 104 cubic meters across 671 days. At Luling coal mine, utilizing a construction drainage rate of 10 cubic meters per minute, the maximum fracture length reached 169.1 m, with a maximum fracture height of 20.5 m. The maximum daily gas production of a single well reached 10,775 cubic meters per day, with a total gas extraction volume of 590 × 104 cubic meters for 1090 days. This indicated that the fracture within the roof of coal seams can penetrate the composite roof of coal seams and extend to the interior of the coal seams, achieving the purpose of transforming fractured and low-permeability coal seams and providing an effective mode of gas extraction. Full article
Show Figures

Figure 1

22 pages, 10535 KiB  
Article
Evaluating Soil Water–Salt Dynamics under Brackish Water Drip Irrigation in Greenhouses Subjected to Localized Topsoil Compaction
by Peirong Lu, Yaxin Liu, Yujie Yang, Yu Zhu and Zhonghua Jia
Agriculture 2024, 14(3), 412; https://doi.org/10.3390/agriculture14030412 - 3 Mar 2024
Viewed by 992
Abstract
Localized soil compaction in greenhouses resulting from less frequent tillage operations and frequent trampling by farmers inevitably disturbs the continuity and homogeneity of soil’s hydraulic properties, which impacts the precision of greenhouse cultivation regarding water supply and salinity control. However, predicting water–salt dynamics [...] Read more.
Localized soil compaction in greenhouses resulting from less frequent tillage operations and frequent trampling by farmers inevitably disturbs the continuity and homogeneity of soil’s hydraulic properties, which impacts the precision of greenhouse cultivation regarding water supply and salinity control. However, predicting water–salt dynamics under partly compacted topsoil is difficult because of the interactions between many factors related to soil properties, including irrigation method and water quality, which are especially subjected to varied compaction sizes and positions. Here, two field treatments were conducted in brackish water (3 g L−1) drip-irrigated plots, with the designed soil compaction region (40 cm width and 30 cm depth) adjacent to (T1) and below (T2) the drip lines. The calibrated and validated HYDRUS-2D model was applied to analyze salt exchanges across the vertical and horizontal interfaces between the compacted and non-compacted zones and the associated solute concentration variations within these two zones. The results indicated that the limited horizontal solute flux under T1 enhanced the subsequent downward flux below the drip lines, whereas, under T2, the restricted downward flux with relatively limited improved horizontal salt spreading resulted in more salt retention in the soil profile. Additional scenario simulations considering the vertical and horizontal extension of soil compaction sizes (ranging from 10 × 10 cm to 40 × 40 cm) were also conducted and revealed that, with the same increment in compaction size, the vertical extension of the compacted zone aggravated salt accumulation compared with that of horizontal extension, while the simulated cumulative water and salt downward fluxes were positive in relation to the compaction sizes in both vertical and horizontal directions under T1, but negative under T2. The findings of this study explore the effect of relative positions between drip lines and the soil compaction zone on salt transports under brackish water irrigation and reveal the potential soil salinization trend as extending compaction regions in the vertical or horizontal direction. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop